Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.
Article
CAS
Google Scholar
Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, et al. The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 2019;10:2388.
Article
CAS
Google Scholar
Fore F, Budipranama M, Destiawan RA. TLR10 and its role in immunity. Handb Exp Pharmacol. 2022;276:161–74.
Article
Google Scholar
Liu Y, Yang M, Tang X, Xu D, Chi C, Lv Z, et al. Characterization of a novel toll-like receptor 13 homologue from a marine fish Nibea albiflora, revealing its immunologic function as PRRs. Dev Comp Immunol. 2022;104563.
Kumar V. Toll-like receptors in adaptive immunity. Handb Exp Pharmacol. 2022;276:95–131.
Article
Google Scholar
Nouri Y, Weinkove R, Perret R. T-cell intrinsic toll-like receptor signaling: implications for cancer immunotherapy and CAR T-cells. J Immunother Cancer. 2021;9(11).
Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R, et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol. 2020;13(1):3.
Article
CAS
Google Scholar
McGowan DC. Latest advances in small molecule TLR 7/8 agonist drug research. Curr Top Med Chem. 2019;19(24):2228–38.
Article
CAS
Google Scholar
Sacre S, Lo A, Gregory B, Stephens M, Chamberlain G, Stott P, et al. Oligodeoxynucleotide inhibition of toll-like receptors 3, 7, 8, and 9 suppresses cytokine production in a human rheumatoid arthritis model. Eur J Immunol. 2016;46(3):772–81.
Article
CAS
Google Scholar
Brentano F, Kyburz D, Gay S. Toll-like receptors and rheumatoid arthritis. Methods Mol Biol. 2009;517:329–43.
Article
CAS
Google Scholar
Roelofs MF, Joosten LA, Abdollahi-Roodsaz S, van Lieshout AW, Sprong T, van den Hoogen FH, et al. The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 2005;52(8):2313–22.
Article
CAS
Google Scholar
Sheyhidin I, Nabi G, Hasim A, Zhang RP, Ainiwaer J, Ma H, et al. Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J Gastroenterol. 2011;17(32):3745–51.
Article
CAS
Google Scholar
Komatsuda A, Wakui H, Iwamoto K, Ozawa M, Togashi M, Masai R, et al. Up-regulated expression of toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol. 2008;152(3):482–7.
Article
CAS
Google Scholar
Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, et al. Novel drugs targeting toll-like receptors for antiviral therapy. Futur Virol. 2014;9(9):811–29.
Article
CAS
Google Scholar
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, et al. Agonist and antagonist ligands of toll-like receptors 7 and 8: ingenious tools for therapeutic purposes. Eur J Med Chem. 2020;193:112238.
Article
CAS
Google Scholar
Agrawal S, Kandimalla ER. Synthetic agonists of toll-like receptors 7, 8 and 9. Biochem Soc Trans. 2007;35(Pt 6):1461–7.
Article
CAS
Google Scholar
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14(8):546–58.
Article
CAS
Google Scholar
Kauppila JH, Takala H, Selander KS, Lehenkari PP, Saarnio J, Karttunen TJ. Increased toll-like receptor 9 expression indicates adverse prognosis in oesophageal adenocarcinoma. Histopathology. 2011;59(4):643–9.
Article
Google Scholar
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.
Article
Google Scholar
Davakis S, Kapelouzou A, Liakakos T, Mpoura M, Stergiou D, Sakellariou S, et al. The role of toll-like receptors in esophageal Cancer. Anticancer Res. 2022;42(6):2813–8.
Article
CAS
Google Scholar
Ioannou S, Voulgarelis M. Toll-like receptors, tissue injury, and tumourigenesis. Mediat Inflamm. 2010;2010.
Jiang S, Tanji H, Yin K, Zhang S, Sakaniwa K, Huang J, et al. Rationally designed small-molecule inhibitors targeting an unconventional pocket on the TLR8 protein-protein Interface. J Med Chem. 2020;63(8):4117–32.
Article
CAS
Google Scholar
Khan AA, Khan Z, Warnakulasuriya S. Cancer-associated toll-like receptor modulation and insinuation in infection susceptibility: association or coincidence? Ann Oncol. 2016;27(6):984–97.
