Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–71. https://doi.org/10.1016/j.jhep.2018.09.014.
Article
PubMed
Google Scholar
Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7(1):1–11. https://doi.org/10.15252/emmm.201303698.
Article
CAS
PubMed
Google Scholar
Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol. 2017;11(1):40–61. https://doi.org/10.1002/1878-0261.12022.
Article
PubMed
PubMed Central
Google Scholar
Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol. 2004;32(10):891–904. https://doi.org/10.1016/j.exphem.2004.07.007.
Article
PubMed
Google Scholar
Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904. https://doi.org/10.1158/1078-0432.CCR-04-0378.
Article
PubMed
Google Scholar
Gascoyne PRC, Shim S. Isolation of circulating tumor cells by Dielectrophoresis. Cancers. 2014;6(1):545–79. https://doi.org/10.3390/cancers6010545.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andree KC, van Dalum G, Terstappen LWMM. Challenges in circulating tumor cell detection by the CellSearch system. Mol Oncol. 2016;10(3):395–407. https://doi.org/10.1016/j.molonc.2015.12.002.
Article
CAS
PubMed
Google Scholar
Miller MC, Doyle GV, Terstappen LWMM. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J Oncol. 2010;2010. https://doi.org/10.1155/2010/617421.
Kulasinghe A, Kenny L, Perry C, et al. Impact of label-free technologies in head and neck cancer circulating tumour cells. Oncotarget. 2016;7(44):71223–34. https://doi.org/10.18632/oncotarget.12086.
Article
PubMed
PubMed Central
Google Scholar
Gires O, Stoecklein NH. Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. Cell Mol Life Sci. 2014;71(22):4393–402. https://doi.org/10.1007/s00018-014-1693-1.
Article
CAS
PubMed
Google Scholar
Mai J, Abubrig M, Lehmann T, et al. T2 mapping in prostate Cancer. Investig Radiol. 2019;54(3):146–52. https://doi.org/10.1097/RLI.0000000000000520.
Article
Google Scholar
Brasó-Maristany F, Griguolo G, Pascual T, et al. Phenotypic changes of HER2-positive breast cancer during and after dual HER2 blockade. Nat Commun. 2020;11. https://doi.org/10.1038/s41467-019-14111-3.
Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: current challenges and promises in medical research and precision medicine. Biochim Biophys Acta. 2018;1869(2):117–27. https://doi.org/10.1016/j.bbcan.2017.12.005.
Article
CAS
PubMed Central
Google Scholar
Sharma S, Zhuang R, Long M, et al. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv. 2018;36(4):1063–78. https://doi.org/10.1016/j.biotechadv.2018.03.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Liao GQ, He P, et al. Detection of circulating cancer cells in lung cancer patients with a panel of marker genes. Biochem Biophys Res Commun. 2008;372(4):756–60. https://doi.org/10.1016/j.bbrc.2008.05.101.
Article
CAS
PubMed
Google Scholar
Weissenstein U, Schumann A, Reif M, Link S, Toffol-Schmidt UD, Heusser P. Detection of circulating tumor cells in blood of metastatic breast cancer patients using a combination of cytokeratin and EpCAM antibodies. BMC Cancer. 2012;12(1):206. https://doi.org/10.1186/1471-2407-12-206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18(9):533–48. https://doi.org/10.1038/s41568-018-0038-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zavyalova MV, Denisov EV, Tashireva LA, et al. Intravasation as a key step in Cancer metastasis. Biochem Mosc. 2019;84(7):762–72. https://doi.org/10.1134/S0006297919070071.
Article
CAS
Google Scholar
Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–7. https://doi.org/10.1038/s41586-019-0915-y.
Article
CAS
PubMed
Google Scholar
McCarty OJT, Mousa SA, Bray PF, Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood. 2000;96(5):1789–97. https://doi.org/10.1182/blood.V96.5.1789.
Article
CAS
PubMed
Google Scholar
Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13(12):858–70. https://doi.org/10.1038/nrc3628.
Article
CAS
PubMed
Google Scholar
Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 2017;31(18):1827–40. https://doi.org/10.1101/gad.305805.117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeung KT, Yang J. Epithelial–mesenchymal transition in tumor metastasis. Mol Oncol. 2017;11(1):28–39. https://doi.org/10.1002/1878-0261.12017.
Article
PubMed
Google Scholar
Rejniak KA. Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model. Front. Oncol. 2012;2. https://doi.org/10.3389/fonc.2012.00111.
Gosens MJEM, van Kempen LCL, van de Velde CJH, van Krieken JHJM, Nagtegaal ID. Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol. 2007;20(2):221–32. https://doi.org/10.1038/modpathol.3800733.
Article
CAS
PubMed
Google Scholar
Dhar M, Lam JN, Walser T, Dubinett SM, Rettig MB, Di Carlo D. Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay. Proc Natl Acad Sci U S A. 2018;115(40):9986–91. https://doi.org/10.1073/pnas.1803884115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are Oligoclonal precursors of breast Cancer metastasis. Cell. 2014;158(5):1110–22. https://doi.org/10.1016/j.cell.2014.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mannucci PM, Cattaneo M, Teresa Canciani M, Maniezzo M, Vaglini M, Cascinelli N. Early presence of activated (‘exhausted’) platelets in malignant tumors (breast adenocarcinoma and malignant melanoma). Eur J Cancer Clin Oncol. 1989;25(10):1413–7. https://doi.org/10.1016/0277-5379(89)90098-9.
Article
CAS
PubMed
Google Scholar
Läubli H, Borsig L. Selectins promote tumor metastasis. Semin Cancer Biol. 2010;20(3):169–77. https://doi.org/10.1016/j.semcancer.2010.04.005.
Article
CAS
PubMed
Google Scholar
Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-β Down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775–83. https://doi.org/10.1158/0008-5472.CAN-09-2123.
