Kim S, Shendure J. Mechanisms of interplay between transcription factors and the 3D genome. Mol Cell. 2019;76(2):306–19. https://doi.org/10.1016/j.molcel.2019.08.010.
Article
CAS
PubMed
Google Scholar
Chen A, Koehler AN. Transcription factor inhibition: lessons learned and emerging targets. Trends Mol Med. 2020;26:508–18.
CAS
PubMed
PubMed Central
Google Scholar
Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 2003;31:532–50.
CAS
PubMed
PubMed Central
Google Scholar
Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23:53.
PubMed
PubMed Central
Google Scholar
Gong D, Feng PC, Ke XF, Kuang HL, Pan LL, Ye Q, et al. Silencing long non-coding RNA LINC01224 inhibits hepatocellular carcinoma progression via MicroRNA-330-5p-induced inhibition of CHEK1. Mol Ther Nucleic Acids. 2020;19:482–97.
CAS
PubMed
Google Scholar
McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(Suppl 1):4–13.
CAS
PubMed
Google Scholar
Zhang T, Huang Y, Liu W, Meng W, Zhao H, Yang Q, et al. Overexpression of zinc finger protein 687 enhances tumorigenic capability and promotes recurrence of hepatocellular carcinoma. Oncogenesis. 2017;6(7):e363. https://doi.org/10.1038/oncsis.2017.63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Li H, Huang J, Zhang L, Chen X, Wang Q, et al. Down-regulation of Gli-1 inhibits hepatocellular carcinoma cell migration and invasion. Mol Cell Biochem. 2014;393:283–91.
CAS
PubMed
Google Scholar
Gai X, Lu Z, Tu K, Liang Z, Zheng X, Müller R. Caveolin-1 is up-regulated by GLI1 and contributes to GLI1-driven EMT in hepatocellular carcinoma. PLoS One. 2014;9:e84551.
PubMed
PubMed Central
Google Scholar
Li J, He Y, Cao Y, Yu Y, Chen X, Gao X, et al. Upregulation of twist is involved in Gli1 induced migration and invasion of hepatocarcinoma cells. Biol Chem. 2018;399:911–9.
CAS
PubMed
Google Scholar
Yi PS, Shu Y, Bi WX, Zheng XB, Feng WJ, He LY, et al. Emerging role of zinc finger protein A20 as a suppressor of hepatocellular carcinoma. J Cell Physiol. 2019;234:21479–84.
CAS
PubMed
Google Scholar
Dang S, Zhou J, Chen Y, Chen P, Ji M, Shi B, et al. Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis. Oncogene. 2019;38(24):4804–19. https://doi.org/10.1038/s41388-019-0759-9.
Article
CAS
PubMed
Google Scholar
Guan C, He L, Chang Z, Gu X, Liang J, Liu R. ZNF774 is a potent suppressor of hepatocarcinogenesis through dampening the NOTCH2 signaling. Oncogene. 2020;39:1665–80.
CAS
PubMed
Google Scholar
Yang N, Wang L, Chen T, Liu R, Liu Z, Zhang L. ZNF521 which is downregulated by miR-802 suppresses malignant progression of hepatocellular carcinoma through regulating Runx2 expression. J Cancer. 2020;11:5831–9.
CAS
PubMed
PubMed Central
Google Scholar
Han M, Liao Z, Liu F, Chen X, Zhang B. Modulation of the TGF-beta signaling pathway by long noncoding RNA in hepatocellular carcinoma. Biomark Res. 2020;8:70.
PubMed
PubMed Central
Google Scholar
Perez-Torrado R, Yamada D, Defossez PA. Born to bind: the BTB protein-protein interaction domain. Bioessays. 2006;28(12):1194–202. https://doi.org/10.1002/bies.20500.
Article
CAS
PubMed
Google Scholar
Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 1994;8:1664–77.
CAS
PubMed
Google Scholar
Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005;6:R82.
PubMed
PubMed Central
Google Scholar
Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL, et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell. 2003;12:1551–64.
CAS
PubMed
Google Scholar
Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A. 2004;101(7):2046–51. https://doi.org/10.1073/pnas.0308347100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreusch A, Pfaffinger PJ, Stevens CF, Choe S. Crystal structure of the tetramerization domain of the shaker potassium channel. Nature. 1998;392(6679):945–8. https://doi.org/10.1038/31978.
Article
CAS
PubMed
Google Scholar
Furukawa M, He YJ, Borchers C, Xiong Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol. 2003;5:1001–7.
