Zetterberg H, Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol. 2016; 12(10):563–74.
Article
CAS
PubMed
Google Scholar
Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol. 2016; 275:334–52.
Article
CAS
PubMed
Google Scholar
Agoston DV, Shutes-David A, Peskind ER. Biofluid biomarkers of traumatic brain injury. Brain Inj. 2017; 31(9):1195–203.
Article
PubMed
Google Scholar
Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol. 2013; 9(4):201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018; 18(2):165–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Papa L, Ramia MM, Edwards D, Johnson BD, Slobounov SM. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. J Neurotrauma. 2015; 32(10):661–73.
Article
PubMed
PubMed Central
Google Scholar
Mehta T, Fayyaz M, Giler GE, Kaur H, Raikwar SP, Kempuraj D, Selvakumar GP, Ahmed ME, Thangavel R, Zaheer S, et al.Current trends in biomarkers for traumatic brain injury. Open Access J Neurol Neurosurg. 2020; 12(4):86.
PubMed
PubMed Central
Google Scholar
Manivannan S, Makwana M, Ahmed AI, Zaben M. Profiling biomarkers of traumatic axonal injury: from mouse to man. Clin Neurol Neurosurg. 2018; 171:6–20.
Article
PubMed
Google Scholar
Adrian H, Mårten K, Salla N, Lasse V. Biomarkers of traumatic brain injury: temporal changes in body fluids. Eneuro. 2016;3(6)ENEURO.0294-16.2016. https://doi.org/10.1523/ENEURO.0294-16.2016.
Bogoslovsky T, Gill J, Jeromin A, Davis C, Diaz-Arrastia R. Fluid biomarkers of traumatic brain injury and intended context of use. Diagnostics. 2016; 6(4):37.
Article
CAS
PubMed Central
Google Scholar
Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: what are we measuring?Neurosci Biobehav Rev. 2016; 68:460–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thelin EP, Zeiler FA, Ercole A, Mondello S, Büki A, Bellander B-M, Helmy A, Menon DK, Nelson DW. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front Neurol. 2017; 8:300.
Article
PubMed
PubMed Central
Google Scholar
McDonald SJ, Shultz SR, Agoston DV. The known unknowns: An overview of the state of blood-based protein biomarkers of mild traumatic brain injury. J Neurotrauma. 2021. https://doi.org/10.1089/neu.2021.0011.
Potokar M, Morita M, Wiche G, Jorgačevski J. The diversity of intermediate filaments in astrocytes. Cells. 2020; 9(7):1604.
Article
CAS
PubMed Central
Google Scholar
Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015; 38(6):364–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neselius S, Brisby H, Theodorsson A, Blennow K, Zetterberg H, Marcusson J. Csf-biomarkers in olympic boxing: diagnosis and effects of repetitive head trauma. PloS ONE. 2012; 7(4):33606.
Article
CAS
Google Scholar
Papa L, Zonfrillo MR, Welch RD, Lewis LM, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haeussler CA, Giordano DM, et al.Evaluating glial and neuronal blood biomarkers GFAP and uch-L1 as gradients of brain injury in concussive, subconcussive and non-concussive trauma: a prospective cohort study. BMJ Paediatrics Open. 2019; 3(1):e000473. https://doi.org/10.1136/bmjpo-2019-000473.
Article
PubMed
PubMed Central
Google Scholar
Barry DM, Millecamps S, Julien J-P, Garcia ML. New movements in neurofilament transport, turnover and disease. Exp Cell Res. 2007; 313(10):2110–20.
Article
CAS
PubMed
Google Scholar
Yuan A, Rao MV, Nixon RA, et al.Neurofilaments at a glance. J Cell Sci. 2012; 125(14):3257–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, et al.Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018; 14(10):577–89.
Article
CAS
PubMed
Google Scholar
Gao W, Zhang Z, Lv X, Wu Q, Yan J, Mao G, Xing W. Neurofilament light chain level in traumatic brain injury: a system review and meta-analysis. Medicine. 2020;99(38). https://doi.org/10.1097/MD.0000000000022363.
Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas III J, Buki A, Robertson C, Tortella FC, Hayes RL, et al.Biokinetic analysis of ubiquitin c-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma. 2011; 28(6):861–70.