Article
CAS
PubMed
Google Scholar
Placke T, Örgel M, Schaller M, et al. Platelet-derived MHC class I confers a Pseudonormal phenotype to Cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8. https://doi.org/10.1158/0008-5472.CAN-11-1872.
Article
CAS
PubMed
Google Scholar
Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F. Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp Cell Res. 2010;316(1):138–48. https://doi.org/10.1016/j.yexcr.2009.09.003.
Article
CAS
PubMed
Google Scholar
Saini M, Szczerba BM, Aceto N. Circulating tumor cell-neutrophil tango along the metastatic process. Cancer Res. 2019;79(24):6067–73. https://doi.org/10.1158/0008-5472.CAN-19-1972.
Article
CAS
PubMed
Google Scholar
De Giorgi U, Mego M, Scarpi E, et al. Association between circulating tumor cells and peripheral blood monocytes in metastatic breast cancer. Ther Adv Med Oncol. 2019;11. https://doi.org/10.1177/1758835919866065.
Qian B, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast tumor metastasis. Nature. 2011;475(7355):222–5. https://doi.org/10.1038/nature10138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon N, Kleinerman ES. The role of Fas/FasL in the metastatic potential of osteosarcoma and targeting this pathway for the treatment of osteosarcoma lung metastases. Cancer Treat Res. 2009;152:497–508. https://doi.org/10.1007/978-1-4419-0284-9_29.
Article
PubMed
Google Scholar
Mazel M, Jacot W, Pantel K, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol. 2015;9(9):1773–82. https://doi.org/10.1016/j.molonc.2015.05.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira-Costa JP, de Carvalho AF, da Silveira GG, et al. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells. Oncotarget. 2015;6(25):20902–20.
Article
Google Scholar
Wang X, Sun Q, Liu Q, Wang C, Yao R, Wang Y. CTC immune escape mediated by PD-L1. Med Hypotheses. 2016;93:138–9. https://doi.org/10.1016/j.mehy.2016.05.022.
Article
CAS
PubMed
Google Scholar
Steinert G, Schölch S, Niemietz T, et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal Cancer. Cancer Res. 2014;74(6):1694–704. https://doi.org/10.1158/0008-5472.CAN-13-1885.
Article
CAS
PubMed
Google Scholar
Winkler J, Martin-Killias P, Plückthun A, Zangemeister-Wittke U. EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed Ankyrin repeat proteins. Mol Cancer Ther. 2009;8(9):2674–83. https://doi.org/10.1158/1535-7163.MCT-09-0402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller V, Riethdorf S, Rack B, et al. Prognostic impact of circulating tumor cells assessed with the CellSearch System™ and AdnaTest Breast™ in metastatic breast cancer patients: the DETECT study. Breast Cancer Res. 2012;14(4):R118. https://doi.org/10.1186/bcr3243.
Article
PubMed
PubMed Central
Google Scholar
Deutsch TM, Riethdorf S, Fremd C, et al. HER2-targeted therapy influences CTC status in metastatic breast cancer. Breast Cancer Res Treat. 2020;182(1):127–36. https://doi.org/10.1007/s10549-020-05687-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Day KC, Hiles GL, Kozminsky M, et al. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res. 2017;77(1):74–85. https://doi.org/10.1158/0008-5472.CAN-16-1656.
Article
CAS
PubMed
Google Scholar
Driemel C, Kremling H, Schumacher S, et al. Context-dependent adaption of EpCAM expression in early systemic esophageal cancer. Oncogene. 2014;33(41):4904–15. https://doi.org/10.1038/onc.2013.441.
Article
CAS
PubMed
Google Scholar
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84. https://doi.org/10.1038/s41580-018-0080-4.
Article
CAS
PubMed
Google Scholar
Gorges TM, Tinhofer I, Drosch M, Röse L, Zollner TM, Krahn T. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012;12:178. https://doi.org/10.1186/1471-2407-12-178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harouaka RA, Nisic M, Zheng SY. Circulating tumor cell enrichment based on physical properties. J Lab Autom. 2013;18(6). https://doi.org/10.1177/2211068213494391.
Vona G, Sabile A, Louha M, et al. Isolation by size of epithelial tumor cells. Am J Pathol. 2000;156(1):57–63.
Article
CAS
Google Scholar
Gascoyne PRC, Shim S, Noshari J, Becker FF, Stemke-Hale K. Correlations between the dielectric properties and exterior morphology of cells revealed by Dielectrophoretic field-flow fractionation. Electrophoresis. 2013;34(7):1042–50. https://doi.org/10.1002/elps.201200496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007;2(12):780–3. https://doi.org/10.1038/nnano.2007.388.
Article
CAS
PubMed
Google Scholar
Talasaz AH, Powell AA, Huber DE, et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci. 2009;106(10):3970–5. https://doi.org/10.1073/pnas.0813188106.
Article
PubMed
PubMed Central
Google Scholar
Fan X, Jia C, Yang J, et al. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron. 2015;71:380–6. https://doi.org/10.1016/j.bios.2015.04.080.
Article
CAS
PubMed
Google Scholar
Rosenberg R, Gertler R, Friederichs J, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49(4):150–8. https://doi.org/10.1002/cyto.10161.
Article
CAS
PubMed
Google Scholar
Li W, Reátegui E, Park MH, et al. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells. Biomaterials. 2015;65:93–102. https://doi.org/10.1016/j.biomaterials.2015.06.036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickey DD, Giangrande PH. Oligonucleotide Aptamers: a next-generation Technology for the Capture and Detection of circulating tumor cells. Methods San Diego Calif. 2016;97:94–103. https://doi.org/10.1016/j.ymeth.2015.11.020.
Article
CAS
Google Scholar
Tao W, Wang J, Parak WJ, Farokhzad OC, Shi J. Nanobuffering of pH-responsive polymers: a known but sometimes overlooked phenomenon and its biological applications. ACS Nano. 2019;13(5):4876–82. https://doi.org/10.1021/acsnano.9b01696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bozzetti C, Quaini F, Squadrilli A, et al. Isolation and characterization of circulating tumor cells in squamous cell carcinoma of the lung using a non-EpCAM-based capture method. PLoS One. 2015;10(11). https://doi.org/10.1371/journal.pone.0142891.