CAS
PubMed
Google Scholar
Geyer R, Wee S, Anderson S, Yates J, Wolf DA. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell. 2003;12(3):783–90. https://doi.org/10.1016/S1097-2765(03)00341-1.
Article
CAS
PubMed
Google Scholar
Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol. 2006;26(1):169–81. https://doi.org/10.1128/MCB.26.1.169-181.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schumacher C, Wang H, Honer C, Ding W, Koehn J, Lawrence Q, et al. The SCAN domain mediates selective oligomerization. J Biol Chem. 2000;275(22):17173–9. https://doi.org/10.1074/jbc.M000119200.
Article
CAS
PubMed
Google Scholar
Ahmad KF, Engel CK, Prive GG. Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci U S A. 1998;95:12123–8.
CAS
PubMed
PubMed Central
Google Scholar
Li X, Peng H, Schultz DC, Lopez-Guisa JM, Rauscher FR, Marmorstein R. Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein. Cancer Res. 1999;59:5275–82.
CAS
PubMed
Google Scholar
Huang M, Chen Y, Han D, Lei Z, Chu X. Role of the zinc finger and SCAN domain-containing transcription factors in cancer. Am J Cancer Res. 2019;9(5):816–36.
CAS
PubMed
PubMed Central
Google Scholar
Pengue G, Calabro V, Bartoli PC, Pagliuca A, Lania L. Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res. 1994;22:2908–14.
CAS
PubMed
PubMed Central
Google Scholar
Sander TL, Haas AL, Peterson MJ, Morris JF. Identification of a novel SCAN box-related protein that interacts with MZF1B. The leucine-rich SCAN box mediates hetero- and homoprotein associations. J Biol Chem. 2000;275(17):12857–67. https://doi.org/10.1074/jbc.275.17.12857.
Article
CAS
PubMed
Google Scholar
Williams AJ, Blacklow SC, Collins T. The zinc finger-associated SCAN box is a conserved oligomerization domain. Mol Cell Biol. 1999;19(12):8526–35. https://doi.org/10.1128/MCB.19.12.8526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eguchi T, Prince T, Wegiel B, Calderwood SK. Role and regulation of myeloid zinc finger protein 1 in Cancer. J Cell Biochem. 2015;116:2146–54.
CAS
PubMed
PubMed Central
Google Scholar
Bonchuk A, Boyko K, Fedotova A, Nikolaeva A, Lushchekina S, Khrustaleva A, et al. Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila. Nucleic Acids Res. 2021;49(4):2375–89. https://doi.org/10.1093/nar/gkab061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 2017;543:550–4.
CAS
PubMed
Google Scholar
Iyengar S, Farnham PJ. KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem. 2011;286:26267–76.
CAS
PubMed
PubMed Central
Google Scholar
Mannini R, Rivieccio V, D'Auria S, Tanfani F, Ausili A, Facchiano A, et al. Structure/function of KRAB repression domains: structural properties of KRAB modules inferred from hydrodynamic, circular dichroism, and FTIR spectroscopic analyses. Proteins. 2006;62(3):604–16. https://doi.org/10.1002/prot.20792.
Article
CAS
PubMed
Google Scholar
Vissing H, Meyer WK, Aagaard L, Tommerup N, Thiesen HJ. Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett. 1995;369:153–7.
CAS
PubMed
Google Scholar
Iuchi S. Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci. 2001;58(4):625–35. https://doi.org/10.1007/PL00000885.
Article
CAS
PubMed
Google Scholar
Nakahashi H, Kieffer KK, Resch W, Vian L, Dose M, Stavreva D, et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 2013;3:1678–89.
CAS
PubMed
PubMed Central
Google Scholar
Schmitges FW, Radovani E, Najafabadi HS, Barazandeh M, Campitelli LF, Yin Y, et al. Multiparameter functional diversity of human C2H2 zinc finger proteins. Genome Res. 2016;26(12):1742–52. https://doi.org/10.1101/gr.209643.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Najafabadi HS, Mnaimneh S, Schmitges FW, Garton M, Lam KN, Yang A, et al. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat Biotechnol. 2015;33:555–62.
CAS
PubMed
Google Scholar
Honer C, Chen P, Toth MJ, Schumacher C. Identification of SCAN dimerization domains in four gene families. Biochim Biophys Acta. 2001;1517:441–8.