Article
PubMed
PubMed Central
Google Scholar
Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M. Rat tau proteome consists of six tau isoforms: Implication for animal models of human tauopathies. J Neurochem. 2009; 108(5):1167–76. https://doi.org/10.1111/j.1471-4159.2009.05869.x.
Article
CAS
PubMed
Google Scholar
Sato C, Barthélemy NR, Mawuenyega KG, Patterson BW, Gordon BA, Jockel-Balsarotti J, Sullivan M, Crisp MJ, Kasten T, Kirmess KM, et al.Tau kinetics in neurons and the human central nervous system. Neuron. 2018; 97(6):1284–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubenstein R, Chang B, Davies P, Wagner AK, Robertson CS, Wang KK. A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. J Neurotrauma. 2015; 32(5):342–52.
Article
PubMed
PubMed Central
Google Scholar
Thelin EP, Nelson DW, Bellander B-M. A review of the clinical utility of S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. 2017; 159(2):209–25.
Article
PubMed
Google Scholar
Townend W, Dibble C, Abid K, Vail A, Sherwood R, Lecky F. Rapid elimination of protein s-100b from serum after minor head trauma. J Neurotrauma. 2006; 23(2):149–55.
Article
PubMed
Google Scholar
Jönsson H, Johnsson P, Höglund P, Alling C, Blomquist S. Elimination of S100B and renal function after cardiac surgery. J Cardiothorac Vasc Anesth. 2000; 14(6):698–701.
Article
PubMed
Google Scholar
Bui LA, Yeboah D, Steinmaster L, Azizi S, Hier D, Wunsch D, Olbricht GR, Obafemi-Ajayi T. Heterogeneity in blood biomarker trajectories after mild TBI revealed by unsupervised learning. IEEE/ACM Trans Comput Biol Bioinforma. 2021.
Broglio SP, McCrea M, McAllister T, Harezlak J, Katz B, Hack D, Hainline B, Investigators CC, et al.A national study on the effects of concussion in collegiate athletes and us military service academy members: the NCAA–DOD concussion assessment, research and education (CARE) consortium structure and methods. Sports Med. 2017; 47(7):1437–51.
Article
PubMed
PubMed Central
Google Scholar
McCrea M, Broglio SP, McAllister TW, Gill J, Giza CC, Huber DL, Harezlak J, Cameron KL, Houston MN, McGinty G, et al.Association of blood biomarkers with acute sport-related concussion in collegiate athletes: findings from the NCAA and Department of Defense CARE consortium. JAMA Netw Open. 2020; 3(1):1919771.
Article
Google Scholar
Federal Interagency Traumatic Brain Injury Research (FITBIR). https://fitbir.nih.gov/. Accessed 08 Sep 2021.
Wolak DJ, Thorne RG. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013; 10(5):1492–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakada T, Kwee IL. Fluid dynamics inside the brain barrier: current concept of interstitial flow, glymphatic flow, and cerebrospinal fluid circulation in the brain. Neuroscientist. 2019; 25(2):155–66.
Article
PubMed
Google Scholar
Shetty AK, Zanirati G. The interstitial system of the brain in health and disease. Aging Dis. 2020; 11(1):200–11. https://doi.org/10.14336/AD.2020.0103.
Article
PubMed
PubMed Central
Google Scholar
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019; 47(D1):506–15.
Article
CAS
Google Scholar
Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. 2017; 157:230–46.
Article
PubMed
Google Scholar
Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015; 74(12):1147–57.
CAS
PubMed
Google Scholar
Saw MM, Chamberlain J, Barr M, Morgan MP, Burnett JR, Ho KM. Differential disruption of blood–brain barrier in severe traumatic brain injury. Neurocrit Care. 2014; 20(2):209–16.
Article
CAS
PubMed
Google Scholar
Turtzo LC, Jikaria N, Cota MR, Williford JP, Uche V, Davis T, MacLaren J, Moses AD, Parikh G, Castro MA, et al.Meningeal blood–brain barrier disruption in acute traumatic brain injury. Brain Commun. 2020; 2(2):143.
Article
CAS
Google Scholar
Cushing H, et al.The third circulation and its channels. Lancet. 1925; 2:851–7.
Google Scholar
Milhorat TH. The third circulation revisited. J Neurosurg. 1975; 42(6):628–45.
