Yang H, Green MR. Epigenetic programing of B-cell lymphoma by BCL6 and its genetic deregulation. Front Cell Dev Biol. 2019;7. https://doi.org/10.3389/fcell.2019.00272.
Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11(1):12–23. https://doi.org/10.1038/nrclinonc.2013.197.
Article
CAS
PubMed
Google Scholar
Linschoten M, Kamphuis J, van Rhenen A, Bosman L, Cramer M, Doevendans P, et al. Cardiovascular adverse events in patients with non-Hodgkin lymphoma treated with first-line cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP with rituximab (R-CHOP): a systematic review and meta-analysis. Lancet Haematol. 2020;7(4):e295–308. https://doi.org/10.1016/S2352-3026(20)30031-4.
Article
PubMed
Google Scholar
Mondello P, Mian M. Frontline treatment of diffuse large B-cell lymphoma: beyond R-CHOP. Hematol Oncol. 2019;37(4):333–44. https://doi.org/10.1002/hon.2613.
Article
PubMed
Google Scholar
Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31–46. https://doi.org/10.1038/nrclinonc.2017.128.
Article
CAS
PubMed
Google Scholar
van Dorsten R, Lambson B, Wibmer C, Weinberg M, Moore P, Morris L. Neutralization Breadth and Potency of Single-Chain Variable Fragments Derived from Broadly Neutralizing Antibodies Targeting Multiple Epitopes on the HIV-1 Envelope. J Virol. 2020;94(2):e01533–19.
Johnson P, Abramson J. Patient selection for chimeric antigen receptor (CAR) T-cell therapy for aggressive B-cell non-Hodgkin lymphomas. Leuk Lymphoma. 2020;61(11):2561–7. https://doi.org/10.1080/10428194.2020.1786563.
Article
CAS
PubMed
Google Scholar
Bachanova V, Perales M, Abramson J. Modern management of relapsed and refractory aggressive B-cell lymphoma: a perspective on the current treatment landscape and patient selection for CAR T-cell therapy. Blood Rev. 2020;40:100640. https://doi.org/10.1016/j.blre.2019.100640.
Article
CAS
PubMed
Google Scholar
Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. https://doi.org/10.1056/NEJMoa1708566.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gofshteyn JS, Shaw PA, Teachey DT, Grupp SA, Maude S, Banwell B, et al. Neurotoxicity after CTL019 in a pediatric and young adult cohort. Ann Neurol. 2018;84(4):537–46. https://doi.org/10.1002/ana.25315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. https://doi.org/10.1016/S0140-6736(14)61403-3.
Article
CAS
PubMed
Google Scholar
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danylesko I, Chowers G, Shouval R, Besser M, Jacoby E, Shimoni A, et al. Treatment with anti CD19 chimeric antigen receptor T cells after antibody-based immunotherapy in adults with acute lymphoblastic leukemia. Curr Res Transl Med. 2020;68(1):17–22. https://doi.org/10.1016/j.retram.2019.12.001.
Article
PubMed
Google Scholar
Klener P. Advances in Molecular Biology and Targeted Therapy of Mantle Cell Lymphoma. Int J Mol Sci. 2019;20(18):4417.
Gerson JN, Barta SK. Mantle cell lymphoma: which patients should we transplant? Curr Hematol Malig Rep. 2019;14(4):239–46. https://doi.org/10.1007/s11899-019-00520-0.
Article
PubMed
Google Scholar
Arora PC, Portell CA. Novel therapies for relapsed/refractory mantle cell lymphoma. Best Pract Res Clin Haematol. 2018;31(1):105–13. https://doi.org/10.1016/j.beha.2017.10.010.
Article
PubMed
Google Scholar
Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–42. https://doi.org/10.1056/NEJMoa1914347.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lossos IS. Molecular pathogenesis of diffuse large B-cell lymphoma. J Clin Oncol. 2005;23(26):6351–7. https://doi.org/10.1200/JCO.2005.05.012.