Mego M, Giorgi UD, Dawood S, et al. Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int J Cancer 2011;129(2):417-423. doi:https://doi.org/https://doi.org/10.1002/ijc.25690.
Dolfus C, Piton N, Toure E, Sabourin JC. Circulating tumor cell isolation: the assets of filtration methods with polycarbonate track-etched filters. Chin J Cancer Res. 2015;27(5):479–87. https://doi.org/10.3978/j.issn.1000-9604.2015.09.01.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou HW, Warkiani ME, Khoo BL, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep. 2013;3(1):1259. https://doi.org/10.1038/srep01259.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Giorgi V, Pinzani P, Salvianti F, et al. Circulating benign nevus cells detected by ISET technique: warning for melanoma molecular diagnosis. Arch Dermatol. 2010;146(10):1120–4. https://doi.org/10.1001/archdermatol.2010.264.
Article
PubMed
Google Scholar
Tamminga M, Andree KC, Hiltermann TJN, et al. Detection of Circulating Tumor Cells in the Diagnostic Leukapheresis Product of Non-Small-Cell Lung Cancer Patients Comparing CellSearch® and ISET. Cancers. 2020;12(4). https://doi.org/10.3390/cancers12040896.
Xu L, Mao X, Imrali A, et al. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One. 2015;10(9). https://doi.org/10.1371/journal.pone.0138032.
Coumans FAW, van Dalum G, Beck M, Terstappen LWMM. Filter characteristics influencing circulating tumor cell enrichment from whole blood. Secomb TW, ed. PLoS One. 2013;8(4):e61770. https://doi.org/10.1371/journal.pone.0061770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park ES, Jin C, Guo Q, et al. Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets. Small. 2016;14:11.
Google Scholar
Bankó P, Lee SY, Nagygyörgy V, et al. Technologies for circulating tumor cell separation from whole blood. J Hematol OncolJ Hematol Oncol. 2019;12(1):48. https://doi.org/10.1186/s13045-019-0735-4.
Article
Google Scholar
Campton DE, Ramirez AB, Nordberg JJ, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15. https://doi.org/10.1186/s12885-015-1383-x.
Bischoff FZ, Marquéz-Do DA, Martinez DI, et al. Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach (RosetteSepTM). Clin Genet 2003;63(6):483-489. doi:https://doi.org/https://doi.org/10.1034/j.1399-0004.2003.00087.x.
Shim S, Stemke-Hale K, Noshari J, Becker FF, Gascoyne PRC. Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics. 2013;7(1):011808. https://doi.org/10.1063/1.4774307.
Article
CAS
PubMed Central
Google Scholar
Gupta V, Jafferji I, Garza M, et al. ApoStreamTM, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics. 2012;6(2). https://doi.org/10.1063/1.4731647.
Wang Y, Han X, Cui Z, Shi D. Bioelectricity, its fundamentals, characterization methodology, and applications in Nano-bioprobing and Cancer diagnosis. Adv Biosyst. 2019;3(10):1900101. https://doi.org/10.1002/adbi.201900101.
Article
Google Scholar
Zhu Z, Zhang YHP. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose. Metab Eng. 2017;39:110–6. https://doi.org/10.1016/j.ymben.2016.11.002.
Article
CAS
PubMed
Google Scholar
Wu S, Gu L, Qin J, et al. Rapid label-free isolation of circulating tumor cells from patients’ peripheral blood using electrically charged Fe 3 O 4 nanoparticles. ACS Appl Mater Interfaces. 2020;12(4):4193–203. https://doi.org/10.1021/acsami.9b16385.
Article
CAS
PubMed
Google Scholar
Genna A, Vanwynsberghe AM, Villard AV, et al. EMT-associated heterogeneity in circulating tumor cells: sticky friends on the road to metastasis. Cancers. 2020;12(6). https://doi.org/10.3390/cancers12061632.
Po JW, Roohullah A, Lynch D, et al. Improved ovarian cancer EMT-CTC isolation by immunomagnetic targeting of epithelial EpCAM and mesenchymal N-cadherin. J Circ Biomark. 2018;7. https://doi.org/10.1177/1849454418782617.
Alix-Panabières C. EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res. 2012;195:69–76. https://doi.org/10.1007/978-3-642-28160-0_6. PMID: 22527495.
Lu J, Fan T, Zhao Q, et al. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int J Cancer. 2010;126(3):669–83. https://doi.org/10.1002/ijc.24814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Weng S, Zhang F, et al. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano. 2013;7(1):566–75. https://doi.org/10.1021/nn304719q.
Article
CAS
PubMed
Google Scholar
Aguado J, d’Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing. Ageing Res Rev. 2020;62:101115. https://doi.org/10.1016/j.arr.2020.101115.
Article
CAS
PubMed
Google Scholar
Kojima T, Hashimoto Y, Watanabe Y, et al. A simple biological imaging system for detecting viable human circulating tumor cells. J Clin Invest. 2009;119(10):3172–81. https://doi.org/10.1172/JCI38609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SJ, Masago A, Tamaki Y, et al. A novel approach using telomerase-specific replication-selective adenovirus for detection of circulating tumor cells in breast cancer patients. Breast Cancer Res Treat. 2011;128(3):765–73. https://doi.org/10.1007/s10549-011-1603-2.
Article
PubMed
Google Scholar
Ding P, Wang Z, Wu Z, et al. Tannic acid (TA)-functionalized magnetic nanoparticles for EpCAM-independent circulating tumor cell (CTC) isolation from patients with different cancers. ACS Appl Mater Interfaces. 2021;13(3):3694–700. https://doi.org/10.1021/acsami.0c20916.