CAS
PubMed
Google Scholar
Ecco G, Imbeault M, Trono D. KRAB zinc finger proteins. Development. 2017;144(15):2719–29. https://doi.org/10.1242/dev.132605.
Article
CAS
PubMed
Google Scholar
Del Rizzo PA, Trievel RC. Substrate and product specificities of SET domain methyltransferases. Epigenetics-Us. 2011;6(9):1059–67. https://doi.org/10.4161/epi.6.9.16069.
Article
CAS
Google Scholar
Herz H, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci. 2013;38(12):621–39. https://doi.org/10.1016/j.tibs.2013.09.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiao Z, Wang L, Du H, Wang Y, Wang W, Liu J, et al. Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. BMC Plant Biol. 2020;20(1):401. https://doi.org/10.1186/s12870-020-02619-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarty AS, Kleiger G, Eisenberg D, Smale ST. Selective dimerization of a C2H2 zinc finger subfamily. Mol Cell. 2003;11(2):459–70. https://doi.org/10.1016/S1097-2765(03)00043-1.
Article
CAS
PubMed
Google Scholar
Persikov AV, Wetzel JL, Rowland EF, Oakes BL, Xu DJ, Singh M, et al. A systematic survey of the Cys2His2 zinc finger DNA-binding landscape. Nucleic Acids Res. 2015;43(3):1965–84. https://doi.org/10.1093/nar/gku1395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto H, Wang D, Horton JR, Zhang X, Corces VG, Cheng X. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol Cell. 2017;66:711–20.
CAS
PubMed
PubMed Central
Google Scholar
Caramel J, Ligier M, Puisieux A. Pleiotropic roles for ZEB1 in cancer. Cancer Res. 2018;78:30–5.
CAS
PubMed
Google Scholar
Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015;14(4):481–7. https://doi.org/10.1080/15384101.2015.1006048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schroth GP, Cook GR, Bradbury EM, Gottesfeld JM. Transcription factor IIIA induced bending of the Xenopus somatic 5S gene promoter. Nature. 1989;340(6233):487–8. https://doi.org/10.1038/340487a0.
Article
CAS
PubMed
Google Scholar
Schleif R. DNA binding by proteins. Science. 1988;241:1182–7.
CAS
PubMed
Google Scholar
Moroy T, Khandanpour C. Role of GFI1 in epigenetic regulation of MDS and AML pathogenesis: mechanisms and therapeutic implications. Front Oncol. 2019;9:824.
PubMed
PubMed Central
Google Scholar
Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: targeted silencing of foreign DNA in mammalian genomes by the Kruppel-associated box zinc finger protein family. Mob DNA. 2015;6:17.
PubMed
PubMed Central
Google Scholar
Xiao YY, Lin L, Li YH, Jiang HP, Zhu LT, Deng YR, et al. ZEB1 promotes invasion and metastasis of endometrial cancer by interacting with HDGF and inducing its transcription. Am J Cancer Res. 2019;9:2314–30.
CAS
PubMed
PubMed Central
Google Scholar
Jen J, Liu CY, Chen YT, Wu LT, Shieh YC, Lai WW, et al. Oncogenic zinc finger protein ZNF322A promotes stem cell-like properties in lung cancer through transcriptional suppression of c-Myc expression. Cell Death Differ. 2019;26(7):1283–98. https://doi.org/10.1038/s41418-018-0204-6.
Article
CAS
PubMed
Google Scholar
Orth B, Sander B, Moglich A, Diederichs K, Eilers M, Lorenz S. Identification of an atypical interaction site in the BTB domain of the MYC-interacting zinc-finger protein 1. Structure. 2021;29(11):1230–40.e5. https://doi.org/10.1016/j.str.2021.06.005.
Article
CAS
PubMed
Google Scholar
Dai KS, Liew CC. A novel human striated muscle RING zinc finger protein, SMRZ, interacts with SMT3b via its RING domain. J Biol Chem. 2001;276(26):23992–9. https://doi.org/10.1074/jbc.M011208200.
Article
CAS
PubMed
Google Scholar
Yi D, Dempersmier JM, Nguyen HP, Viscarra JA, Dinh J, Tabuchi C, et al. Zc3h10 acts as a transcription factor and is phosphorylated to activate the thermogenic program. Cell Rep. 2019;29:2621–33.