Article
CAS
Google Scholar
Lee CC, Avalos AM, Ploegh HL. Accessory molecules for toll-like receptors and their function. Nat Rev Immunol. 2012;12(3):168–79.
Article
CAS
Google Scholar
Zaidi AH, Kelly LA, Kreft RE, Barlek M, Omstead AN, Matsui D, et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 2016;16:52.
Article
Google Scholar
Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, et al. Toll-like receptors in tumor immunotherapy. Clin Cancer Res. 2007;13(18 Pt 1):5280–9.
Article
CAS
Google Scholar
Baghdadi J, Chaudhary N, Pei Z, Yang L. Microbiome, innate immunity, and esophageal adenocarcinoma. Clin Lab Med. 2014;34(4):721–32.
Article
Google Scholar
Fukata M, Abreu MT. Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol. 2009;9(6):680–7.
Article
CAS
Google Scholar
Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4607–14.
Article
CAS
Google Scholar
Diakowska D, Nienartowicz M, Grabowski K, Rosińczuk J, Krzystek-Korpacka M. Toll-like receptors TLR-2, TLR-4, TLR-7, and TLR-9 in tumor tissue and serum of the patients with esophageal squamous cell carcinoma and gastro-esophageal junction cancer. Adv Clin Exp Med. 2019;28(4):515–22.
Article
Google Scholar
Gorden KK, Qiu X, Battiste JJ, Wightman PP, Vasilakos JP, Alkan SS. Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol (Baltimore, Md : 1950). 2006;177(11):8164–70.
Article
CAS
Google Scholar
Wang X, Chen Y, Zhang S, Deng JN. Molecular dynamics simulations reveal the selectivity mechanism of structurally similar agonists to TLR7 and TLR8. PLoS One. 2022;17(4):e0260565.
Article
CAS
Google Scholar
Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. 2002;3(6):499.
Article
CAS
Google Scholar
Liu J, Xu C, Hsu LC, Luo Y, Xiang R, Chuang TH. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol Immunol. 2010;47(5):1083–90.
Article
CAS
Google Scholar
de Marcken M, Dhaliwal K, Danielsen AC, Gautron AS, Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci Signal. 2019;12(605).
Awasthi S. Toll-like receptor-4 modulation for cancer immunotherapy. Front Immunol. 2014;5:328.
Article
Google Scholar
Liu X, Li L, Peng G. TLR8 reprograms human Treg metabolism and function. Aging. 2019;11(17):6614–5.
Article
CAS
Google Scholar
Li L, Liu X, Sanders KL, Edwards JL, Ye J, Si F, et al. TLR8-mediated metabolic control of human Treg function: a mechanistic target for Cancer immunotherapy. Cell Metab. 2019;29(1):103–23.e5.
Article
CAS
Google Scholar
Xu R, Wu M, Liu S, Shang W, Li R, Xu J, et al. Glucose metabolism characteristics and TLR8-mediated metabolic control of CD4(+) Treg cells in ovarian cancer cells microenvironment. Cell Death Dis. 2021;12(1):22.
Article
CAS
Google Scholar
Cheng Y, Borcherding N, Ogunsakin A, Lemke-Miltner CD, Gibson-Corley KN, Rajan A, et al. The anti-tumor effects of cetuximab in combination with VTX-2337 are T cell dependent. Sci Rep. 2021;11(1):1535.
Article
CAS
Google Scholar
Dietsch GN, Lu H, Yang Y, Morishima C, Chow LQ, Disis ML, et al. Coordinated activation of toll-like Receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites Tumoricidal natural killer cell activity. PLoS One. 2016;11(2):e0148764.
Article
Google Scholar
Khanna V, Kim H, Zhang W, Larson P, Shah M, Griffith TS, et al. Novel TLR 7/8 agonists for improving NK cell mediated antibody-dependent cellular cytotoxicity (ADCC). Sci Rep. 2021;11(1):3346.
Article
CAS
Google Scholar
Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T. Structural reorganization of the toll-like receptor 8 dimer induced by agonistic ligands. Science. 2013;339(6126):1426–9.
Article
CAS
Google Scholar
Wang Z, Gao Y, He L, Sun S, Xia T, Hu L, et al. Structure-based Design of Highly Potent Toll-like Receptor 7/8 dual agonists for Cancer immunotherapy. J Med Chem. 2021;64(11):7507–32.