Article
CAS
PubMed
Google Scholar
Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017;25(1):285–95. https://doi.org/10.1016/j.ymthe.2016.10.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neelapu S, Locke F, Bartlett N, Lekakis L, Miklos D, Jacobson C, et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20(1):31–42. https://doi.org/10.1016/S1470-2045(18)30864-7.
Article
CAS
PubMed
Google Scholar
Kochenderfer JN, Somerville RPT, Lu T, Shi V, Bot A, Rossi J, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum Interleukin-15 levels. J Clin Oncol. 2017;35(16):1803–13. https://doi.org/10.1200/JCO.2016.71.3024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, Sievers SA, et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther. 2017;25(11):2452–65. https://doi.org/10.1016/j.ymthe.2017.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brudno JN, Lam N, Vanasse D, Shen Y-W, Rose JJ, Rossi J, et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med. 2020;26(2):270–80. https://doi.org/10.1038/s41591-019-0737-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. https://doi.org/10.1056/NEJMoa1804980.
Article
CAS
PubMed
Google Scholar
Abramson J, Palomba M, Gordon L, Lunning M, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet (London, England). 2020;396(10254):839–52.
Article
Google Scholar
Pinnix C, Gunther J, Dabaja B, Strati P, Fang P, Hawkins M, et al. Bridging therapy prior to axicabtagene ciloleucel for relapsed/refractory large B-cell lymphoma. Blood Adv. 2020;4(13):2871–83. https://doi.org/10.1182/bloodadvances.2020001837.
Article
CAS
PubMed
PubMed Central
Google Scholar
Locke FL, Rossi JM, Neelapu SS, Jacobson CA, Miklos DB, Ghobadi A, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4(19):4898–911. https://doi.org/10.1182/bloodadvances.2020002394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao J-X, Wang H, Gao W-J, You J, Wu L-H, Wang Z-X. The incidence of cytokine release syndrome and neurotoxicity of CD19 chimeric antigen receptor–T cell therapy in the patient with acute lymphoblastic leukemia and lymphoma. Cytotherapy. 2020;22(4):214–26. https://doi.org/10.1016/j.jcyt.2020.01.015.
Article
CAS
PubMed
Google Scholar
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2017;15(1):47–62. https://doi.org/10.1038/nrclinonc.2017.148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Zhao J. Cytokine release syndrome: grading, modeling, and new therapy. J Hematol Oncol. 2018;11(1):121. https://doi.org/10.1186/s13045-018-0653-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res. 2018;6(1):4. https://doi.org/10.1186/s40364-018-0116-0.
Article
PubMed
PubMed Central
Google Scholar
Sievers S, Watson G, Johncy S, Adkins S. Recognizing and grading CAR T-cell toxicities: an advanced practitioner perspective. Front Oncol. 2020;10:885. https://doi.org/10.3389/fonc.2020.00885.
Article
PubMed
PubMed Central
Google Scholar
Chen H, Wang F, Zhang P, Zhang Y, Chen Y, Fan X, et al. Management of cytokine release syndrome related to CAR-T cell therapy. Front Med. 2019;13(5):610–7. https://doi.org/10.1007/s11684-019-0714-8.
Article
PubMed
Google Scholar
Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019;15(8):813–22. https://doi.org/10.1080/1744666X.2019.1629904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23(8):943–7. https://doi.org/10.1634/theoncologist.2018-0028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huarte E, O'Conner RS, Peel MT, Nunez-Cruz S, Leferovich J, Juvekar A, et al. Itacitinib (INCB039110), a JAK1 inhibitor, Reduces Cytokines Associated with Cytokine Release Syndrome Induced by CAR T-Cell Therapy. Clin Cancer Res. 2020;26(23):6299–309.
Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48. https://doi.org/10.1038/s41591-018-0036-4.