Article
CAS
PubMed
Google Scholar
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008; 5(1):10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knopf P, Cserr H, Nolan S, Wu T, Harling-Berg C. Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal fluid from the brain. Neuropathol Appl Neurobiol. 1995; 21(3):175–80.
Article
CAS
PubMed
Google Scholar
Boulton M, Flessner M, Armstrong D, Hay J, Johnston M. Lymphatic drainage of the cns: effects of lymphatic diversion/ligation on csf protein transport to plasma. Am J Physiol Regul Integr Comp Physiol. 1997; 272(5):1613–9.
Article
Google Scholar
Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA, Carare RO. Convective influx/glymphatic system: tracers injected into the csf enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 2018; 136(1):139–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schley D, Carare-Nnadi R, Please C, Perry V, Weller R. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 2006; 238(4):962–74.
Article
CAS
PubMed
Google Scholar
Weller RO, Kida S, Zhang E-T. Pathways of fluid drainage from the brain-morphological aspects and immunological significance in rat and man. Brain Pathol. 1992; 2(4):277–84.
Article
CAS
PubMed
Google Scholar
Zhang E, Richards H, Kida S, Weller R. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 1992; 83(3):233–9.
Article
CAS
PubMed
Google Scholar
Nimmo J, Johnston DA, Dodart J, MacGregor-Sharp MT, Weller RO, Nicoll JA, Verma A, Carare RO. Peri-arterial pathways for clearance of α-synuclein and tau from the brain: Implications for the pathogenesis of dementias and for immunotherapy. Alzheimers Dement: Diagn Assess Dis Monit. 2020; 12(1):12070.
Google Scholar
Nedergaard M. Garbage truck of the brain. Science. 2013; 340(6140):1529–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015; 40(12):2583–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, et al.A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012; 4(147):111147111.
Article
CAS
Google Scholar
Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol: Mech Dis. 2018; 13:379–94.
Article
CAS
Google Scholar
Ray L, Iliff JJ, Heys JJ. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS. 2019; 16(1):6.
Article
PubMed
PubMed Central
Google Scholar
Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015; 35(2):518–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Patel TK, Habimana-Griffin L, Gao X, Xu B, Achilefu S, Alitalo K, McKee CA, Sheehan PW, Musiek ES, Xiong C, et al.Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol Neurodegener. 2019; 14(1):11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: current understanding, significance and controversy. Front Neuroanat. 2017; 11:101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014; 11(1):26.
Article
PubMed
PubMed Central
Google Scholar
Dadas A, Washington J, Marchi N, Janigro D. Improving the clinical management of traumatic brain injury through the pharmacokinetic modeling of peripheral blood biomarkers. Fluids Barriers CNS. 2016; 13(1):21.
Article
PubMed
PubMed Central
Google Scholar
Dadas A, Washington J, Diaz-Arrastia R, Janigro D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat. 2018; 14:2989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dadas A, Janigro D. The role and diagnostic significance of cellular barriers after concussive head trauma. Concussion. 2018; 3(1):53.
Article
Google Scholar
Knauf MJ, Bell DP, Hirtzer P, Luo Z-P, Young JD, Katre NV. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J Biol Chem. 1988; 263(29):15064–70.
Article
CAS
PubMed
Google Scholar
Rosenbaum SE. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations. Hoboken, NJ: John Wiley & Sons; 2016.
Google Scholar
Welch RD, Ellis M, Lewis LM, Ayaz SI, Mika VH, Millis S, Papa L. Modeling the kinetics of serum glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase-l1, and S100B concentrations in patients with traumatic brain injury. J Neurotrauma. 2017; 34(11):1957–71.
Article
PubMed
PubMed Central
Google Scholar
Ercole A, Thelin E, Holst A, Bellander B, Nelson D. Kinetic modelling of serum S100B after traumatic brain injury. BMC Neurology. 2016; 16(1):1–8.
Article
CAS
Google Scholar
Shahim P, Linemann T, Inekci D, Karsdal MA, Blennow K, Tegner Y, Zetterberg H, Henriksen K. Serum tau fragments predict return to play in concussed professional ice hockey players. J Neurotrauma. 2016; 33(22):1995–9.