Article
CAS
Google Scholar
Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrié M, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. 2010;12(4):401–8.
Article
CAS
Google Scholar
Weigel BJ, Cooley S, DeFor T, Weisdorf DJ, Panoskaltsis-Mortari A, Chen W, et al. Prolonged subcutaneous administration of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced hematologic malignancies. Am J Hematol. 2012;87(10):953–6.
Article
CAS
Google Scholar
Cen X, Liu S, Cheng K. The role of toll-like receptor in inflammation and tumor immunity. Front Pharmacol. 2018;9:878.
Article
Google Scholar
Nurmi AM, Hagström J, Mustonen H, Seppänen H, Haglund C. The expression and prognostic value of toll-like receptors (TLRs) in pancreatic cancer patients treated with neoadjuvant therapy. PLoS One. 2022;17(5):e0267792.
Article
CAS
Google Scholar
Grimmig T, Matthes N, Hoeland K, Tripathi S, Chandraker A, Grimm M, et al. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. Int J Oncol. 2015;47(3):857–66.
Article
CAS
Google Scholar
Michaelis KA, Norgard MA, Zhu X, Levasseur PR, Sivagnanam S, Liudahl SM, et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat Commun. 2019;10(1):4682.
Article
Google Scholar
Lanki M, Seppänen H, Mustonen H, Hagström J, Haglund C. Toll-like receptor 1 predicts favorable prognosis in pancreatic cancer. PLoS One. 2019;14(7):e0219245.
Article
CAS
Google Scholar
Beilmann-Lehtonen I, Hagström J, Kaprio T, Stenman UH, Strigård K, Palmqvist R, et al. The relationship between the tissue expression of TLR2, TLR4, TLR5, and TLR7 and systemic inflammatory responses in colorectal Cancer patients. Oncology. 2021;99(12):790–801.
Article
CAS
Google Scholar
Beilmann-Lehtonen I, Hagström J, Mustonen H, Koskensalo S, Haglund C, Böckelman C. High tissue TLR5 expression predicts better outcomes in colorectal Cancer patients. Oncology. 2021;99(9):589–600.
Article
CAS
Google Scholar
Hong EH, Cho J, Ahn JH, Kwon BE, Kweon MN, Seo SU, et al. Plasmacytoid dendritic cells regulate colitis-associated tumorigenesis by controlling myeloid-derived suppressor cell infiltration. Cancer Lett. 2020;493:102–12.
Article
Google Scholar
Lin X, Zhang J, Wang X, Lin G, Chen T. Pre-activation with TLR7 in combination with thioridazine and loratadine promotes tumoricidal T-cell activity in colorectal cancer. Anti-Cancer Drugs. 2020;31(10):989–96.
Article
CAS
Google Scholar
Yu S, Ren X, Li L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp Hematol Oncol. 2022;11(1):43.
Article
Google Scholar
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of myeloid-derived suppressor cell in tumor immunotherapy. Biomark Res. 2021;9(1):77.
Article
Google Scholar
Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu Z, et al. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 2020;469:173–85.
Article
CAS
Google Scholar
Pilch Z, Tonecka K, Braniewska A, Sas Z, Skorzynski M, Boon L, et al. Antitumor activity of TLR7 is potentiated by CD200R antibody leading to changes in the tumor microenvironment. Cancer Immunol Res. 2018;6(8):930–40.
Article
CAS
Google Scholar
Okazaki S, Stintzing S, Sunakawa Y, Cao S, Zhang W, Yang D, et al. Predictive value of TLR7 polymorphism for cetuximab-based chemotherapy in patients with metastatic colorectal cancer. Int J Cancer. 2017;141(6):1222–30.
Article
CAS
Google Scholar
Dovedi SJ, Adlard AL, Ota Y, Murata M, Sugaru E, Koga-Yamakawa E, et al. Intravenous administration of the selective toll-like receptor 7 agonist DSR-29133 leads to anti-tumor efficacy in murine solid tumor models which can be potentiated by combination with fractionated radiotherapy. Oncotarget. 2016;7(13):17035–46.
