Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t (10;11)(q22;q23). Cancer Res. 2002;62(14):4075–80. Published July 2002.
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5. https://doi.org/10.1126/science.1170116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–33. https://doi.org/10.1038/nature09303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell. 2011;8(2):200–13. https://doi.org/10.1016/j.stem.2011.01.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009;8(11):1698–710. https://doi.org/10.4161/cc.8.11.8580.
Article
CAS
PubMed
Google Scholar
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3. https://doi.org/10.1126/science.1210597.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7. https://doi.org/10.1126/science.1210944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74(1):481–514. https://doi.org/10.1146/annurev.biochem.74.010904.153721.
Article
CAS
PubMed
Google Scholar
Bogdanović O, Smits AH, de la Calle ME, Tena JJ, Ford E, Williams R, et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet. 2016;48(4):417–26. https://doi.org/10.1038/ng.3522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bostick M, Kim JK, Estève P-O, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317(5845):1760–4. https://doi.org/10.1126/science.1147939. Epub 2007 Aug 2.
Article
CAS
PubMed
Google Scholar
Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012;40(11):4841–9. https://doi.org/10.1093/nar/gks155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Corces VG. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science. 2018;359(6380):1166–70. https://doi.org/10.1126/science.aan5480.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubosaki A, Tomaru Y, Furuhata E, Suzuki T, Shin JW, Simon C, et al. CpG site-specific alteration of hydroxymethylcytosine to methylcytosine beyond DNA replication. Biochem Biophys Res Commun. 2012;426(1):141–7. https://doi.org/10.1016/j.bbrc.2012.08.053.
Article
CAS
PubMed
Google Scholar
Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011;146(1):67–79. https://doi.org/10.1016/j.cell.2011.06.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortázar D, Kunz C, Saito Y, Steinacher R, Schär P. The enigmatic thymine DNA glycosylase. DNA Repair (Amst). 2007;6(4):489–504. https://doi.org/10.1016/j.dnarep.2006.10.013. Epub 2006 Nov 20.
Article
CAS
Google Scholar
Weber AR, Krawczyk C, Robertson AB, Kuśnierczyk A, Vågbø CB, Schuermann D, et al. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016;7(1). https://doi.org/10.1038/ncomms10806.
Guo JU, Su Y, Zhong C, G-l M, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011. https://doi.org/10.1016/j.cell.2011.03.022.
Bird A. The dinucleotide CG as a genomic signalling module. J Mol Biol. 2011;409(1):47–53. https://doi.org/10.1016/j.jmb.2011.01.056.
Article
CAS
PubMed
Google Scholar
Niehrs C, Schäfer A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol. 2012;22(4):220–7. https://doi.org/10.1016/j.tcb.2012.01.002.
Article
CAS
PubMed
Google Scholar
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008;135(7):1201–12. https://doi.org/10.1016/j.cell.2008.11.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445(7128):671–5. https://doi.org/10.1038/nature05515.
Article
CAS
PubMed
Google Scholar
Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463(7284):1042–7. https://doi.org/10.1038/nature08752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463(7284):1101–5. https://doi.org/10.1038/nature08829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bransteitter R, Pham P, Scharff MD, Goodman MF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A. 2003;100(7):4102–7. https://doi.org/10.1073/pnas.0730835100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL, Stivers JT, et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol. 2012;8(9):751–8. https://doi.org/10.1038/nchembio.1042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiesser S, Hackner B, Pfaffeneder T, Müller M, Hagemeier C, Truss M, et al. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed Engl. 2012;51(26):6516–20. https://doi.org/10.1002/anie.201202583.
Article
CAS
PubMed
Google Scholar
Liutkevičiūtė Z, Kriukienė E, Ličytė J, Rudytė M, Urbanavičiūtė G, Klimašauskas S. Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases. J Am Chem Soc. 2014;136(16):5884–7. https://doi.org/10.1021/ja5019223.