Article
CAS
PubMed
Google Scholar
Meye A, Bilkenroth U, Schmidt U, et al. Isolation and enrichment of urologic tumor cells in blood samples by a semi-automated CD45 depletion autoMACS protocol. Int J Oncol. 2002;21(3):521–30. https://doi.org/10.3892/ijo.21.3.521.
Article
PubMed
Google Scholar
Hu L, Chen X, Chen M, Fang J, Nie J, Dai H. Enrichment and detection of circulating tumor cells by immunomagnetic beads and flow cytometry. Biotechnol Lett. 2021;43(1):25–34. https://doi.org/10.1007/s10529-020-03007-8.
Article
CAS
PubMed
Google Scholar
Agerbæk MØ, Bang-Christensen SR, Yang MH, et al. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-05793-2.
Nie L, Li F, Huang X, et al. Folic acid targeting for efficient isolation and detection of ovarian Cancer CTCs from human whole blood based on two-step binding strategy. ACS Appl Mater Interfaces. 2018;10(16):14055–62. https://doi.org/10.1021/acsami.8b02583.
Article
CAS
PubMed
Google Scholar
Van der Auwera I, Peeters D, Benoy IH, et al. Circulating tumour cell detection: a direct comparison between the CellSearch System, the AdnaTest and CK-19/mammaglobin RT–PCR in patients with metastatic breast cancer. Br J Cancer. 2010;102(2):276–84. https://doi.org/10.1038/sj.bjc.6605472.
Article
CAS
PubMed
Google Scholar
Harb W, Fan A, Tran T, et al. Mutational analysis of circulating tumor cells using a novel microfluidic collection device and qPCR assay. Transl Oncol. 2013;6(5):528–38.
Article
Google Scholar
Cho H, Kim J, Jeon CW, Han KH. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells. Lab Chip. 2017;17(23):4113–23. https://doi.org/10.1039/C7LC00925A.
Article
CAS
PubMed
Google Scholar
Park C, Abafogi AT, Ponnuvelu DV, Song I, Ko K, Park S. Enhanced luminescent detection of circulating tumor cells by a 3D printed Immunomagnetic concentrator. Biosensors. 2021;11(8):278. https://doi.org/10.3390/bios11080278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YJ, Cho YH, Min J, Han SW. Circulating tumor marker isolation with the chemically stable and instantly degradable (CSID) hydrogel ImmunoSpheres. Anal Chem. 2021;93(2):1100–9. https://doi.org/10.1021/acs.analchem.0c04152.
Article
CAS
PubMed
Google Scholar
Liu Z, Fusi A, Klopocki E, et al. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J Transl Med. 2011;9:70. https://doi.org/10.1186/1479-5876-9-70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drucker A, Teh EM, Kostyleva R, Rayson D, Douglas S, Pinto DM. Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS One. 2020;15(8). https://doi.org/10.1371/journal.pone.0237308.
Yang H, Gijs MAM. Micro-optics for microfluidic analytical applications. Chem Soc Rev. 2018;47(4):1391–458. https://doi.org/10.1039/C5CS00649J.
Article
CAS
PubMed
Google Scholar
Burinaru TA, Avram M, Avram A, et al. Detection of circulating tumor cells using microfluidics. ACS Comb Sci. 2018;20(3):107–26. https://doi.org/10.1021/acscombsci.7b00146.
Article
CAS
PubMed
Google Scholar
Stott SL, Hsu CH, Tsukrov DI, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci. 2010;107(43):18392–7. https://doi.org/10.1073/pnas.1012539107.
Article
PubMed
PubMed Central
Google Scholar
Nwankire CE, Venkatanarayanan A, Glennon T, Keyes TE, Forster RJ, Ducrée J. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron. 2015;68:382–9. https://doi.org/10.1016/j.bios.2014.12.049.
Article
CAS
PubMed
Google Scholar
Lin M, Chen JF, Lu YT, et al. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res. 2014;47(10):2941–50. https://doi.org/10.1021/ar5001617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jou HJ, Chou LY, Chang WC, et al. An automatic platform based on nanostructured microfluidic Chip for isolating and identification of circulating tumor cells. Micromachines. 2021;12(5):473. https://doi.org/10.3390/mi12050473.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Li Y, Wang R, et al. A fully automated and integrated microfluidic system for efficient CTC detection and its application in hepatocellular carcinoma screening and prognosis. ACS Appl Mater Interfaces. 2021;13(25):30174–86. https://doi.org/10.1021/acsami.1c06337.
Article
CAS
PubMed
Google Scholar
Babahosseini H, Strobl JS, Agah M. Microfluidic iterative mechanical characteristics (iMECH) analyzer for single-cell metastatic identification. Anal Methods. 2017;9(5):847–55. https://doi.org/10.1039/C6AY03342C.
Article
PubMed
PubMed Central
Google Scholar
Lin E, Rivera-Báez L, Fouladdel S, et al. High-throughput microfluidic labyrinth for the label-free isolation of circulating tumor cells. Cell Syst. 2017;5(3):295–304.e4. https://doi.org/10.1016/j.cels.2017.08.012.
Article
CAS
PubMed
Google Scholar
Smith KJ, Jana JA, Kaehr A, et al. Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKeyTM device for CTC enrichment. Lab Chip. 2021;21(18):3559–72. https://doi.org/10.1039/D1LC00546D.
Article
CAS
PubMed
Google Scholar
Saucedo-Zeni N, Mewes S, Niestroj R, et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol. 2012;41(4):1241–50. https://doi.org/10.3892/ijo.2012.1557.
Article
PubMed
PubMed Central
Google Scholar
Zhu X, Suo Y, Fu Y, et al. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. Light Sci Appl. 2021;10:110. https://doi.org/10.1038/s41377-021-00542-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan J, Fan Z, Wu X, et al. Circulating tumor cells are correlated with disease progression and treatment response in an orthotopic hepatocellular carcinoma model. Cytom Part J Int Soc Anal Cytol. 2015;87(11):1020–8. https://doi.org/10.1002/cyto.a.22782.