CAS
PubMed
PubMed Central
Google Scholar
Makita S, Takatori H, Nakajima H. Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins. Front Immunol. 2021;12:711633. https://doi.org/10.3389/fimmu.2021.711633.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidoya H, Muramatsu F, Shimamura T, Jia W, Satoh T, Hayashi Y, et al. Regnase-1-mediated post-transcriptional regulation is essential for hematopoietic stem and progenitor cell homeostasis. Nat Commun. 2019;10(1):1072. https://doi.org/10.1038/s41467-019-09028-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vander HM, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.
Google Scholar
Li Y, Kasim V, Yan X, Li L, Meliala I, Huang C, et al. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1beta-induced fatty acid oxidation. Theranostics. 2019;9(25):7599–615. https://doi.org/10.7150/thno.34931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang LT, Li X, Zhang L, Sun L, He X, et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 2014;8:1930–42.
CAS
PubMed
Google Scholar
Wu S, Kasim V, Kano MR, Tanaka S, Ohba S, Miura Y, et al. Transcription factor YY1 contributes to tumor growth by stabilizing hypoxia factor HIF-1alpha in a p53-independent manner. Cancer Res. 2013;73:1787–99.
CAS
PubMed
Google Scholar
Liu G, Zhou L, Zhang H, Chen R, Zhang Y, Li L, et al. Regulation of hepatic lipogenesis by the zinc finger protein Zbtb20. Nat Commun. 2017;8(1):14824. https://doi.org/10.1038/ncomms14824.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017;232:3261–72.
CAS
PubMed
PubMed Central
Google Scholar
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.
CAS
PubMed
PubMed Central
Google Scholar
Goossens S, Janzen V, Bartunkova S, Yokomizo T, Drogat B, Crisan M, et al. The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood. 2011;117:5620–30.
CAS
PubMed
Google Scholar
Seuntjens E, Nityanandam A, Miquelajauregui A, Debruyn J, Stryjewska A, Goebbels S, et al. Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci. 2009;12(11):1373–80. https://doi.org/10.1038/nn.2409.
Article
CAS
PubMed
Google Scholar
Fardi M, Alivand M, Baradaran B, Farshdousti HM, Solali S. The crucial role of ZEB2: from development to epithelial-to-mesenchymal transition and cancer complexity. J Cell Physiol. 2019;234(9):14783–99. https://doi.org/10.1002/jcp.28277.
Article
CAS
Google Scholar
Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7:1267–78.
CAS
PubMed
Google Scholar
Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell. 2000;102(2):199–209. https://doi.org/10.1016/S0092-8674(00)00025-8.
Article
CAS
PubMed
Google Scholar
Tang Y, Feinberg T, Keller ET, Li X, Weiss SJ. Snail/slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol. 2016;18:917–29.
CAS
PubMed
PubMed Central
Google Scholar
Caja L, Tzavlaki K, Dadras MS, Tan E, Hatem G, Maturi NP, et al. Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells. Oncogene. 2018;37(19):2515–31. https://doi.org/10.1038/s41388-018-0136-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol. 2014;14:361–76.
CAS
PubMed
Google Scholar
Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nat Rev Immunol. 2009;9(10):692–703. https://doi.org/10.1038/nri2634.
Article
CAS
PubMed
Google Scholar
Jin J, Zeng H, Schmid KW, Toetsch M, Uhlig S, Moroy T. The zinc finger protein Gfi1 acts upstream of TNF to attenuate endotoxin-mediated inflammatory responses in the lung. Eur J Immunol. 2006;36(2):421–30. https://doi.org/10.1002/eji.200535155.
Article
CAS
PubMed
Google Scholar
Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32. https://doi.org/10.1016/j.smim.2006.12.004.
Article
CAS
PubMed
Google Scholar
Zhong X, Feng L, Xu WH, Wu X, Ding YD, Zhou Y, et al. The zinc-finger protein ZFYVE1 modulates TLR3-mediated signaling by facilitating TLR3 ligand binding. Cell Mol Immunol. 2020;17(7):741–52. https://doi.org/10.1038/s41423-019-0265-6.
Article
CAS
PubMed
Google Scholar
Fu M, Blackshear PJ. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat Rev Immunol. 2017;17:130–43.
CAS
PubMed
Google Scholar
Maeda K, Akira S. Regulation of mRNA stability by CCCH-type zinc-finger proteins in immune cells. Int Immunol. 2017;29(4):149–55. https://doi.org/10.1093/intimm/dxx015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science. 1998;281:1001–5.
CAS
PubMed
Google Scholar
Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature. 2005;435:452–8.