Article
CAS
PubMed
Google Scholar
Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, Raya A. CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell. 2017;21(4):431–47. https://doi.org/10.1016/j.stem.2017.09.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, D'Alessio AC, Ito S, Xia K, Wang Z, Cui K, et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature. 2011;473(7347):389–93. https://doi.org/10.1038/nature09934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu T, Lin X, Cullen SM, Luo M, Jeong M, Estecio M, et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 2018;19(1):88. https://doi.org/10.1186/s13059-018-1464-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verma N, Pan H, Doré LC, Shukla A, Li QV, Pelham-Webb B, et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat Genet. 2018;50(1):83–95. https://doi.org/10.1038/s41588-017-0002-y.
Article
CAS
PubMed
Google Scholar
Senner CE, Chrysanthou S, Burge S, Lin H-Y, Branco MR, Hemberger M. TET1 and 5-Hydroxymethylation preserve the stem cell state of mouse trophoblast. Stem Cell Reports. 2020;15(6):1301–16. https://doi.org/10.1016/j.stemcr.2020.04.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Karwacki-Neisius V, Ma C, Tan L, Shi Y, Wu F, et al. Nono deficiency compromises TET1 chromatin association and impedes neuronal differentiation of mouse embryonic stem cells. Nucleic Acids Res. 2020;48(9):4827–38. https://doi.org/10.1093/nar/gkaa213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khoueiry R, Sohni A, Thienpont B, Luo X, Velde JV, Bartoccetti M, et al. Lineage-specific functions of TET1 in the postimplantation mouse embryo. Nat Genet. 2017;49(7):1061–72. https://doi.org/10.1038/ng.3868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature. 2018;555(7696):392–6. https://doi.org/10.1038/nature25964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang R, Yu T, Kou X, Gao X, Chen C, Liu D, et al. Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nat Commun. 2018;9(1):2143. https://doi.org/10.1038/s41467-018-04464-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H-X, Chen Y-X, Wang Z-X, Zhao Q, He M-M, Wang Y-N, et al. Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers. J Immunother Cancer. 2019;7(1):264. https://doi.org/10.1186/s40425-019-0737-3.
Article
PubMed
PubMed Central
Google Scholar
Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity. 2015;43(2):251–63. https://doi.org/10.1016/j.immuni.2015.07.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Jiang X, Li Z, Li Y, Song C-X, He C, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci U S A. 2013;110(29):11994–9. https://doi.org/10.1073/pnas.1310656110.
Article
PubMed
PubMed Central
Google Scholar
Zhang T, Zhao Y, Zhao Y, Zhou J. Expression and prognosis analysis of family in acute myeloid leukemia. Aging (Albany NY). 2020. https://doi.org/10.18632/aging.102928.
Bamezai S, Demir D, Pulikkottil AJ, Ciccarone F, Fischbein E, Sinha A, et al. TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia. 2021;35(2):389–403. https://doi.org/10.1038/s41375-020-0864-3.
Article
CAS
PubMed
Google Scholar
Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–7. https://doi.org/10.1182/blood-2009-03-210039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The ten-eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014;28(3):485–96. https://doi.org/10.1038/leu.2013.337.
Article
CAS
PubMed
Google Scholar
Hsu C-H, Peng K-L, Kang M-L, Chen Y-R, Yang Y-C, Tsai C-H, et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2012;2(3):568–79. https://doi.org/10.1016/j.celrep.2012.08.030.
Article
CAS
PubMed
Google Scholar
Collignon E, Canale A, Al Wardi C, Bizet M, Calonne E, Dedeurwaerder S, et al. Immunity drives regulation in cancer through NF-κB. Sci Adv. 2018;4(6):eaap7309. https://doi.org/10.1126/sciadv.aap7309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget. 2011. https://doi.org/10.18632/oncotarget.316.
Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell. 2012;150(6):1135–46. https://doi.org/10.1016/j.cell.2012.07.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19(1):218. https://doi.org/10.1186/s13059-018-1594-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Good CR, Panjarian S, Kelly AD, Madzo J, Patel B, Jelinek J, et al. TET1-mediated Hypomethylation activates oncogenic signaling in triple-negative breast Cancer. Cancer Res. 2018;78(15):4126–37. https://doi.org/10.1158/0008-5472.CAN-17-2082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Y, Qi J, Xiong J, Jiang L, Cui D, He J, et al. Epigenetic co-deregulation of EZH2/TET1 is a senescence-countering, actionable vulnerability in triple-negative breast Cancer. Theranostics. 2019;9(3):761–77. https://doi.org/10.7150/thno.29520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao B, Teslow EA, Mitrea C, Boerner JL, Dyson G, Bollig-Fischer A. Role of TET1 and 5hmC in an obesity-linked pathway driving Cancer stem cells in triple-negative breast Cancer. Mol Cancer Res. 2020;18(12):1803–14. https://doi.org/10.1158/1541-7786.MCR-20-0359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forloni M, Gupta R, Nagarajan A, Sun L-S, Dong Y, Pirazzoli V, et al. Oncogenic EGFR represses the TET1 DNA demethylase to induce silencing of tumor suppressors in Cancer cells. Cell Rep. 2016;16(2):457–71. https://doi.org/10.1016/j.celrep.2016.05.087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai JI, Lai YC, Chen YC, Wang NK, Pan JN, Wang WS, et al. Clinical analysis of NSCLC patients reveals lack of association between EGFR mutation and TET1 downregulation. Cancer Gene Ther. 2017;24(9):373–80. https://doi.org/10.1038/cgt.2017.26.
Article
CAS
PubMed
Google Scholar
Filipczak PT, Leng S, Tellez CS, Do KC, Grimes MJ, Thomas CL, et al. p53-suppressed oncogene TET1 prevents cellular aging in lung Cancer. Cancer Res. 2019;79(8):1758–68. https://doi.org/10.1158/0008-5472.CAN-18-1234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H-Q, Chen D-J, Li Y, Yuan W-B, Fan J, Zhang Z, et al. Epigenetic silencing of TET1 mediated hydroxymethylation of base excision repair pathway during lung carcinogenesis. Environ Pollut. 2021;268(Pt B):115860. https://doi.org/10.1016/j.envpol.2020.115860.
Article
CAS
PubMed
Google Scholar
Thomson JP, Ottaviano R, Unterberger EB, Lempiäinen H, Muller A, Terranova R, et al. Loss of Tet1-associated 5-Hydroxymethylcytosine is concomitant with aberrant promoter Hypermethylation in liver Cancer. Cancer Res. 2016;76(10):3097–108. https://doi.org/10.1158/0008-5472.CAN-15-1910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koike H, Ouchi R, Ueno Y, Nakata S, Obana Y, Sekine K, et al. Polycomb group protein Ezh2 regulates hepatic progenitor cell proliferation and differentiation in murine embryonic liver. PLoS One. 2014;9(8):e104776. https://doi.org/10.1371/journal.pone.0104776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai X, Zhang H, Zhou Y, Nagaoka K, Meng J, Ji C, et al. TET1 promotes malignant progression of cholangiocarcinoma with IDH1 wild-type. Hepatology. 2020;73(5):1747–63. https://doi.org/10.1002/hep.31486.
Article
CAS
Google Scholar
Li H, Zhou Z-Q, Yang Z-R, Tong D-N, Guan J, Shi B-J, et al. MicroRNA-191 acts as a tumor promoter by modulating the TET1-p53 pathway in intrahepatic cholangiocarcinoma. Hepatology. 2017;66(1):136–51. https://doi.org/10.1002/hep.29116.
Article
CAS
PubMed
Google Scholar
Neri F, Dettori D, Incarnato D, Krepelova A, Rapelli S, Maldotti M, et al. TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene. 2015;34(32):4168–76. https://doi.org/10.1038/onc.2014.356.