Article
CAS
Google Scholar
Gorges TM, Stein A, Quidde J, et al. Improved Detection of Circulating Tumor Cells in Metastatic Colorectal Cancer by the Combination of the CellSearch® System and the AdnaTest®. PLoS One, e0155126. 2016;11(5). https://doi.org/10.1371/journal.pone.0155126.
Cho H, Chung JS, Han KH. A direct comparison between the lateral Magnetophoretic microseparator and AdnaTest for isolating prostate circulating tumor cells. Micromachines. 2020;11(9). https://doi.org/10.3390/mi11090870.
Jesenko T, Modic Z, Kuhar CG, et al. Morphological features of breast Cancer circulating tumor cells in blood after physical and biological type of isolation. Radiol Oncol. 2021;55(3):292–304. https://doi.org/10.2478/raon-2021-0033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozar T, Jesenko T, Kloboves Prevodnik V, et al. Preclinical and clinical evaluation of magnetic-activated cell separation technology for CTC isolation in breast Cancer. Front Oncol. 2020;10:554554. https://doi.org/10.3389/fonc.2020.554554.
Article
PubMed
PubMed Central
Google Scholar
Sharifi M, Zarrin B, Bahri Najafi M, et al. Integrin α6 β4 on circulating tumor cells of metastatic breast Cancer patients. Adv Biomed Res. 2021;10:16. https://doi.org/10.4103/abr.abr_76_21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan GC, Zhang XP, Wang HE, et al. Circulating tumor cells as a screening and diagnostic marker for early-stage non-small cell lung Cancer. OncoTargets Ther. 2020;13:1931–9. https://doi.org/10.2147/OTT.S241956.
Article
CAS
Google Scholar
Theil G, Boehm C, Fischer K, et al. In vivo isolation of circulating tumor cells in patients with different stages of prostate cancer. Oncol Lett. 2021;21(5):357. https://doi.org/10.3892/ol.2021.12618.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todenhöfer T, Park ES, Duffy S, et al. Microfluidic enrichment of circulating tumor cells in patients with clinically localized prostate cancer. Urol Oncol. 2016;34(11):483.e9–483.e16. https://doi.org/10.1016/j.urolonc.2016.06.004.
Article
Google Scholar
Bobek V, Gurlich R, Eliasova P, Kolostova K. Circulating tumor cells in pancreatic cancer patients: enrichment and cultivation. World J Gastroenterol. 2014;20(45):17163–70. https://doi.org/10.3748/wjg.v20.i45.17163.
Article
PubMed
PubMed Central
Google Scholar
Barr J, Chudasama D, Rice A, Karteris E, Anikin V. Lack of association between Screencell-detected circulating tumour cells and long-term survival of patients undergoing surgery for non-small cell lung cancer: a pilot clinical study. Mol Clin Oncol. 2020;12(3):191–5. https://doi.org/10.3892/mco.2020.1981.
Article
PubMed
PubMed Central
Google Scholar
Philippron A, Depypere L, Oeyen S, et al. Evaluation of a marker independent isolation method for circulating tumor cells in esophageal adenocarcinoma. PLoS One. 2021;16(5):e0251052. https://doi.org/10.1371/journal.pone.0251052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Çağlayan Arslan Z, Demircan Yalçın Y, Külah H. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Electrophoresis. 2022;43(13-14):1531–44. https://doi.org/10.1002/elps.202100318.
Article
CAS
PubMed
Google Scholar
Lagoudianakis EE, Kataki A, Manouras A, et al. Detection of epithelial cells by RT-PCR targeting CEA, CK20, and TEM-8 in colorectal carcinoma patients using OncoQuick density gradient centrifugation system. J Surg Res. 2009;155(2):183–90. https://doi.org/10.1016/j.jss.2007.10.013.
Article
CAS
PubMed
Google Scholar
Riebensahm C, Joosse SA, Mohme M, et al. Clonality of circulating tumor cells in breast cancer brain metastasis patients. Breast Cancer Res BCR. 2019;21(1):101. https://doi.org/10.1186/s13058-019-1184-2.
Article
CAS
PubMed
Google Scholar
van der Toom EE, Groot VP, Glavaris SA, et al. Analogous detection of circulating tumor cells using the AccuCyte® -CyteFinder® system and ISET system in patients with locally advanced and metastatic prostate cancer. Prostate. 2018;78(4):300–7. https://doi.org/10.1002/pros.23474.
Article
CAS
PubMed
Google Scholar
O’Shannessy DJ, Davis DW, Anderes K, Somers EB. Isolation of circulating tumor cells from multiple epithelial cancers with ApoStream(®) for detecting (or monitoring) the expression of Folate receptor alpha. Biomark Insights. 2016;11:7–18. https://doi.org/10.4137/BMI.S35075.
Article
PubMed
PubMed Central
Google Scholar
Le Du F, Fujii T, Kida K, et al. EpCAM-independent isolation of circulating tumor cells with epithelial-to-mesenchymal transition and cancer stem cell phenotypes using ApoStream® in patients with breast cancer treated with primary systemic therapy. PLoS One. 2020;15(3):e0229903. https://doi.org/10.1371/journal.pone.0229903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Togo S, Katagiri N, Namba Y, et al. Sensitive detection of viable circulating tumor cells using a novel conditionally telomerase-selective replicating adenovirus in non-small cell lung cancer patients. Oncotarget. 2017;8(21):34884–95. https://doi.org/10.18632/oncotarget.16818.
Article
PubMed
PubMed Central
Google Scholar
He W, Hou M, Zhang H, et al. Clinical significance of circulating tumor cells in predicting disease progression and chemotherapy resistance in patients with gestational choriocarcinoma. Int J Cancer. 2019;144(6):1421–31. https://doi.org/10.1002/ijc.31742.