Article
Google Scholar
Thomas G, Micci L, Yang W, Katakowski J, Oderup C, Sundar P, et al. Intra-Tumoral activation of endosomal TLR pathways reveals a distinct role for TLR3 agonist dependent Type-1 interferons in shaping the tumor immune microenvironment. Front Oncol. 2021;11:711673.
Article
Google Scholar
Zhang M, Yan Z, Wang J, Yao X. Toll-like receptors 7 and 8 expression correlates with the expression of immune biomarkers and positively predicts the clinical outcome of patients with melanoma. Onco Targets Ther. 2017;10:4339–46.
Article
Google Scholar
Bellmann L, Cappellano G, Schachtl-Riess JF, Prokopi A, Seretis A, Ortner D, et al. A TLR7 agonist strengthens T and NK cell function during BRAF-targeted therapy in a preclinical melanoma model. Int J Cancer. 2020;146(5):1409–20.
Article
CAS
Google Scholar
Verga E, Chohan B, Verdolini R. Malignant melanoma treated with topical Imiquimod: a bespoke treatment that spared the amputation. Case Rep Dermatol 2019;11(1):1–6.
Joseph RW, Cappel M, Tzou K, Bagaria S, Gilstrap C, Swaika A, et al. Treatment of in-transit and metastatic melanoma in two patients treated with ipilimumab and topical imiquimod. Melanoma Res. 2016;26(4):409–12.
Article
Google Scholar
Baglivo S, Bianconi F, Metro G, Gili A, Tofanetti FR, Bellezza G, et al. Higher TLR7 gene expression predicts poor clinical outcome in advanced NSCLC patients treated with immunotherapy. Genes. 2021;12(7).
Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M, et al. Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology. 2019;8(1):e1505174.
Article
Google Scholar
Ye H, Pan J, Gong E, Cai X, Xu C, Li Y, et al. Inhibitory effect of immunologically activated mesenchymal stem cells on lung Cancer cell growth and metastasis. Cancer Biother Radiopharm. 2021.
Vinod N, Hwang D, Azam SH, Van Swearingen AED, Wayne E, Fussell SC, et al. High-capacity poly(2-oxazoline) formulation of TLR 7/8 agonist extends survival in a chemo-insensitive, metastatic model of lung adenocarcinoma. Sci Adv. 2020;6(25):eaba5542.
Article
CAS
Google Scholar
Zhou J, Xu Y, Wang G, Mei T, Yang H, Liu Y. The TLR7/8 agonist R848 optimizes host and tumor immunity to improve therapeutic efficacy in murine lung cancer. Int J Oncol. 2022;61(1).
Dajon M, Iribarren K, Cremer I. Dual roles of TLR7 in the lung cancer microenvironment. Oncoimmunology. 2015;4(3):e991615.
Article
Google Scholar
Jiang J, Dong L, Qin B, Shi H, Guo X, Wang Y. Decreased expression of TLR7 in gastric cancer tissues and the effects of TLR7 activation on gastric cancer cells. Oncol Lett. 2016;12(1):631–6.
Article
CAS
Google Scholar
Yuan Q, Zhou Q, Ren J, Wang G, Yin C, Shang D, et al. WGCNA identification of TLR7 as a novel diagnostic biomarker, progression and prognostic indicator, and immunotherapeutic target for stomach adenocarcinoma. Cancer Med. 2021;10(12):4004–16.
Article
CAS
Google Scholar
Wang XD, Gao NN, Diao YW, Liu Y, Gao D, Li W, et al. Conjugation of toll-like receptor-7 agonist to gastric cancer antigen MG7-ag exerts antitumor effects. World J Gastroenterol. 2015;21(26):8052–60.
Article
CAS
Google Scholar
Wang X, Liu Y, Diao Y, Gao N, Wan Y, Zhong J, et al. Gastric cancer vaccines synthesized using a TLR7 agonist and their synergistic antitumor effects with 5-fluorouracil. J Transl Med. 2018;16(1):120.
Article
CAS
Google Scholar
Wang Q, Zhang X, Xiao T, Pan C, Liu X, Zhao Y. Prognostic role of toll-like receptors in cancer: a meta-analysis. Ther Clin Risk Manag. 2018;14:1323–30.