Article
PubMed
Google Scholar
McDonald SJ, O’Brien WT, Symons GF, Chen Z, Bain J, Major BP, Costello D, Yamakawa G, Sun M, Brady RD, et al.Prolonged elevation of serum neurofilament light after concussion in male australian football players. Biomarker Res. 2021; 9(1):1–9.
Article
Google Scholar
Ghanem G, Loir B, Morandini R, Sales F, Lienard D, Eggermont A, Lejeune F. On the release and half-life of s100b protein in the peripheral blood of melanoma patients. Int J Cancer. 2001; 94(4):586–90.
Article
CAS
PubMed
Google Scholar
Huang M, Dong X-Q, Hu Y-Y, Yu W-H, Zhang Z-Y. High S100B levels in cerebrospinal fluid and peripheral blood of patients with acute basal ganglial hemorrhage are associated with poor outcome. World J Emerg Med. 2010; 1(1):22.
CAS
PubMed
PubMed Central
Google Scholar
Gill J, Latour L, Diaz-Arrastia R, Motamedi V, Turtzo C, Shahim P, Mondello S, DeVoto C, Veras E, Hanlon D, et al.Glial fibrillary acidic protein elevations relate to neuroimaging abnormalities after mild TBI. Neurology. 2018; 91(15):1385–9.
Article
CAS
Google Scholar
Shahim P, Tegner Y, Marklund N, Blennow K, Zetterberg H. Neurofilament light and tau as blood biomarkers for sports-related concussion. Neurology. 2018; 90(20):1780–8.
Article
CAS
Google Scholar
Öhrfelt A, Johansson P, Wallin A, Andreasson U, Zetterberg H, Blennow K, Svensson J. Increased cerebrospinal fluid levels of ubiquitin carboxyl-terminal hydrolase L1 in patients with alzheimer’s disease. Dement Geriatr Cogn Disord Extra. 2016; 6(2):283–94.
Article
Google Scholar
Azizi S, Hier DB, Allen B, Obafemi-Ayayi T, Olbricht G, Thimgan M, Wunsch DC. A kinetic model for blood biomarker levels after mild traumatic brain injury. Front Neurol. 2021; 12:1121.
Article
Google Scholar
Zetterberg H, Bendlin BB. Biomarkers for alzheimer’s disease—preparing for a new era of disease-modifying therapies. Mol Psychiatry. 2021; 26(1):296–308. https://doi.org/10.1038/s41380-020-0721-9.
Article
PubMed
Google Scholar
Varhaug KN, Torkildsen Ø, Myhr K-M, Vedeler CA. Neurofilament light chain as a biomarker in multiple sclerosis. Front Neurol. 2019; 10:338.
Article
PubMed
PubMed Central
Google Scholar
Meeter LH, Kaat LD, Rohrer JD, Van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol. 2017; 13(7):406.
Article
CAS
PubMed
Google Scholar
Gendron TF, Badi MK, Heckman MG, Jansen-West KR, Vilanilam GK, Johnson PW, Burch AR, Walton RL, Ross OA, Brott TG, et al.Plasma neurofilament light predicts mortality in patients with stroke. Sci Transl Med. 2020;12(569). https://doi.org/10.1126/scitranslmed.aay1913.
Asken BM, Bauer RM, DeKosky ST, Svingos AM, Hromas G, Boone JK, DuBose DN, Hayes RL, Clugston JR. Concussion Basics III: serum biomarker changes following sport-related concussion. Neurology. 2018; 91(23):2133–43.
Article
CAS
Google Scholar
Meier TB, Nelson LD, Huber DL, Bazarian JJ, Hayes RL, McCrea MA. Prospective assessment of acute blood markers of brain injury in sport-related concussion. J Neurotrauma. 2017; 34(22):3134–42.
Article
PubMed
PubMed Central
Google Scholar
Posti JP, Hossain I, Takala RS, Liedes H, Newcombe V, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP, et al.Glial fibrillary acidic protein and ubiquitin c-terminal hydrolase-L1 are not specific biomarkers for mild ct-negative traumatic brain injury. J Neurotrauma. 2017; 34(7):1427–38.