Article
CAS
PubMed
Google Scholar
Zheng Q, Iqbal SM, Wan Y. Cell detachment: Post-isolation challenges. Biotechnol Adv. 2013;31(8):1664–75. https://doi.org/10.1016/j.biotechadv.2013.08.013.
Article
PubMed
Google Scholar
Li S, Chen N, Zhang Z, Wang Y. Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials. 2013;34(2):460–9. https://doi.org/10.1016/j.biomaterials.2012.09.040.
Article
CAS
PubMed
Google Scholar
Sun N, Liu M, Wang J, et al. Chitosan Nanofibers for specific capture and nondestructive release of CTCs assisted by pCBMA brushes. Small. 2016;12(36):5090-5097. doi:https://doi.org/https://doi.org/10.1002/smll.201600475.
De las Heras Alarcón C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev. 2005;34(3):276–85. https://doi.org/10.1039/B406727D.
Article
PubMed
Google Scholar
Reátegui E, Aceto N, Lim EJ, et al. Tunable nanostructured coating for the capture and selective release of viable circulating tumor cells. Adv Mater Deerfield Beach Fla. 2015;27(9):1593–9. https://doi.org/10.1002/adma.201404677.
Article
CAS
Google Scholar
Rossi G, Mu Z, Rademaker AW, et al. Cell-free DNA and circulating tumor cells: comprehensive liquid biopsy analysis in advanced breast Cancer. Clin Cancer Res. 2018;24(3):560–8. https://doi.org/10.1158/1078-0432.CCR-17-2092.
Article
CAS
PubMed
Google Scholar
Radovich M, Jiang G, Hancock BA, et al. Association of Circulating Tumor DNA and circulating tumor cells after Neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast Cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. https://doi.org/10.1001/jamaoncol.2020.2295.
Article
PubMed
Google Scholar
Deutsch TM, Stefanovic S, Feisst M, et al. Cut-off analysis of CTC change under systemic therapy for defining early therapy response in metastatic breast Cancer. Cancers. 2020;12(4):E1055. https://doi.org/10.3390/cancers12041055.
Article
CAS
PubMed
Google Scholar
Nanou A, Zeune LL, Bidard FC, Pierga JY, Terstappen LWMM. HER2 expression on tumor-derived extracellular vesicles and circulating tumor cells in metastatic breast cancer. Breast Cancer Res BCR. 2020;22:86. https://doi.org/10.1186/s13058-020-01323-5.
Article
CAS
PubMed
Google Scholar
Wang C, Mu Z, Ye Z, et al. Prognostic value of HER2 status on circulating tumor cells in advanced-stage breast cancer patients with HER2-negative tumors. Breast Cancer Res Treat. 2020;181(3):679–89. https://doi.org/10.1007/s10549-020-05662-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darga EP, Dolce EM, Fang F, et al. PD-L1 expression on circulating tumor cells and platelets in patients with metastatic breast cancer. PLoS One. 2021;16(11):e0260124. https://doi.org/10.1371/journal.pone.0260124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paoletti C, Miao J, Dolce EM, et al. Circulating tumor cell clusters in patients with metastatic breast Cancer: a SWOG S0500 translational medicine study. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25(20):6089–97. https://doi.org/10.1158/1078-0432.CCR-19-0208.
Article
CAS
Google Scholar
Strati A, Nikolaou M, Georgoulias V, Lianidou ES. Prognostic significance of TWIST1, CD24, CD44, and ALDH1 transcript quantification in EpCAM-positive circulating tumor cells from early stage breast Cancer patients. Cells. 2019;8(7):E652. https://doi.org/10.3390/cells8070652.
Article
CAS
PubMed
Google Scholar
Magbanua MJM, Savenkov O, Asmus EJ, et al. Clinical significance of circulating tumor cells in hormone receptor-positive metastatic breast Cancer patients who received Letrozole with or without Bevacizumab. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(18):4911–20. https://doi.org/10.1158/1078-0432.CCR-20-1329.
Article
CAS
Google Scholar
Marquette CH, Boutros J, Benzaquen J, et al. Circulating tumour cells as a potential biomarker for lung cancer screening: a prospective cohort study. Lancet Respir Med. 2020;8(7):709–16. https://doi.org/10.1016/S2213-2600(20)30081-3.
Article
PubMed
Google Scholar
Wang PP, Liu SH, Chen CT, et al. Circulating tumor cells as a new predictive and prognostic factor in patients with small cell lung cancer. J Cancer. 2020;11(8):2113–22. https://doi.org/10.7150/jca.35308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Xu K, Tartarone A, Santarpia M, Zhu Y, Jiang G. Circulating tumor cells can predict the prognosis of patients with non-small cell lung cancer after resection: a retrospective study. Transl Lung Cancer Res. 2021;10(2):995–1006. https://doi.org/10.21037/tlcr-21-149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsushita D, Uenosono Y, Arigami T, et al. Clinical significance of circulating tumor cells in the response to trastuzumab for HER2-negative metastatic gastric cancer. Cancer Chemother Pharmacol. 2021;87(6):789–97. https://doi.org/10.1007/s00280-021-04251-z.
Article
CAS
PubMed
Google Scholar
Kuroda K, Yashiro M, Miki Y, et al. Circulating tumor cells with FGFR2 expression might be useful to identify patients with existing FGFR2-overexpressing tumor. Cancer Sci. 2020;111(12):4500–9. https://doi.org/10.1111/cas.14654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miki Y, Yashiro M, Kuroda K, et al. Circulating CEA-positive and EpCAM-negative tumor cells might be a predictive biomarker for recurrence in patients with gastric cancer. Cancer Med. 2021;10(2):521–8. https://doi.org/10.1002/cam4.3616.
Article
CAS
PubMed
Google Scholar
Sastre J, de la Orden V, Martínez A, et al. Association between baseline circulating tumor cells, molecular tumor profiling, and clinical characteristics in a large cohort of chemo-naïve metastatic colorectal Cancer patients prospectively collected. Clin Colorectal Cancer. 2020;19(3):e110–6. https://doi.org/10.1016/j.clcc.2020.02.014.