Article
CAS
Google Scholar
Mohamed FEZ, Jalan R, Minogue S, Andreola F, Habtesion A, Hall A, et al. Inhibition of TLR7 and TLR9 reduces human Cholangiocarcinoma cell proliferation and tumor development. Dig Dis Sci. 2022;67(5):1806–21.
Article
CAS
Google Scholar
Safarzadeh E, Mohammadi A, Mansoori B, Duijf PHG, Hashemzadeh S, Khaze V, et al. STAT3 silencing and TLR7/8 pathway activation repolarize and suppress myeloid-derived suppressor cells from breast Cancer patients. Front Immunol. 2020;11:613215.
Article
CAS
Google Scholar
Economopoulou P, Koutsodontis G, Strati A, Kirodimos E, Giotakis E, Maragoudakis P, et al. Surrogates of immunologic cell death (ICD) and chemoradiotherapy outcomes in head and neck squamous cell carcinoma (HNSCC). Oral Oncol. 2019;94:93–100.
Article
Google Scholar
Haeggblom L, Näsman A, Ramqvist T, Haglund C, Hagström J, Mäkitie A, et al. TLR5 and TLR7 are differentially expressed in human papillomavirus-positive and negative base of tongue squamous cell carcinoma, and TLR7 may have an independent prognostic influence. Acta Otolaryngol. 2019;139(2):206–10.
Article
CAS
Google Scholar
Vlad C, Dina C, Kubelac P, Vlad D, Pop B, Achimas CP. Expression of toll-like receptors in ovarian cancer. J BUON. 2018;23(6):1725–31.
Google Scholar
Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol. 2021;14(1):176.
Article
CAS
Google Scholar
Marin-Acevedo JA, Kimbrough EO, Manochakian R, Zhao Y, Lou Y. Immunotherapies targeting stimulatory pathways and beyond. J Hematol Oncol. 2021;14(1):78.
Article
CAS
Google Scholar
Ruuskanen M, Leivo I, Minn H, Vahlberg T, Haglund C, Hagström J, et al. Expression of toll-like receptors in non-endemic nasopharyngeal carcinoma. BMC Cancer. 2019;19(1):624.
Article
CAS
Google Scholar
Halec G, Scott ME, Farhat S, Darragh TM, Moscicki AB. Toll-like receptors: important immune checkpoints in the regression of cervical intra-epithelial neoplasia 2. Int J Cancer. 2018;143(11):2884–91.
Article
CAS
Google Scholar
Schary N, Novak B, Kämper L, Yousf A, Lübbert H. Identification and pharmacological modification of resistance mechanisms to protoporphyrin-mediated photodynamic therapy in human cutaneous squamous cell carcinoma cell lines. Photodiagn Photodyn Ther. 2022:103004.
Rolig AS, Rose DC, McGee GH, Rubas W, Kivimäe S, Redmond WL. Combining bempegaldesleukin (CD122-preferential IL-2 pathway agonist) and NKTR-262 (TLR7/8 agonist) improves systemic antitumor CD8(+) T cell cytotoxicity over BEMPEG+RT. J Immunother Cancer. 2022;10(4).
Garau G, Rocca PC, Manca A, Madonia M, Siracusa G, Sotgiu G, et al. Preliminary study on the expression of toll-like receptors 7 and 8 in bladder urothelial tumors. Urologia. 2015;82(4):226–8.
Article
Google Scholar
Ni YH, Ding L, Zhang DY, Hou YY, Huang X, Hu Q. Distinct expression patterns of toll-like receptor 7 in tumour cells and fibroblast-like cells in oral squamous cell carcinoma. Histopathology. 2015;67(5):730–9.
Article
Google Scholar
Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: a pro- and anti-tumor double-edged sword. Immunobiology. 2017;222(1):89–100.
Article
CAS
Google Scholar
Palumbo A Jr, Meireles Da Costa N, Pontes B, Leite de Oliveira F, Lohan Codeço M, Ribeiro Pinto LF, et al. Esophageal Cancer development: crucial clues arising from the extracellular matrix. Cells. 2020;9(2).
Takala H, Kauppila JH, Soini Y, Selander KS, Vuopala KS, Lehenkari PP, et al. Toll-like receptor 9 is a novel biomarker for esophageal squamous cell dysplasia and squamous cell carcinoma progression. J Innate Immun. 2011;3(6):631–8.