Article
CAS
PubMed
Google Scholar
Hao Z, Li R, Meng L, Han Z, Hong Z. Macrophage, the potential key mediator in CAR-T related CRS. Exp Hematol Oncol. 2020;9(1):15. https://doi.org/10.1186/s40164-020-00171-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karschnia P, Jordan J, Forst D, Arrillaga-Romany I, Batchelor T, Baehring J, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood. 2019;133(20):2212–21. https://doi.org/10.1182/blood-2018-12-893396.
Article
CAS
PubMed
Google Scholar
Du M, Hari P, Hu Y, Mei H. Biomarkers in individualized management of chimeric antigen receptor T cell therapy. Biomark Res. 2020;8(1):13. https://doi.org/10.1186/s40364-020-00190-8.
Article
PubMed
PubMed Central
Google Scholar
Rubin D, Danish H, Ali A, Li K, LaRose S, Monk A, et al. Neurological toxicities associated with chimeric antigen receptor T-cell therapy. Brain J Neurol. 2019;142(5):1334–48. https://doi.org/10.1093/brain/awz053.
Article
Google Scholar
Neelapu S. Managing the toxicities of CAR T-cell therapy. Hematol Oncol. 2019;37(S1):48–52. https://doi.org/10.1002/hon.2595.
Article
CAS
PubMed
Google Scholar
Azoulay E, Darmon M, Valade S. Acute life-threatening toxicity from CAR T-cell therapy. Intensive Care Med. 2020;46(9):1723–6. https://doi.org/10.1007/s00134-020-06193-1.
Article
PubMed
Google Scholar
Strati P, Ahmed S, Kebriaei P, Nastoupil L, Claussen C, Watson G, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 2020;4(13):3123–7. https://doi.org/10.1182/bloodadvances.2020002328.
Article
PubMed
PubMed Central
Google Scholar
Sterner R, Sakemura R, Cox M, Yang N, Khadka R, Forsman C, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133(7):697–709. https://doi.org/10.1182/blood-2018-10-881722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rice J, Nagle S, Randall J, Hinson H. Chimeric antigen receptor T cell-related neurotoxicity: mechanisms, clinical presentation, and approach to treatment. Curr Treat Options Neurol. 2019;21(8):40. https://doi.org/10.1007/s11940-019-0580-3.
Article
PubMed
Google Scholar
Strati P, Nastoupil L, Westin J, Fayad L, Ahmed S, Fowler N, et al. Clinical and radiologic correlates of neurotoxicity after axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4(16):3943–51. https://doi.org/10.1182/bloodadvances.2020002228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohty M, Gautier J, Malard F, Aljurf M, Bazarbachi A, Chabannon C, et al. CD19 chimeric antigen receptor-T cells in B-cell leukemia and lymphoma: current status and perspectives. Leukemia. 2019;33(12):2767–78. https://doi.org/10.1038/s41375-019-0615-5.
Article
PubMed
Google Scholar
Enblad G, Karlsson H, Loskog A. CAR T-cell therapy: the role of physical barriers and immunosuppression in lymphoma. Hum Gene Ther. 2015;26(8):498–505. https://doi.org/10.1089/hum.2015.054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell D, Guedan S. CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape. Front Immunol. 2020;11:1109. https://doi.org/10.3389/fimmu.2020.01109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freeman Z, Nirschl T, Hovelson D, Johnston R, Engelhardt J, Selby M, et al. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. J Clin Invest. 2020;130(3):1405–16. https://doi.org/10.1172/JCI128672.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge Z, Ding S. The crosstalk between tumor-associated macrophages (TAMs) and tumor cells and the corresponding targeted therapy. Front Oncol. 2020;10:590941. https://doi.org/10.3389/fonc.2020.590941.
Article
PubMed
PubMed Central
Google Scholar
Komohara Y, Niino D, Ohnishi K, Ohshima K, Takeya M. Role of tumor-associated macrophages in hematological malignancies. Pathol Int. 2015;65(4):170–6. https://doi.org/10.1111/pin.12259.
Article
PubMed
Google Scholar
Qin L, Zhao R, Chen D, Wei X, Wu Q, Long Y, et al. Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomark Res. 2020;8(1):19. https://doi.org/10.1186/s40364-020-00198-0.