CAS
PubMed
Google Scholar
Liang J, Wang J, Azfer A, Song W, Tromp G, Kolattukudy PE, et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem. 2008;283:6337–46.
CAS
PubMed
Google Scholar
Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature. 2009;458(7242):1185–90. https://doi.org/10.1038/nature07924.
Article
CAS
PubMed
Google Scholar
Tanaka H, Arima Y, Kamimura D, Tanaka Y, Takahashi N, Uehata T, et al. Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response. J Exp Med. 2019;216(6):1431–49. https://doi.org/10.1084/jem.20181078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall TM. Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol. 2005;15(3):367–73. https://doi.org/10.1016/j.sbi.2005.04.004.
Article
CAS
PubMed
Google Scholar
Zhang J, Wen X, Liu N, Li Y, Tang X, Wang Y, et al. Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and tumorigenicity in nasopharyngeal carcinoma by inhibiting cell cycle arrest. J Exp Clin Cancer Res. 2017;36:147.
PubMed
PubMed Central
Google Scholar
Sun R, Xiang T, Tang J, Peng W, Luo J, Li L, et al. 19q13 KRAB zinc-finger protein ZNF471 activates MAPK10/JNK3 signaling but is frequently silenced by promoter CpG methylation in esophageal cancer. Theranostics. 2020;10(5):2243–59. https://doi.org/10.7150/thno.35861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao L, Wang S, Zhang Y, Wong K, Nakatsu G, Wang X, et al. Zinc-finger protein 471 suppresses gastric cancer through transcriptionally repressing downstream oncogenic PLS3 and TFAP2A. Oncogene. 2018;37:3601–16.
CAS
PubMed
PubMed Central
Google Scholar
Huang C, Wu S, Li W, Herkilini A, Miyagishi M, Zhao H, et al. Zinc-finger protein p52-ZER6 accelerates colorectal cancer cell proliferation and tumour progression through promoting p53 ubiquitination. Ebiomedicine. 2019;48:248–63.
CAS
PubMed
PubMed Central
Google Scholar
Li L, Liu X, He L, Yang J, Pei F, Li W, et al. ZNF516 suppresses EGFR by targeting the CtBP/LSD1/CoREST complex to chromatin. Nat Commun. 2017;8:691.
PubMed
PubMed Central
Google Scholar
Li Y, Yang Q, Guan H, Shi B, Ji M, Hou P. ZNF677 suppresses Akt phosphorylation and tumorigenesis in thyroid Cancer. Cancer Res. 2018;78(18):5216–28. https://doi.org/10.1158/0008-5472.CAN-18-0003.
Article
CAS
PubMed
Google Scholar
Narita S, So A, Ettinger S, Hayashi N, Muramaki M, Fazli L, et al. GLI2 knockdown using an antisense oligonucleotide induces apoptosis and Chemosensitizes cells to paclitaxel in androgen-independent prostate Cancer. Clin Cancer Res. 2008;14(18):5769–77. https://doi.org/10.1158/1078-0432.CCR-07-4282.
Article
CAS
PubMed
Google Scholar
Kudo K, Gavin E, Das S, Amable L, Shevde LA, Reed E. Inhibition of Gli1 results in altered c-Jun activation, inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum-DNA adduct repair. Oncogene. 2012;31(44):4718–24. https://doi.org/10.1038/onc.2011.610.
Article
CAS
PubMed
Google Scholar
Chen H, Hu L, Luo Z, Zhang J, Zhang C, Qiu B, et al. A20 suppresses hepatocellular carcinoma proliferation and metastasis through inhibition of Twist1 expression. Mol Cancer. 2015;14(1):186. https://doi.org/10.1186/s12943-015-0454-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao L, Chen C, Li N, Lin L, Huang B, Chang Y, et al. Y-box binding Protein-1 promotes epithelial-mesenchymal transition in Sorafenib-resistant hepatocellular carcinoma cells. Int J Mol Sci. 2021;22:224.
CAS
Google Scholar
Ng ZL, Siew J, Li J, Ji G, Huang M, Liao X, et al. PATZ1 (MAZR) co-occupies genomic sites with p53 and inhibits liver Cancer cell proliferation via regulating p27. Front Cell Dev Biol. 2021;9:586150.