Article
CAS
Google Scholar
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother. 2018;107:177–84.
Article
CAS
Google Scholar
Wu K, Zhang H, Fu Y, Zhu Y, Kong L, Chen L, et al. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep. 2018;18(3):3411–20.
CAS
Google Scholar
Branchi V, Esser L, Boden C, Jafari A, Henn J, Lingohr P, et al. A combined TLR7/TLR9/GATA3 score can predict prognosis in biliary tract Cancer. Diagnostics (Basel). 2021;11(9).
Huang X, Zhang X, Lu M. Recent trends in the development of toll-like receptor 7/8-targeting therapeutics. Expert Opin Drug Discovery. 2021;16(8):869–80.
Article
CAS
Google Scholar
Vierbuchen T, Stein K, Heine H. RNA is taking its toll: impact of RNA-specific toll-like receptors on health and disease. Allergy. 2019;74(2):223–35.
Google Scholar
Braunstein MJ, Kucharczyk J, Adams S. Targeting toll-like receptors for Cancer therapy. Target Oncol. 2018;13(5):583–98.
Article
Google Scholar
Li TT, Ogino S, Qian ZR. Toll-like receptor signaling in colorectal cancer: carcinogenesis to cancer therapy. World J Gastroenterol. 2014;20(47):17699–708.
Article
Google Scholar
Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev. 2011;24(3):490–7.
Article
CAS
Google Scholar
Piras V, Selvarajoo K. Beyond MyD88 and TRIF pathways in toll-like receptor signaling. Front Immunol. 2014;5:70.
Article
Google Scholar
Zhu G, Cheng Z, Huang Y, Zheng W, Yang S, Lin C, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-κB/AP-1 signaling pathway. Int J Mol Med. 2020;45(1):131–40.
CAS
Google Scholar
Li X, Wang S, Zhu R, Li H, Han Q, Zhao RC. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol. 2016;9(1):42.
Article
Google Scholar
Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, et al. Trial watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology. 2020;9(1):1796002.
Article
Google Scholar
Ding R, Jiao A, Zhang B. Targeting toll-like receptors on T cells as a therapeutic strategy against tumors. Int Immunopharmacol. 2022;107:108708.
Article
CAS
Google Scholar
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–66.
Article
CAS
Google Scholar
Akilesh HM, Buechler MB, Duggan JM, Hahn WO, Matta B, Sun X, et al. Chronic TLR7 and TLR9 signaling drives anemia via differentiation of specialized hemophagocytes. Science. 2019;363(6423):eaao5213.
Article
CAS
Google Scholar
Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X, et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol (Baltimore, Md : 1950). 2005;174(3):1259–68.
Article
CAS
Google Scholar
Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR, et al. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials. 2018;164:38–53.
Article
CAS
Google Scholar
Veneziani I, Alicata C, Pelosi A, Landolina N, Ricci B, D'Oria V, et al. Toll-like receptor 8 agonists improve NK-cell function primarily targeting CD56(bright)CD16(−) subset. J Immunother Cancer. 2022;10(1).
Yin T, He S, Wang Y. Toll-like receptor 7/8 agonist, R848, exhibits antitumoral effects in a breast cancer model. Mol Med Rep. 2015;12(3):3515–20.
Article
CAS
Google Scholar
Hart OM, Athie-Morales V, O'Connor GM, Gardiner CM. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol (Baltimore, Md : 1950). 2005;175(3):1636–42.
Article
CAS
Google Scholar
Peng Y, Wang Y, Wang M, Lan J, Chen Y. Therapeutic applications of toll-like receptors (TLRs) agonists in AML. Clin Transl Oncol. 2022.
Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126(12):1452–61.
Article
CAS
Google Scholar
Killock D. Haematological cancer: Resiquimod—a topical CTCL therapy. Nat Rev Clin Oncol. 2015;12(10):563.
Article
CAS
Google Scholar
Koh J, Kim S, Lee SN, Kim SY, Kim JE, Lee KY, et al. Therapeutic efficacy of cancer vaccine adjuvanted with nanoemulsion loaded with TLR7/8 agonist in lung cancer model. Nanomedicine. 2021;37:102415.