Article
PubMed
PubMed Central
Google Scholar
Boussiotis V. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–78. https://doi.org/10.1056/NEJMra1514296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itzhaki O, Jacoby E, Nissani A, Levi M, Nagler A, Kubi A, et al. Head-to-head comparison of in-house produced CD19 CAR-T cell in ALL and NHL patients. J Immunother Cancer. 2020;8(1):e000148.
Stock S, Schmitt M, Sellner L. Optimizing Manufacturing Protocols of Chimeric Antigen Receptor T Cells for Improved Anticancer Immunotherapy. Int J Mol Sci. 2019;20(24):6223.
Perez C, Gruber I, Arber C. Off-the-shelf allogeneic T cell therapies for Cancer: opportunities and challenges using naturally occurring "universal" donor T cells. Front Immunol. 2020;11:583716. https://doi.org/10.3389/fimmu.2020.583716.
Article
CAS
PubMed
PubMed Central
Google Scholar
Depil S, Duchateau P, Grupp S, Mufti G, Poirot L. Off-the-shelf' allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185–99. https://doi.org/10.1038/s41573-019-0051-2.
Article
CAS
PubMed
Google Scholar
Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med. 2019;25(6):947–53. https://doi.org/10.1038/s41591-019-0421-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin H, Dong Z, Wang X, Cheng W, Wen F, Xue W, et al. CAR T cells targeting BAFF-R can overcome CD19 antigen loss in B cell malignancies. Sci Transl Med. 2019;11(511):eaaw9414.
Yang S, Li J, Xu W. Role of BAFF/BAFF-R axis in B-cell non-Hodgkin lymphoma. Crit Rev Oncol Hematol. 2014;91(2):113–22. https://doi.org/10.1016/j.critrevonc.2014.02.004.
Article
PubMed
Google Scholar
Zettlitz K, Tavaré R, Tsai W, Yamada R, Ha N, Collins J, et al. F-labeled anti-human CD20 cys-diabody for same-day immunoPET in a model of aggressive B cell lymphoma in human CD20 transgenic mice. Eur J Nucl Med Mol Imaging. 2019;46(2):489–500. https://doi.org/10.1007/s00259-018-4214-x.
Article
CAS
PubMed
Google Scholar
Pavlasova G, Mraz M. The regulation and function of CD20: an "enigma" of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–506. https://doi.org/10.3324/haematol.2019.243543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang W, Han Q, Liu Y, Dai H, Guo Y, et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol (Orlando, Fla). 2014;155(2):160–75.
Article
CAS
Google Scholar
Sang W, Shi M, Yang J, Cao J, Xu L, Yan D, et al. Phase II trial of co-administration of CD19- and CD20-targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma. Cancer Med. 2020;9(16):5827–38. https://doi.org/10.1002/cam4.3259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong C, Zhang Y, Liu Y, Ji X, Zhang W, Guo Y, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood. 2020;136(14):1632–44. https://doi.org/10.1182/blood.2020005278.
Article
PubMed
PubMed Central
Google Scholar
Peng W, Paulson J. CD22 ligands on a natural N-glycan scaffold efficiently deliver toxins to B-lymphoma cells. J Am Chem Soc. 2017;139(36):12450–8. https://doi.org/10.1021/jacs.7b03208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baird JH, Frank MJ, Craig J, Patel S, Spiegel JY, Sahaf B, et al. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood. 2021;137(17):2321–5. https://doi.org/10.1182/blood.2020009432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia H, Wang Z, Wang Y, Liu Y, Dai H, Tong C, et al. Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. J Hematol Oncol. 2019;12(1):57. https://doi.org/10.1186/s13045-019-0741-6.