PubMed
PubMed Central
Google Scholar
Li Z, Lu X, Liu Y, Zhao J, Ma S, Yin H, et al. Gain of LINC00624 enhances liver Cancer progression by disrupting the histone deacetylase 6/tripartite motif containing 28/zinc finger protein 354C corepressor complex. Hepatology. 2021;73(5):1764–82. https://doi.org/10.1002/hep.31530.
Article
CAS
PubMed
Google Scholar
Coulombe P, Nassar J, Peiffer I, Stanojcic S, Sterkers Y, Delamarre A, et al. The ORC ubiquitin ligase OBI1 promotes DNA replication origin firing. Nat Commun. 2019;10:2426.
PubMed
PubMed Central
Google Scholar
Liang Y, Li Q, Chen K, Ni W, Zhan Z, Ye F, et al. Zinc finger protein 307 functions as a tumor-suppressor and inhibits cell proliferation by inducing apoptosis in hepatocellular carcinoma. Oncol Rep. 2017;38(4):2229–36. https://doi.org/10.3892/or.2017.5868.
Article
CAS
PubMed
Google Scholar
Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016;65:798–808.
CAS
PubMed
Google Scholar
Peukert K, Staller P, Schneider A, Carmichael G, Hänel F, Eilers M. An alternative pathway for gene regulation by Myc. EMBO J. 1997;16(18):5672–86. https://doi.org/10.1093/emboj/16.18.5672.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Xu H, Ma F, Zhan M, Yang X, Hua S, et al. Zinc finger protein 703 induces EMT and sorafenib resistance in hepatocellular carcinoma by transactivating CLDN4 expression. Cell Death Dis. 2020;11(4):225. https://doi.org/10.1038/s41419-020-2422-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.
CAS
PubMed
Google Scholar
Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452:181–6.
CAS
PubMed
Google Scholar
Giannelli G, Villa E, Lahn M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014;74:1890–4.
CAS
PubMed
Google Scholar
He L, Fan X, Li Y, Chen M, Cui B, Chen G, et al. Overexpression of zinc finger protein 384 (ZNF 384), a poor prognostic predictor, promotes cell growth by upregulating the expression of cyclin D1 in hepatocellular carcinoma. Cell Death Dis. 2019;10(6):444. https://doi.org/10.1038/s41419-019-1681-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karin M. NF- B as a critical link between inflammation and cancer. Cold Spring Harbor Perspect Biol. 2009;1:a000141.
Google Scholar
Shahi P, Wang C, Lawson DA, Slorach EM, Lu A, Yu Y, et al. ZNF50 3/Zpo2 drives aggressive breast cancer progression by down-regulation of GATA3 expression. Proc Natl Acad Sci. 2017;114:3169–74.
CAS
PubMed
PubMed Central
Google Scholar
Priem D, van Loo G, Bertrand MJM. A20 and cell death-driven inflammation. Trends Immunol. 2020;41(5):421–35. https://doi.org/10.1016/j.it.2020.03.001.
Article
CAS
PubMed
Google Scholar
Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–93.
CAS
PubMed
Google Scholar
Zhang L, Huo Q, Ge C, Zhao F, Zhou Q, Chen X, et al. ZNF143-mediated H3K9 Trimethylation upregulates CDC6 by activating MDIG in hepatocellular carcinoma. Cancer Res. 2020;80:2599–611.
CAS
PubMed
Google Scholar
Tchakarska G, Sola B. The double dealing of cyclin D1. Cell Cycle. 2020;19(2):163–78. https://doi.org/10.1080/15384101.2019.1706903.
Article
CAS
PubMed
Google Scholar
Peter ME. Apoptosis meets necrosis. Nature (London). 2011;471(7338):310–2. https://doi.org/10.1038/471310a.
Article
CAS
Google Scholar
Sessler T, Healy S, Samali A, Szegezdi E. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther. 2013;140:186–99.
CAS
PubMed
Google Scholar
Zheng X, Rumie Vittar NB, Gai X, Fernandez-Barrena MG, Moser CD, Hu C, et al. The transcription factor GLI1 mediates TGFb1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism. PLoS One. 2012;7(11):e49581.
CAS
PubMed
PubMed Central
Google Scholar
Gai X, Tu K, Li C, Lu Z, Roberts LR, Zheng X. Histone acetyltransferase PCAF accelerates apoptosis by repressing a GLI1/BCL2/BAX axis in hepatocellular carcinoma. Cell Death Dis. 2015;6:e1712.