Article
PubMed
Google Scholar
Messaritakis I, Sfakianaki M, Vogiatzoglou K, et al. Evaluation of the role of circulating tumor cells and microsatellite instability status in predicting outcome of advanced CRC patients. J Pers Med. 2020;10(4):E235. https://doi.org/10.3390/jpm10040235.
Article
PubMed
Google Scholar
Hugenschmidt H, Labori KJ, Brunborg C, et al. Circulating tumor cells are an independent predictor of shorter survival in patients undergoing resection for pancreatic and Periampullary adenocarcinoma. Ann Surg. 2020;271(3):549–58. https://doi.org/10.1097/SLA.0000000000003035.
Article
PubMed
Google Scholar
Sun YF, Wang PX, Cheng JW, et al. Postoperative circulating tumor cells: an early predictor of extrahepatic metastases in patients with hepatocellular carcinoma undergoing curative surgical resection. Cancer Cytopathol. 2020;128(10):733–45. https://doi.org/10.1002/cncy.22304.
Article
PubMed
Google Scholar
Lei Y, Wang X, Sun H, et al. Association of Preoperative NANOG-positive circulating tumor cell levels with recurrence of hepatocellular carcinoma. Front Oncol. 2021;11:601668. https://doi.org/10.3389/fonc.2021.601668.
Article
PubMed
PubMed Central
Google Scholar
Basso U, Facchinetti A, Rossi E, et al. Prognostic role of circulating tumor cells in metastatic renal cell carcinoma: a large, multicenter. Prospect Trial Oncologist. 2021;26(9):740–50. https://doi.org/10.1002/onco.13842.
Article
CAS
Google Scholar
Zhang P, Wang Z, Yang X, Gao K, Li M, Chong T. The significance of detection of circulating tumor cells and Beclin1 in peripheral blood of patients with renal cell carcinoma. Crit Rev Eukaryot Gene Expr. 2020;30(6):483–92. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020036246.
Article
PubMed
Google Scholar
Graf RP, Hullings M, Barnett ES, Carbone E, Dittamore R, Scher HI. Clinical utility of the nuclear-localized AR-V7 biomarker in circulating tumor cells in improving physician treatment choice in castration-resistant prostate Cancer. Eur Urol. 2020;77(2):170–7. https://doi.org/10.1016/j.eururo.2019.08.020.
Article
CAS
PubMed
Google Scholar
Sperger JM, Emamekhoo H, McKay RR, et al. Prospective evaluation of clinical outcomes using a multiplex liquid biopsy targeting diverse resistance mechanisms in metastatic prostate Cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2021;39(26):2926–37. https://doi.org/10.1200/JCO.21.00169.
Article
CAS
Google Scholar
Armstrong AJ, Luo J, Nanus DM, et al. Prospective multicenter study of circulating tumor cell AR-V7 and Taxane versus hormonal treatment outcomes in metastatic castration-resistant prostate Cancer. JCO Precis Oncol. 2020;4:PO.20.00200. https://doi.org/10.1200/PO.20.00200.
Article
PubMed
PubMed Central
Google Scholar
Schonhoft JD, Zhao JL, Jendrisak A, et al. Morphology-predicted large-scale transition number in circulating tumor cells identifies a chromosomal instability biomarker associated with poor outcome in castration-resistant prostate Cancer. Cancer Res. 2020;80(22):4892–903. https://doi.org/10.1158/0008-5472.CAN-20-1216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zapatero A, Gómez-Caamaño A, Cabeza Rodriguez MÁ, et al. Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: a prospective phase II study. Radiat Oncol Lond Engl. 2020;15(1):137. https://doi.org/10.1186/s13014-020-01577-5.
Article
CAS
Google Scholar
Banys-Paluchowski M, Fehm T, Neubauer H, et al. Clinical relevance of circulating tumor cells in ovarian, fallopian tube and peritoneal cancer. Arch Gynecol Obstet. 2020;301(4):1027–35. https://doi.org/10.1007/s00404-020-05477-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hiltermann TJN, Pore MM, van den Berg A, et al. Circulating tumor cells in small-cell lung cancer: a predictive and prognostic factor. Ann Oncol. 2012;23(11):2937–42. https://doi.org/10.1093/annonc/mds138.
Article
CAS
PubMed
Google Scholar
Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409–24. https://doi.org/10.1038/s41571-019-0187-3.
Article
CAS
PubMed
Google Scholar
Cohen SJ, Punt CJA, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal Cancer. J Clin Oncol. 2008;26(19):3213–21. https://doi.org/10.1200/JCO.2007.15.8923.
Article
PubMed
Google Scholar
Bidard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15(4):406–14. https://doi.org/10.1016/S1470-2045(14)70069-5.
Article
PubMed
Google Scholar
Lucci A, Hall CS, Patel SP, et al. Circulating tumor cells and early relapse in node-positive melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(8):1886–95. https://doi.org/10.1158/1078-0432.CCR-19-2670.
Article
CAS
Google Scholar
Zhang L, Ridgway LD, Wetzel MA, et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med. 2013;5(180). https://doi.org/10.1126/scitranslmed.3005109.
Tanaka F, Yoneda K, Kondo N, et al. Circulating tumor cell as a diagnostic marker in primary lung Cancer. Clin Cancer Res. 2009;15(22):6980–6. https://doi.org/10.1158/1078-0432.CCR-09-1095.
Article
CAS
PubMed
Google Scholar
Cui Z, Su F, Li Y, Yang D. Circulating tumour cells as prognosis predictive markers of neoadjuvant chemotherapy-treated breast cancer patients. J Chemother. 2020;32(6):304–9. https://doi.org/10.1080/1120009X.2020.1774207.