Article
Google Scholar
Yue JK, Yuh EL, Korley FK, Winkler EA, Sun X, Puffer RC, Deng H, Choy W, Chandra A, Taylor SR, et al.Association between plasma GFAP concentrations and mri abnormalities in patients with ct-negative traumatic brain injury in the track-TBI cohort: a prospective multicentre study. Lancet Neurol. 2019; 18(10):953–61.
Article
CAS
PubMed
Google Scholar
Giza CC, McCrea M, Huber D, Cameron KL, Houston MN, Jackson JC, McGinty G, Pasquina P, Broglio SP, Brooks A, et al.Assessment of blood biomarker profile after acute concussion during combative training among us military cadets: a prospective study from the ncaa and us department of defense care consortium. JAMA Netw Open. 2021; 4(2):2037731.
Article
Google Scholar
Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology. 2017; 88(19):1788–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahim P, Tegner Y, Wilson DH, Randall J, Skillbäck T, Pazooki D, Kallberg B, Blennow K, Zetterberg H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014; 71(6):684–92.
Article
PubMed
Google Scholar
Rogatzki MJ, Morgan JE, Baker JS, Knox A, Serrador JM. Protein s100b and brain lipid-binding protein concentrations in the serum of recently concussed rugby players. J Neurotrauma. 2021.
Gill J, Merchant-Borna K, Jeromin A, Livingston W, Bazarian J. Acute plasma tau relates to prolonged return to play after concussion. Neurology. 2017; 88(6):595–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010; 5(9):1315–6.
Article
PubMed
Google Scholar
Manouchehrinia A, Piehl F, Hillert J, Kuhle J, Alfredsson L, Olsson T, Kockum I. Confounding effect of blood volume and body mass index on blood neurofilament light chain levels. Ann Clin Transl Neurol. 2020; 7(1):139–43.
Article
PubMed
PubMed Central
Google Scholar
Akamine S, Marutani N, Kanayama D, Gotoh S, Maruyama R, Yanagida K, Sakagami Y, Mori K, Adachi H, Kozawa J, et al.Renal function is associated with blood neurofilament light chain level in older adults. Sci Rep. 2020; 10(1):1–7.
Article
CAS
Google Scholar
Khalil M, Pirpamer L, Hofer E, Voortman MM, Barro C, Leppert D, Benkert P, Ropele S, Enzinger C, Fazekas F, et al.Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat Commun. 2020; 11(1):1–9.
Article
CAS
Google Scholar
Abdelhak A, Huss A, Kassubek J, Tumani H, Otto M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep. 2018; 8(1):1–7.
Article
CAS
Google Scholar
Chiu M-J, Fan L-Y, Chen T-F, Chen Y-F, Chieh J-J, Horng H-E. Plasma tau levels in cognitively normal middle-aged and older adults. Front Aging Neurosci. 2017; 9:51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gardner RC, Rubenstein R, Wang KK, Korley FK, Yue JK, Yuh EL, Mukherje P, Valadka AB, Okonkwo DO, Diaz-Arrastia R, et al.Age-related differences in diagnostic accuracy of plasma glial fibrillary acidic protein and tau for identifying acute intracranial trauma on computed tomography: a track-TBI study. J Neurotrauma. 2018; 35(20):2341–50.
Article
PubMed
PubMed Central
Google Scholar
Ward MD, Weber A, Merrill VD, Welch RD, Bazarian JJ, Christenson RH. Predictive performance of traumatic brain injury biomarkers in high-risk elderly patients. J Appl Lab Med. 2020; 5(1):91–100.
Article
PubMed
Google Scholar
Iverson GL, Reddi PJ, Posti JP, Kotilainen A-K, Tenovuo O, Öhman J, Zetterberg H, Blennow K, Luoto TM. Serum neurofilament light is elevated differentially in older adults with uncomplicated mild traumatic brain injuries. J Neurotrauma. 2019; 36(16):2400–6.
Article
PubMed
Google Scholar
Calcagnile O, Holmén A, Chew M, Undén J. S100B levels are affected by older age but not by alcohol intoxication following mild traumatic brain injury. Scand J Trauma Emerg Med. 2013; 21(1):1–6.
Article
Google Scholar
Shahim P, Politis A, van der Merwe A, Moore B, Ekanayake V, Lippa SM, Chou Y-Y, Pham DL, Butman JA, Diaz-Arrastia R, et al.Time course and diagnostic utility of nfl, tau, GFAP, and uch-L1 in subacute and chronic TBI. Neurology. 2020; 95(6):623–36.