Article
PubMed
PubMed Central
Google Scholar
Zeng C, Cheng J, Li T, Huang J, Li C, Jiang L, et al. Efficacy and toxicity for CD22/CD19 chimeric antigen receptor T-cell therapy in patients with relapsed/refractory aggressive B-cell lymphoma involving the gastrointestinal tract. Cytotherapy. 2020;22(3):166–71. https://doi.org/10.1016/j.jcyt.2020.01.008.
Article
CAS
PubMed
Google Scholar
Schneider D, Xiong Y, Wu D, Hu P, Alabanza L, Steimle B, et al. Trispecific CD19-CD20-CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci Transl Med. 2021;13(586):eabc6401.
Ding S, Mao X, Cao Y, Wang N, Xu H, Zhou J. Targeting CD79b for chimeric antigen receptor T-cell therapy of B-cell lymphomas. Target Oncol. 2020;15(3):365–75. https://doi.org/10.1007/s11523-020-00729-7.
Article
PubMed
Google Scholar
Scarfò I, Ormhøj M, Frigault M, Castano A, Lorrey S, Bouffard A, et al. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood. 2018;132(14):1495–506. https://doi.org/10.1182/blood-2018-04-842708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Köksal H, Dillard P, Josefsson S, Maggadottir S, Pollmann S, Fåne A, et al. Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Adv. 2019;3(8):1230–43. https://doi.org/10.1182/bloodadvances.2018029678.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu-Monette Z, Li L, Byrd J, Jabbar K, Manyam G, Maria de Winde C, et al. Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood. 2016;128(26):3083–100. https://doi.org/10.1182/blood-2016-05-715094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman A, Patel S, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14(4):203–20. https://doi.org/10.1038/nrclinonc.2016.168.
Article
CAS
PubMed
Google Scholar
Song W, Zhang M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin Immunol (Orlando, Fla). 2020;214:108382.
Article
CAS
Google Scholar
Cao Y, Lu W, Sun R, Jin X, Cheng L, He X, et al. Anti-CD19 chimeric antigen receptor T cells in combination with Nivolumab are safe and effective against relapsed/refractory B-cell non-hodgkin lymphoma. Front Oncol. 2019;9:767. https://doi.org/10.3389/fonc.2019.00767.
Article
PubMed
PubMed Central
Google Scholar
Tao L, Farooq M, Gao Y, Zhang L, Niu C, Ajmal I, et al. CD19-CAR-T Cells Bearing a KIR/PD-1-Based Inhibitory CAR Eradicate CD19HLA-C1 Malignant B Cells While Sparing CD19HLA-C1 Healthy B Cells. Cancers. 2020;12(9):2612.
Ebert L, Yu W, Gargett T, Brown M. Logic-gated approaches to extend the utility of chimeric antigen receptor T-cell technology. Biochem Soc Trans. 2018;46(2):391–401. https://doi.org/10.1042/BST20170178.
Article
CAS
PubMed
Google Scholar
Han X, Wang Y, Wei J, Han W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J Hematol Oncol. 2019;12(1):128. https://doi.org/10.1186/s13045-019-0813-7.
Article
PubMed
PubMed Central
Google Scholar
Ayyappan S, Maddocks K. Novel and emerging therapies for B cell lymphoma. J Hematol Oncol. 2019;12(1):82. https://doi.org/10.1186/s13045-019-0752-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeku O, Brentjens R. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 2016;44(2):412–8. https://doi.org/10.1042/BST20150291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, et al. Recent advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):86. https://doi.org/10.1186/s13045-020-00910-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54. https://doi.org/10.1517/14712598.2015.1046430.
Article
CAS
PubMed
Google Scholar
Graham C, Jozwik A, Pepper A, Benjamin R. Allogeneic CAR-T Cells: More than Ease of Access? Cells. 2018;7(10):155.
Yang Y, Jacoby E, Fry T. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr Opin Hematol. 2015;22(6):509–15. https://doi.org/10.1097/MOH.0000000000000181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Zhao J, Song Y. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol. 2019;12(1):69. https://doi.org/10.1186/s13045-019-0763-0.
Article
PubMed
PubMed Central
Google Scholar