Article
CAS
PubMed
Google Scholar
Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1):349–61. https://doi.org/10.1016/j.cell.2011.11.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ilie M, Hofman V, Long-Mira E, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung Cancer in patients with chronic obstructive pulmonary disease. PLoS One. 2014;9(10). https://doi.org/10.1371/journal.pone.0111597.
Joosse SA, Souche FR, Babayan A, et al. Chromosomal aberrations associated with sequential steps of the metastatic Cascade in colorectal Cancer patients. Clin Chem. 2018;64(10):1505–12. https://doi.org/10.1373/clinchem.2018.289819.
Article
CAS
PubMed
Google Scholar
Buscail E, Chiche L, Laurent C, et al. Tumor-proximal liquid biopsy to improve diagnostic and prognostic performances of circulating tumor cells. Mol Oncol. 2019;13(9):1811–26. https://doi.org/10.1002/1878-0261.12534.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzanikou E, Markou A, Politaki E, et al. PIK3CA hotspot mutations in circulating tumor cells and paired circulating tumor DNA in breast cancer: a direct comparison study. Mol Oncol. 2019;13(12):2515–30. https://doi.org/10.1002/1878-0261.12540.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Wu Y, Yates ME, et al. Hotspot ESR1 mutations are multimodal and contextual modulators of breast Cancer metastasis. Cancer Res. 2022;82(7):1321–39. https://doi.org/10.1158/0008-5472.CAN-21-2576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez SV, Bingham C, Fittipaldi P, et al. TP53 mutations detected in circulating tumor cells present in the blood of metastatic triple negative breast cancer patients. Breast Cancer Res BCR. 2014;16(5):445. https://doi.org/10.1186/s13058-014-0445-3.
Article
CAS
PubMed
Google Scholar
Gerratana L, Davis AA, Polano M, et al. Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools. Eur J Cancer Oxf Engl. 1990;2021(143):147–57. https://doi.org/10.1016/j.ejca.2020.11.005.
Article
CAS
Google Scholar
Fehm T, Becker S, Duerr-Stoerzer S, et al. Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res BCR. 2007;9(5):R74. https://doi.org/10.1186/bcr1783.
Article
CAS
PubMed
Google Scholar
Jaeger BA, Neugebauer J, Andergassen U, et al. The HER2 phenotype of circulating tumor cells in HER2-positive early breast cancer: a translational research project of a prospective randomized phase III trial. PLoS One. 2017;12(6):e0173593. https://doi.org/10.1371/journal.pone.0173593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beije N, Sieuwerts AM, Kraan J, et al. Estrogen receptor mutations and splice variants determined in liquid biopsies from metastatic breast cancer patients. Mol Oncol. 2018;12(1):48–57. https://doi.org/10.1002/1878-0261.12147.
Article
CAS
PubMed
Google Scholar
Mastoraki S, Strati A, Tzanikou E, et al. ESR1 methylation: a liquid biopsy-based epigenetic assay for the follow-up of patients with metastatic breast Cancer receiving endocrine treatment. Clin Cancer Res Off J Am Assoc Cancer Res. 2018;24(6):1500–10. https://doi.org/10.1158/1078-0432.CCR-17-1181.
Article
CAS
Google Scholar
Autio KA, Dreicer R, Anderson J, et al. Safety and efficacy of BIND-014, a Docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate Cancer: a phase 2 clinical trial. JAMA Oncol. 2018;4(10):1344–51. https://doi.org/10.1001/jamaoncol.2018.2168.
Article
PubMed
PubMed Central
Google Scholar
Boral D, Vishnoi M, Liu HN, et al. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun. 2017;8(1):196. https://doi.org/10.1038/s41467-017-00196-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klotz R, Thomas A, Teng T, et al. Circulating tumor cells exhibit metastatic tropism and reveal brain metastasis drivers. Cancer Discov. 2020;10(1):86–103. https://doi.org/10.1158/2159-8290.CD-19-0384.
Article
CAS
PubMed
Google Scholar
Nicolazzo C, Raimondi C, Mancini M, et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci Rep. 2016;6:31726. https://doi.org/10.1038/srep31726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosokawa M, Hayata T, Fukuda Y, et al. Size-selective microcavity Array for rapid and efficient detection of circulating tumor cells. Anal Chem. 2010;82(15):6629–35. https://doi.org/10.1021/ac101222x.
Article
CAS
PubMed
Google Scholar
Aceto N. Fluctuating numbers of circulating tumor cells in cancer patients and the meaning of zero counts. Oncotarget. 2019;10(28):2658–9. https://doi.org/10.18632/oncotarget.26850.
Article
PubMed
PubMed Central
Google Scholar
Page K, Shaw JA, Guttery DS. The liquid biopsy: towards standardisation in preparation for prime time. Lancet Oncol. 2019;20(6):758–60. https://doi.org/10.1016/S1470-2045(19)30310-9.
Article
PubMed
Google Scholar
Ning D, Cui K, Liu M, et al. Comparison of CellSearch and Circulating Tumor Cells (CTC)-Biopsy Systems in Detecting Peripheral Blood Circulating Tumor Cells in Patients with Gastric Cancer. Med Sci Monit Int Med J Exp Clin Res. 2021;27:e926565. https://doi.org/10.12659/MSM.926565.
Article
CAS
Google Scholar
Zavridou M, Mastoraki S, Strati A, et al. Direct comparison of size-dependent versus EpCAM-dependent CTC enrichment at the gene expression and DNA methylation level in head and neck squamous cell carcinoma. Sci Rep. 2020;10(1):6551. https://doi.org/10.1038/s41598-020-63055-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartkowiak K, Koch C, Gärtner S, Andreas A, Gorges TM, Pantel K. In vitro modeling of Reoxygenation effects on mRNA and protein levels in hypoxic tumor cells upon entry into the bloodstream. Cells. 2020;9(5):1316. https://doi.org/10.3390/cells9051316.
Article
CAS
PubMed Central
Google Scholar