Lane-Cordova AD, Khan SS, Grobman WA, Greenland P, Shah SJ. Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC review topic of the week. Spec FOCUS ISSUE Cardiovasc Health Promot. 2019;73:2106–16.
Google Scholar
Scifres CM, Parks WT, Feghali M, Caritis SN, Catov JM. Placental maternal vascular malperfusion and adverse pregnancy outcomes in gestational diabetes mellitus. Placenta. 2017;49:10–5.
Article
Google Scholar
Chen X, Scholl TO. Maternal biomarkers of endothelial dysfunction and preterm delivery. PloS One . 2014;9:e85716-6 Public Library of Science.
Article
Google Scholar
Masoura S, Kalogiannidis I, Makedou K, Theodoridis T, Koiou K, Gerou S, et al. Biomarkers of endothelial dysfunction in preeclampsia and neonatal morbidity: a case–control study. Eur J Obstet Gynecol Reprod Biol. 2014;175:119–23.
Article
CAS
Google Scholar
Cockell Anna P, Poston Lucilla. Flow-mediated vasodilatation is enhanced in normal pregnancy but reduced in preeclampsia. Hypertens Am Heart Assoc. 1997;30:247–51.
Google Scholar
Fischer T, Schneider MP, Schobel HP, Heusser K, Langenfeld M, Schmieder RE. Vascular reactivity in patients with preeclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome. Am J Obstet Gynecol. 2000;183:1489–94.
Article
CAS
Google Scholar
Staff A, Cathrine R, Christopher WG, Williams David L, Paul M, Kjartan T, Basky, et al. Pregnancy and long-term maternal cardiovascular health. Hypertens Am Heart Assoc. 2016;67:251–60.
CAS
Google Scholar
Medeiros T, Myette RL, Almeida JR, Silva AA, Burger D. Extracellular vesicles: cell-derived biomarkers of glomerular and tubular injury. Cell Physiol Biochem. 2020;54:88–109.
Article
CAS
Google Scholar
Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res. 2013;46:824–30.
Article
CAS
Google Scholar
Amabile N, Guerin AP, Tedgui A, Boulanger CM, London GM. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrol Dial Transplant. 2012;27:1873–80. https://doi.org/10.1093/ndt/gfr573.
Article
CAS
PubMed
Google Scholar
Feng B, et al. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis. 2010;208:264–9. https://doi.org/10.1016/j.atherosclerosis.2009.06.037.
Article
CAS
PubMed
Google Scholar
Preston Richard A, Wenche J, Jimenez Joaquin J, Mauro Lucia M, Horstman Lawrence L, Madelyn V, et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertens Am Heart Assoc. 2003;41:211–7.
CAS
Google Scholar
Helbing T, Olivier C, Bode C, Moser M, Diehl P. Role of microparticles in endothelial dysfunction and arterial hypertension. World J Cardiol . 2014;6:1135–9 Baishideng Publishing Group Inc.
Article
Google Scholar
Amabile N, et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med. 2008;177:1268–75. https://doi.org/10.1164/rccm.200710-1458OC.
Article
CAS
PubMed
Google Scholar
Sinning J-M, Losch J, Walenta K, Bohm M, Nickenig G, Werner N. Circulating CD31+/Annexin V + microparticles correlate with cardiovascular outcomes. Eur Heart J. 2011;32:2034–41.
Article
CAS
Google Scholar
Tramontano AF, Lyubarova R, Tsiakos J, Palaia T, Deleon JR, Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm. 2010;2010:250476.
Article
CAS
Google Scholar
Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut J-G, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes. 2002;51:2840.
Article
CAS
Google Scholar
Li S, Wei J, Zhang C, Li X, Meng W, Mo X, et al. Cell-derived microparticles in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Cell Physiol Biochem. 2016;39:2439–50.
Article
CAS
Google Scholar
Cheng V, Kashyap SR, Schauer PR, Kirwan JP, McCrae KR. Restoration of glycemic control in patients with type 2 diabetes mellitus after bariatric surgery is associated with reduction in microparticles. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. 2013;9:207–12.
Article
Google Scholar
Feig DS, Donovan LE, Corcoy R, Murphy KE, Amiel SA, Hunt KF, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet Lond Engl. 2017;390:2347–59.
Article
CAS
Google Scholar
Feig DS, Asztalos E, Corcoy R, De Leiva A, Donovan L, Hod M, et al. CONCEPTT: Continuous Glucose Monitoring in Women with Type 1 Diabetes in Pregnancy Trial: A multi-center, multi-national, randomized controlled trial - Study protocol. BMC Pregnancy Childbirth BioMed Central. 2016;16:167–7.