Article
CAS
Google Scholar
Li F, Zheng X, Wang X, Xu J, Zhang Q. Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis. Transl Oncol. 2021;14(11):101202.
Article
CAS
Google Scholar
Gorski KS, Waller EL, Bjornton-Severson J, Hanten JA, Riter CL, Kieper WC, et al. Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol. 2006;18(7):1115–26.
Article
CAS
Google Scholar
Dou L, Meng X, Yang H, Dong H. Advances in technology and applications of nanoimmunotherapy for cancer. Biomark Res. 2021;9(1):63.
Article
Google Scholar
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15(1):132.
Article
Google Scholar
Kim H, Khanna V, Kucaba TA, Zhang W, Sehgal D, Ferguson DM, et al. TLR7/8 agonist-loaded nanoparticles augment NK cell-mediated antibody-based Cancer immunotherapy. Mol Pharm. 2020;17(6):2109–24.
Article
CAS
Google Scholar
Hung IF, Zhang AJ, To KK, Chan JF, Li P, Wong TL, et al. Topical imiquimod before intradermal trivalent influenza vaccine for protection against heterologous non-vaccine and antigenically drifted viruses: a single-Centre, double-blind, randomised, controlled phase 2b/3 trial. Lancet Infect Dis. 2016;16(2):209–18.
Article
CAS
Google Scholar
Hung IF, Yap DY, Yip TP, Zhang RR, To KK, Chan KH, et al. A double-blind, randomized phase 2 controlled trial of intradermal hepatitis B vaccination with a topical toll-like receptor 7 agonist Imiquimod, in patients on Dialysis. Clin Infect Dis. 2021;73(2):e304–e11.
Article
CAS
Google Scholar
Li S, Yao JC, Li JT, Schmidt AP, Link DC. TLR7/8 agonist treatment induces an increase in bone marrow resident dendritic cells and hematopoietic progenitor expansion and mobilization. Exp Hematol. 2021;96:35–43.e7.
Article
CAS
Google Scholar
Chi H, Hao Y, Wang X, Tang L, Deng Y, Chen X, et al. A therapeutic whole-tumor-cell vaccine covalently conjugated with a TLR7 agonist. Cells. 2022;11(13).
Zhu J, He S, Du J, Wang Z, Li W, Chen X, et al. Local administration of a novel toll-like receptor 7 agonist in combination with doxorubicin induces durable tumouricidal effects in a murine model of T cell lymphoma. J Hematol Oncol. 2015;8(1):21.
Article
Google Scholar
Niu C, Li L, Daffis S, Lucifora J, Bonnin M, Maadadi S, et al. Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism. J Hepatol. 2018;68(5):922–31.
Article
CAS
Google Scholar
Li L, Barry V, Daffis S, Niu C, Huntzicker E, French DM, et al. Anti-HBV response to toll-like receptor 7 agonist GS-9620 is associated with intrahepatic aggregates of T cells and B cells. J Hepatol. 2018;68(5):912–21.
Article
CAS
Google Scholar
Menne S, Tumas DB, Liu KH, Thampi L, AlDeghaither D, Baldwin BH, et al. Sustained efficacy and seroconversion with the toll-like receptor 7 agonist GS-9620 in the woodchuck model of chronic hepatitis B. J Hepatol. 2015;62(6):1237–45.
Article
CAS
Google Scholar
Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdörfer B, Giese T, et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol (Baltimore, Md : 1950). 2002;168(9):4531–7.
Article
CAS
Google Scholar
Dang Y, Rutnam ZJ, Dietsch G, Lu H, Yang Y, Hershberg R, et al. TLR8 ligation induces apoptosis of monocytic myeloid-derived suppressor cells. J Leukoc Biol. 2018;103(1):157–64.
Article
CAS
Google Scholar
Lu H, Dietsch GN, Matthews MA, Yang Y, Ghanekar S, Inokuma M, et al. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res. 2012;18(2):499–509.
Article
CAS
Google Scholar
Dietsch GN, Randall TD, Gottardo R, Northfelt DW, Ramanathan RK, Cohen PA, et al. Late-stage Cancer patients remain highly responsive to immune activation by the selective TLR8 agonist Motolimod (VTX-2337). Clin Cancer Res. 2015;21(24):5445–52.