CAS
PubMed
PubMed Central
Google Scholar
Cui J, Liu J, Fan L, Zhu Y, Zhou B, Wang Y, et al. A zinc finger family protein, ZNF263, promotes hepatocellular carcinoma resistance to apoptosis via activation of ER stress-dependent autophagy. Transl Oncol. 2020;13:100851.
PubMed
PubMed Central
Google Scholar
Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13:727–38.
CAS
PubMed
Google Scholar
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells. Cell Stem Cell. 2015;16(3):225–38. https://doi.org/10.1016/j.stem.2015.02.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhie SK, Yao L, Luo Z, Witt H, Schreiner S, Guo Y, et al. ZFX acts as a transcriptional activator in multiple types of human tumors by binding downstream from transcription start sites at the majority of CpG island promoters. Genome Res. 2018;28:310–20.
CAS
PubMed Central
Google Scholar
Ni W, Perez AA, Schreiner S, Nicolet CM, Farnham PJ. Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters. Nucleic Acids Res. 2020;48(11):5986–6000. https://doi.org/10.1093/nar/gkaa384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801. https://doi.org/10.1126/science.1172482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai KP, Chen J, He M, Ching AKK, Lau C, Lai PBS, et al. Overexpression of ZFX confers self-renewal and chemoresistance properties in hepatocellular carcinoma. Int J Cancer. 2014;135(8):1790–9. https://doi.org/10.1002/ijc.28819.
Article
CAS
PubMed
Google Scholar
Wang C, Fu SY, Wang MD, Yu WB, Cui QS, Wang HR, et al. Zinc finger protein X-linked promotes expansion of EpCAM+ cancer stem-like cells in hepatocellular carcinoma. Mol Oncol. 2017;11:455–69.
CAS
PubMed
PubMed Central
Google Scholar
Bahrami A, Majeed M, Sahebkar A. Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol. 2019;42(4):405–21. https://doi.org/10.1007/s13402-019-00442-2.
Article
CAS
Google Scholar
Li LY, Yang JF, Rong F, Luo ZP, Hu S, Fang H, et al. ZEB1 serves an oncogenic role in the tumourigenesis of HCC by promoting cell proliferation, migration, and inhibiting apoptosis via Wnt/beta-catenin signaling pathway. Acta Pharmacol Sin. 2021;42(10):1676–89. https://doi.org/10.1038/s41401-020-00575-3.
Article
CAS
PubMed
Google Scholar
Jiao W, Miyazaki K, Kitajima Y. Inverse correlation between E-cadherin and snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer. 2002;86(1):98–101. https://doi.org/10.1038/sj.bjc.6600017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winkler M, Staniczek T, Kürschner SW, Schmid CD, Schönhaber H, Cordero J, et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J Hepatol. 2021;74(2):380–93. https://doi.org/10.1016/j.jhep.2020.08.033.
Article
CAS
PubMed
Google Scholar
Xiang Q, Zhou D, He X, Fan J, Tang J, Qiu Z, et al. The zinc finger protein GATA4 induces mesenchymal-to-epithelial transition and cellular senescence through the nuclear factor-κB pathway in hepatocellular carcinoma. J Gastroenterol Hepatol. 2019;34(12):2196–205. https://doi.org/10.1111/jgh.14684.
Article
CAS
PubMed
Google Scholar
Shahi P, Slorach EM, Wang C, Chou J, Lu A, Ruderisch A, et al. The transcriptional repressor ZNF503/Zeppo2 promotes mammary epithelial cell proliferation and enhances cell invasion. J Biol Chem. 2015;290:3803–13.
CAS
PubMed
Google Scholar
Yin G, Liu Z, Wang Y, Sun L, Wang L, Yao B, et al. ZNF503 accelerates aggressiveness of hepatocellular carcinoma cells by down-regulation of GATA3 expression and regulated by microRNA-495. Am J Transl Res. 2019;11:3426–37.
CAS
PubMed
PubMed Central
Google Scholar
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368(6487):w5473. https://doi.org/10.1126/science.aaw5473.
Article
CAS
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (Am Assoc Adv Sci). 2009;324:1029–33.
CAS
Google Scholar
Jin X, Jin HR, Jung HS, Lee SJ, Lee J, Lee JJ. An atypical E3 ligase zinc finger protein 91 stabilizes and activates NF-κB-inducing kinase via Lys63-linked ubiquitination. J Biol Chem. 2010;285:30539–47.