Article
Google Scholar
Ruzicka M, Xiao F, Abujrad H, Al-Rewashdy Y, Tang VA, Langlois M-A, et al. Effect of hemodialysis on extracellular vesicles and circulating submicron particles. BMC Nephrol BioMed Central. 2019;20:294–4.
Article
Google Scholar
Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.
Article
Google Scholar
Burger D, Turner M, Xiao F, Munkonda MN, Akbari S, Burns KD. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia. 2017;60:1791–800.
Article
CAS
Google Scholar
Burger D, Thibodeau J-F, Holterman CE, Burns KD, Touyz RM, Kennedy CRJ. Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. J Am Soc Nephrol. 2014;25:1401–7.
Article
CAS
Google Scholar
Lytvyn Y, Xiao F, Kennedy CR, Perkins BA, Reich HN, Scholey JW, et al. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia. 2017;60:581–4.
Article
CAS
Google Scholar
Ettelaie C, Su S, Li C, Collier ME. Tissue factor-containing microparticles released from mesangial cells in response to high glucose and AGE induce tube formation in microvascular cells. Microvasc Res. 2008;76:152–60.
Article
CAS
Google Scholar
Harlow FH, Brown MA, Brighton TA, Smith SL, Trickett AE, Kwan Y-L, et al. Platelet activation in the hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2002;187:688–95.
Article
Google Scholar
Bretelle F, Sabatier F, Desprez D, Camoin L, Grunebaum L, Combes V, et al. Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction. Thromb Haemost. 2003;89:486–92.
Article
CAS
Google Scholar
Fonda SJ, Graham C, Munakata J, Powers JM, Price D, Vigersky RA. The cost-effectiveness of real-time continuous glucose monitoring (RT-CGM) in type 2 diabetes. J Diabetes Sci Technol . 2016;10:898–904 SAGE Publications.
Article
Google Scholar
Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Beck RW, Hirsch IB, Laffel L, Tamborlane WV, Bode BW, et al. The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care. 2009;32:1378–83. 8 May 2009. American Diabetes Association.
Chehregosha H, Khamseh ME, Malek M, Hosseinpanah F, Ismail-Beigi F. A View Beyond HbA1c: role of continuous glucose monitoring. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2019;10:853–63 29 April 2019. Springer Healthcare.
CAS
Google Scholar
Marques FK, Campos FMF, Sousa LP, Teixeira-Carvalho A, Dusse LMS, Gomes KB. Association of microparticles and preeclampsia. Mol Biol Rep. 2013;40:4553–9.
Article
CAS
Google Scholar
Redman CWG, Sargent IL. Circulating Microparticles in Normal Pregnancy and Pre-Eclampsia. Placenta Platf Life. 2008;29:73–7.
Article
Google Scholar
Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: biomarkers and beyond. Clin Sci. 2013;124:423–41.
Article
CAS
Google Scholar
Burger D, Kwart DG, Montezano AC, Read NC, Kennedy CRJ, Thompson CS, et al. Microparticles induce cell cycle arrest through redox-sensitive processes in endothelial cells: implications in vascular senescence. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2012;1. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487329/. [cited 22 Oct 2020]
Burger Dylan, Montezano Augusto C, Nobuhiro N, Ying H, Anthony C, Touyz Rhian M. Endothelial microparticle formation by angiotensin II is mediated via Ang II Receptor Type I/NADPH Oxidase/ Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol . 2011;31:1898–907 American Heart Association.
Article
CAS
Google Scholar
Terrisse AD, Puech N, Allart S, Gourdy P, Xuereb JM, Payrastre B, et al. Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J Thromb Haemost. 2010;8:2810–9.
Article
CAS
Google Scholar
Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol. 2004;286:H1910-5.
Article
Google Scholar
Park S-H, Belcastro E, Hasan H, Matsushita K, Marchandot B, Abbas M, et al. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc Diabetol. 2021;20:65.
Article
CAS
Google Scholar
Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res. 2013;98:94–106.
Article
CAS
Google Scholar
Kohli S, Ranjan S, Hoffmann J, Kashif M, Daniel EA, Al-Dabet MM, et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood. 2016;128:2153–64.
Article
CAS
Google Scholar
Han C, Wang C, Chen Y, Wang J, Xu X, Hilton T, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica. 2019/08/22 ed. Ferrata Storti Foundation. 2020;105:1686–94.
Alijotas-Reig J, Palacio-Garcia C, Farran-Codina I, Zarzoso C, Cabero-Roura L, Vilardell-Tarres M. Circulating cell-derived microparticles in women with pregnancy loss. Am J Reprod Immunol. 2011;66:199–208 John Wiley & Sons, Ltd.
Article
CAS
Google Scholar