Article
CAS
Google Scholar
Shahim P, Tegner Y, Gustafsson B, Gren M, Ärlig J, Olsson M, Lehto N, Engström Å, Höglund K, Portelius E, et al.Neurochemical aftermath of repetitive mild traumatic brain injury. JAMA Neurol. 2016; 73(11):1308–15.
Article
PubMed
Google Scholar
Pattinson CL, Shahim P, Taylor P, Dunbar K, Guedes VA, Motamedi V, Lai C, Devoto C, Peyer J, Roy MJ, et al.Elevated tau in military personnel relates to chronic symptoms following traumatic brain injury. J Head Trauma Rehabil. 2020; 35(1):66–73.
Article
PubMed
PubMed Central
Google Scholar
Bogoslovsky T, Wilson D, Chen Y, Hanlon D, Gill J, Jeromin A, Song L, Moore C, Gong Y, Kenney K, et al.Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 days after traumatic brain injury. J Neurotrauma. 2017; 34(1):66–73.
Article
PubMed
PubMed Central
Google Scholar
Hamdeh SA, Shevchenko G, Mi J, Musunuri S, Bergquist J, Marklund N. Proteomic differences between focal and diffuse traumatic brain injury in human brain tissue. Sci Rep. 2018; 8(1):1–15.
Google Scholar
Lewis LM, Schloemann DT, Papa L, Fucetola RP, Bazarian J, Lindburg M, Welch RD. Utility of serum biomarkers in the diagnosis and stratification of mild traumatic brain injury. Acad Emerg Med. 2017; 24(6):710–20.
Article
PubMed
Google Scholar
Wallace C, Zetterberg H, Blennow K, van Donkelaar P. No change in plasma tau and serum neurofilament light concentrations in adolescent athletes following sport-related concussion. PloS ONE. 2018; 13(10):0206466.
Google Scholar
Kawata K, Rubin LH, Takahagi M, Lee JH, Sim T, Szwanki V, Bellamy A, Tierney R, Langford D. Subconcussive impact-dependent increase in plasma s100 β levels in collegiate football players. J Neurotrauma. 2017; 34(14):2254–60.
Article
PubMed
Google Scholar
Oliver JM, Jones MT, Anzalone AJ, Kirk KM, Gable DA, Repshas JT, Johnson TA, Höglund K, Blennow K, Zetterberg H. A season of american football is not associated with changes in plasma tau. J Neurotrauma. 2017; 34(23):3295–300.
Article
PubMed
Google Scholar
Voormolen DC, Haagsma JA, Polinder S, Maas AIR, Steyerberg EW, Vuleković P, Sewalt CA, Gravesteijn BY, Covic A, Andelic N, Plass AM, von Steinbuechel N. Post-Concussion Symptoms in Complicated vs. Uncomplicated Mild Traumatic Brain Injury Patients at Three and Six Months Post-Injury: Results from the CENTER-TBI Study. J Clin Med. 2019; 8(11):1921. https://doi.org/10.3390/jcm8111921.
Article
PubMed Central
Google Scholar
Czeiter E, Amrein K, Gravesteijn BY, Lecky F, Menon DK, Mondello S, Newcombe VF, Richter S, Steyerberg EW, Vyvere TV, et al.Blood biomarkers on admission in acute traumatic brain injury: relations to severity, ct findings and care path in the center-tbi study. EBioMedicine. 2020; 56:102785.
Article
PubMed
PubMed Central
Google Scholar
Huebschmann NA, Luoto TM, Karr JE, Berghem K, Blennow K, Zetterberg H, Ashton NJ, Simrén J, Posti JP, Gill JM, et al.Comparing glial fibrillary acidic protein (GFAP) in serum and plasma following mild traumatic brain injury in older adults. Front Neurol. 2020; 11:1054.
Article
PubMed
PubMed Central
Google Scholar
Allouchery G, Moustafa F, Roubin J, Pereira B, Schmidt J, Raconnat J, Pic D, Sapin V, Bouvier D. Clinical validation of S100B in the management of a mild traumatic brain injury: issues from an interventional cohort of 1449 adult patients. Clin Chem Lab Med. 2018; 56(11):1897–904.