Article
CAS
PubMed
Google Scholar
Guo H, Zhu H, Zhang J, Wan B, Shen Z. TET1 suppresses colon cancer proliferation by impairing β-catenin signal pathway. J Cell Biochem. 2019;120(8):12559–65. https://doi.org/10.1002/jcb.28522.
Article
CAS
PubMed
Google Scholar
Wu J, Li H, Shi M, Zhu Y, Ma Y, Zhong Y, et al. TET1-mediated DNA hydroxymethylation activates inhibitors of the Wnt/β-catenin signaling pathway to suppress EMT in pancreatic tumor cells. J Exp Clin Cancer Res. 2019;38(1):348. https://doi.org/10.1186/s13046-019-1334-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Jiang W, Liu X-N, Yuan L-Y, Li T-J, Li S, et al. TET1 downregulates epithelial-mesenchymal transition and chemoresistance in PDAC by demethylating CHL1 to inhibit the hedgehog signaling pathway. Oncogene. 2020;39(36):5825–38. https://doi.org/10.1038/s41388-020-01407-8.
Article
CAS
PubMed
Google Scholar
Brothman AR, Swanson G, Maxwell TM, Cui J, Murphy KJ, Herrick J, et al. Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? Cancer Genet Cytogenet. 2005;156(1):31–6. https://doi.org/10.1016/j.cancergencyto.2004.04.004.
Article
CAS
PubMed
Google Scholar
Su P-H, Hsu Y-W, Huang R-L, Chen L-Y, Chao T-K, Liao C-C, et al. TET1 promotes 5hmC-dependent stemness, and inhibits a 5hmC-independent epithelial-mesenchymal transition, in cervical precancerous lesions. Cancer Lett. 2019;450:53–62. https://doi.org/10.1016/j.canlet.2019.01.033.
Article
CAS
PubMed
Google Scholar
Damal Villivalam S, You D, Kim J, Lim HW, Xiao H, Zushin P-JH, et al. TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. Nat Commun. 2020;11(1):4313. https://doi.org/10.1038/s41467-020-18054-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Zhang Y, Zhuo Q, Tseng Y, Wang J, Ma Y, et al. TET1 promotes fatty acid oxidation and inhibits NAFLD progression by hydroxymethylation of PPARα promoter. Nutr Metab (Lond). 2020;17(1):46. https://doi.org/10.1186/s12986-020-00466-8.
Article
CAS
Google Scholar
Ali MM, Phillips SA, Mahmoud AM. HIF1α/TET1 pathway mediates hypoxia-induced Adipocytokine promoter Hypomethylation in human adipocytes. Cells. 2020;9(1). https://doi.org/10.3390/cells9010134.
Dong E, Gavin DP, Chen Y, Davis J. Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry. 2012;2(9):e159. https://doi.org/10.1038/tp.2012.86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greer CB, Wright J, Weiss JD, Lazarenko RM, Moran SP, Zhu J, et al. Isoforms differentially regulate gene expression, synaptic transmission, and memory in the mammalian brain. J Neurosci. 2021;41(4):578–93. https://doi.org/10.1523/JNEUROSCI.1821-20.2020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaas GA, Zhong C, Eason DE, Ross DL, Vachhani RV, Ming G-L, et al. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron. 2013;79(6):1086–93. https://doi.org/10.1016/j.neuron.2013.08.032.
Article
CAS
PubMed
Google Scholar
Sun Z, Xu X, He J, Murray A, Sun M-A, Wei X, et al. EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nat Commun. 2019;10(1):3892. https://doi.org/10.1038/s41467-019-11905-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh M-C, Ho Y-C, Lai C-Y, Chou D, Wang H-H, Chen G-D, et al. Melatonin impedes Tet1-dependent mGluR5 promoter demethylation to relieve pain. J Pineal Res. 2017;63(4). https://doi.org/10.1111/jpi.12436.