CAS
PubMed
PubMed Central
Google Scholar
Chen D, Wang Y, Lu R, Jiang X, Chen X, Meng N, et al. E3 ligase ZFP91 inhibits hepatocellular carcinoma metabolism reprogramming by regulating PKM splicing. Theranostics. 2020;10:8558–72.
PubMed
PubMed Central
Google Scholar
Sun L, Suo C, Li S, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect. Biochim Biophys Acta (BBA) - Rev Cancer. 2018;1870:51–66.
CAS
Google Scholar
Ma A, Malynn BA. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol. 2012;12:774–85.
CAS
PubMed
PubMed Central
Google Scholar
Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35:22–31.
CAS
PubMed
Google Scholar
Feng Y, Zhang Y, Cai Y, Liu R, Lu M, Li T, et al. A20 targets PFKL and glycolysis to inhibit the progression of hepatocellular carcinoma. Cell Death Dis. 2020;11.
Lee J, Liu R, Li J, Zhang C, Wang Y, Cai Q, et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun. 2017;8(1):949. https://doi.org/10.1038/s41467-017-00906-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohnhorst CL, Kyoung M, Jeon M, Schmitt DL, Kennedy EL, Ramirez J, et al. Identification of a multienzyme complex for glucose metabolism in living cells. J Biol Chem. 2017;292(22):9191–203. https://doi.org/10.1074/jbc.M117.783050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol. 2021;18(1):112–27. https://doi.org/10.1038/s41423-020-00572-w.
Article
CAS
PubMed
Google Scholar
Zhang W, Zhangyuan G, Wang F, Jin K, Shen H, Zhang L, et al. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation. Immunity. 2021;54:1168–85.
CAS
PubMed
Google Scholar
Rousseau-Merck MF, Huebner K, Berger R, Thiesen HJ. Chromosomal localization of two human zinc finger protein genes, ZNF24 (KOX17) and ZNF29 (KOX26), to 18q12 and 17p13-p12, respectively. Genomics. 1991;9(1):154–61. https://doi.org/10.1016/0888-7543(91)90233-5.
Article
CAS
PubMed
Google Scholar
Harper J, Yan L, Loureiro RM, Wu I, Fang J, D'Amore PA, et al. Repression of vascular endothelial growth factor expression by the zinc finger transcription factor ZNF24. Cancer Res. 2007;67:8736–41.
CAS
PubMed
Google Scholar
Li J, Chen X, Gong X, Liu Y, Feng H, Qiu L, et al. A transcript profiling approach reveals the zinc finger transcription factor ZNF191 is a pleiotropic factor. BMC Genomics. 2009;10:241.
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Jiang S, Wang C, Jiang W, Liu Z, Liu C, et al. Zinc finger transcription factor 191, directly binding to beta-catenin promoter, promotes cell proliferation of hepatocellular carcinoma. Hepatology. 2012;55(6):1830–9. https://doi.org/10.1002/hep.25564.
Article
CAS
PubMed
Google Scholar
Wu D, Liu G, Liu Y, Saiyin H, Wang C, Wei Z, et al. Zinc finger protein 191 inhibits hepatocellular carcinoma metastasis through discs large 1-mediated yes-associated protein inactivation. Hepatology. 2016;64:1148–62.
CAS
PubMed
Google Scholar
Liu Y, Wu D, Cheng H, Chen L, Zhang W, Zou L, et al. Wnt8B, transcriptionally regulated by ZNF191, promotes cell proliferation of hepatocellular carcinoma via Wnt signaling. Cancer Sci. 2021;112(2):629–40. https://doi.org/10.1111/cas.14738.
Article
CAS
PubMed
Google Scholar
Wang Q, Tan YX, Ren YB, Dong LW, Xie ZF, Tang L, et al. Zinc finger protein ZBTB20 expression is increased in hepatocellular carcinoma and associated with poor prognosis. BMC Cancer. 2011;11(1):271. https://doi.org/10.1186/1471-2407-11-271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi PS, Wu B, Deng DW, Zhang GN, Li JS. Positive expression of ZNF689 indicates poor prognosis of hepatocellular carcinoma. Oncol Lett. 2018;16:5122–30.
PubMed
PubMed Central
Google Scholar
Sun L, Lin Y, Wang G, Zhang L, Hu L, Lu Z. Correlation of zinc finger protein 2, a prognostic biomarker, with immune infiltrates in liver cancer. Biosci Rep. 2021;41(1). https://doi.org/10.1042/BSR20203115.