Article
CAS
PubMed
Google Scholar
Jones CMC, Harmon C, McCann M, Gunyan H, Bazarian JJ. S100b outperforms clinical decision rules for the identification of intracranial injury on head ct scan after mild traumatic brain injury. Brain Inj. 2020; 34(3):407–14.
Article
PubMed
Google Scholar
Egea-Guerrero JJ, Rodríguez-Rodríguez A, Quintana-Díaz M, Freire-Aragón MD, Raya-Collados D, Hernández-García C, Ortiz-Manzano Á, Vilches-Arenas Á, Díez-Naz A, Guerrero JM, et al.Validation of S100B use in a cohort of spanish patients with mild traumatic brain injury: a multicentre study. Brain Inj. 2018; 32(4):459–63.
Article
PubMed
Google Scholar
Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM, McMahon PJ, Inoue T, Yuh EL, Lingsma HF, et al.Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin c-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma. 2014; 31(1):19–25.
Article
PubMed
PubMed Central
Google Scholar
Undén L, Calcagnile O, Undén J, Reinstrup P, Bazarian J. Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults. BMC Medicine. 2015; 13(1):1–9.
Article
Google Scholar
Minkkinen M, Iverson GL, Kotilainen A-K, Pauniaho S-L, Mattila VM, Lehtimäki T, Berghem K, Posti JP, Luoto TM. Prospective Validation of the Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries in Adults. J Neurotrauma. 2019; 36(20):2904–12.
Article
PubMed
Google Scholar
Calcagnile O, Anell A, Undén J. The addition of S100B to guidelines for management of mild head injury is potentially cost saving. BMC Neurology. 2016; 16(1):200.
Article
PubMed
PubMed Central
Google Scholar
Oris C, Pereira B, Durif J, Simon-Pimmel J, Castellani C, Manzano S, Sapin V, Bouvier D. The biomarker S100B and mild traumatic brain injury: a meta-analysis. Pediatrics. 2018;141(6). https://doi.org/10.1542/peds.2018-0037.
Ananthaharan A, Kravdal G, Straume-Naesheim TM. Utility and effectiveness of the Scandinavian guidelines to exclude computerized tomography scanning in mild traumatic brain injury-a prospective cohort study. BMC Emerg Med. 2018; 18(1):44.
Article
PubMed
PubMed Central
Google Scholar
Food Administration D, et al.FDA authorizes marketing of first blood test to aid in the evaluation of concussion in adults. FDA News Release. 2018. p 2–4. https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-blood-test-aid-evaluation-concussion-adults. Accessed 06 Sep 2021.
Schencker L. A rapid blood test for mild concussions? New Abbott test gains FDA clearance. Chicago Tribune. 2021. https://www.chicagotribune.com/business/ct-biz-abbott-blood-test-concussions-fda-approval-20210111-5qddey336fdnjeuiwopcioykty-story.html. Accessed 03 Sep 2021.
Okonkwo DO, Puffer RC, Puccio AM, Yuh EL, Yue JK, Diaz-Arrastia R, Korley FK, Wang KK, Sun X, Taylor SR, et al.Point-of-care platform blood biomarker testing of glial fibrillary acidic protein versus s100 calcium-binding protein b for prediction of traumatic brain injuries: A transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma. 2020; 37(23):2460–7.
Article
PubMed
PubMed Central
Google Scholar
Metting Z, Wilczak N, Rodiger L, Schaaf J, Van Der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology. 2012; 78(18):1428–33.
Article
CAS
PubMed
Google Scholar
Silverberg ND, Gardner AJ, Brubacher JR, Panenka WJ, Li JJ, Iverson GL. Systematic review of multivariable prognostic models for mild traumatic brain injury. J Neurotrauma. 2015; 32(8):517–26. https://doi.org/10.1089/neu.2014.3600.
Article
PubMed
Google Scholar
Pattinson CL, Meier TB, Guedes VA, Lai C, Devoto C, Haight T, Broglio SP, McAllister T, Giza C, Huber D, et al.Plasma biomarker concentrations associated with return to sport following sport-related concussion in collegiate athletes—a concussion assessment, research, and education (CARE) consortium study. JAMA Netw Open. 2020; 3(8):2013191.
Article
Google Scholar
Babcock L, Byczkowski T, Wade SL, Ho M, Bazarian JJ. Inability of S100B to predict post-concussion syndrome in children who present to the emergency department with mild traumatic brain injury: a brief report. Pediatr Emerg Care. 2013; 29(4):458.
Article
PubMed
PubMed Central
Google Scholar
Hossain I, Mohammadian M, Takala RS, Tenovuo O, Azurmendi Gil L, Frantzén J, Van Gils M, Hutchinson PJ, Katila AJ, Maanpää H-R, et al.Admission levels of total tau and β-amyloid isoforms 1–40 and 1–42 in predicting the outcome of mild traumatic brain injury. Front Neurol. 2020; 11:325.
Article
PubMed
PubMed Central
Google Scholar
Ma M, Lindsell CJ, Rosenberry CM, Shaw GJ, Zemlan FP. Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. Am J Emerg Med. 2008; 26(7):763–8.
Article
PubMed
PubMed Central
Google Scholar
Atif H, Hicks SD. A review of microrna biomarkers in traumatic brain injury. J Exp Neurosci. 2019; 13:1179069519832286.
Article
PubMed
PubMed Central
Google Scholar
Huebschmann NA, Luoto TM, Karr JE, Berghem K, Blennow K, Zetterberg H, Ashton NJ, Simrén J, Posti JP, Gill JM, et al.Comparing glial fibrillary acidic protein (gfap) in serum and plasma following mild traumatic brain injury in older adults. Front Neurol. 2020; 11:1054.
Article
PubMed
PubMed Central
Google Scholar
Janigro D, Kawata K, Silverman E, Marchi N, Diaz-Arrastia R. Is salivary s100b a biomarker of traumatic brain injury? a pilot study. Front Neurol. 2020; 11:528.
Article
PubMed
PubMed Central
Google Scholar
Olczak M, Poniatowski ŁA, Niderla-Bielińska J, Kwiatkowska M, Chutorański D, Tarka S, Wierzba-Bobrowicz T. Concentration of microtubule associated protein tau (mapt) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood–brain barrier disruption in postmortem examination. Forensic Sci Int. 2019; 301:28–36.
Article
CAS
PubMed
Google Scholar
Johnson VE, Weber MT, Xiao R, Cullen DK, Meaney DF, Stewart W, Smith DH. Mechanical disruption of the blood–brain barrier following experimental concussion. Acta Neuropathol. 2018; 135(5):711–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weissberg I, Veksler R, Kamintsky L, Saar-Ashkenazy R, Milikovsky DZ, Shelef I, Friedman A. Imaging blood-brain barrier dysfunction in football players. JAMA Neurol. 2014; 71(11):1453–5.
Article
PubMed
Google Scholar
Lindblad C, Nelson DW, Zeiler FA, Ercole A, Ghatan PH, von Horn H, Risling M, Svensson M, Agoston DV, Bellander B-M, et al.Influence of blood–brain barrier integrity on brain protein biomarker clearance in severe traumatic brain injury: A longitudinal prospective study. J Neurotrauma. 2020; 37(12):1381–91.
Article
PubMed
PubMed Central
Google Scholar
Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF- α, TGF- β1 and blood–brain barrier function. J Neuroimmunol. 1999; 101(2):211–21.
Article
CAS
PubMed
Google Scholar
Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ. The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett. 1997; 226(1):33–6.
Article
PubMed
Google Scholar
Wood H. Evidence of blood–brain barrier disruption after concussion. Nat Rev Neurol. 2018; 14(5):254.
Article
PubMed
Google Scholar
Habgood M, Bye N, Dziegielewska K, Ek C, Lane M, Potter A, Morganti-Kossmann C, Saunders N. Changes in blood–brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007; 25(1):231–8.
Article
CAS
PubMed
Google Scholar
Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, Sullivan PG. Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res. 2010; 88(16):3530–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerr ZY, Zuckerman SL, Wasserman EB, Covassin T, Djoko A, Dompier TP. Concussion symptoms and return to play time in youth, high school, and college american football athletes. JAMA Pediatrics. 2016; 170(7):647–53.
Article
PubMed
Google Scholar