Article
CAS
Google Scholar
Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, et al. Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 2020;13(1):107.
Article
Google Scholar
Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275–306.
Article
CAS
Google Scholar
Dalgaard J, Beckstrøm KJ, Jahnsen FL, Brinchmann JE. Differential capability for phagocytosis of apoptotic and necrotic leukemia cells by human peripheral blood dendritic cell subsets. J Leukoc Biol. 2005;77(5):689–98.
Article
CAS
Google Scholar
Serrano R, Wesch D, Kabelitz D. Activation of human γδ T cells: modulation by toll-like receptor 8 ligands and role of monocytes. Cells. 2020;9(3).
Kang Y, Flores L, Ngai HW, Cornejo YR, Haber T, McDonald M, et al. Large, anionic liposomes enable targeted intraperitoneal delivery of a TLR 7/8 agonist to repolarize ovarian Tumors' microenvironment. Bioconjug Chem. 2021;32(8):1581–92.
Article
CAS
Google Scholar
An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer. 2021;149(1):21–30.
Article
CAS
Google Scholar
Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol. 2021;10(1):60.
Article
CAS
Google Scholar
Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, et al. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res. 2021;9(1):72.
Article
Google Scholar
Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol. 2021;14(1):181.
Article
CAS
Google Scholar
Xu J, Guo R, Jia J, He Y, He S. Activation of toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8(+) T cell cytotoxicity in patients with gastric cancer. BMC Immunol. 2021;22(1):67.
Article
CAS
Google Scholar
Wu W, Liu Y, Zeng S, Han Y, Shen H. Intratumor heterogeneity: the hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes. J Hematol Oncol. 2021;14(1):160.
Article
CAS
Google Scholar
Zhang C, Ding H, Huang H, Palashati H, Miao Y, Xiong H, et al. TCR repertoire intratumor heterogeneity of CD4(+) and CD8(+) T cells in centers and margins of localized lung adenocarcinomas. Int J Cancer. 2019;144(4):818–27.
Article
CAS
Google Scholar
Zhang Q, Lou Y, Yang J, Wang J, Feng J, Zhao Y, et al. Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut. 2019;68(11):2019–31.
Article
CAS
Google Scholar
Liu YY, Yang QF, Yang JS, Cao RB, Liang JY, Liu YT, et al. Characteristics and prognostic significance of profiling the peripheral blood T-cell receptor repertoire in patients with advanced lung cancer. Int J Cancer. 2019;145(5):1423–31.
Article
CAS
Google Scholar
Zhang Y, Zhu Y, Wang J, Xu Y, Wang Z, Liu Y, et al. A comprehensive model based on temporal dynamics of peripheral T cell repertoire for predicting post-treatment distant metastasis of nasopharyngeal carcinoma. Cancer Immunol Immunother. 2022;71(3):675–88.
Article
CAS
Google Scholar
Guo L, Bi X, Li Y, Wen L, Zhang W, Jiang W, et al. Characteristics, dynamic changes, and prognostic significance of TCR repertoire profiling in patients with renal cell carcinoma. J Pathol. 2020;251(1):26–37.
Article
CAS
Google Scholar
Song Y, Xu M, Li Y, Li Y, Gu W, Halimu G, et al. An iRGD peptide fused superantigen mutant induced tumor-targeting and T lymphocyte infiltrating in cancer immunotherapy. Int J Pharm. 2020;586:119498.
Article
CAS
Google Scholar
Wang Y, Yang H, Li H, Zhao S, Zeng Y, Zhang P, et al. Development of a novel TLR8 agonist for cancer immunotherapy. Mol Biomed. 2020;1(1):6.
Article
Google Scholar
Zou X, Guo B, Ling Q, Mo Z. Toll-like receptors serve as biomarkers for early diagnosis and prognosis assessment of kidney renal clear cell carcinoma by influencing the immune microenvironment: comprehensive bioinformatics analysis combined with experimental validation. Front Mol Biosci. 2022;9:832238.
Article
CAS
Google Scholar
Yang L, Zhang Y. Tumor-associated macrophages, potential targets for cancer treatment. Biomark Res. 2017;5(1):25.
Article
Google Scholar
Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14(1):156.
Article
Google Scholar
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39.
Article
Google Scholar
Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol. 2013;93(6):847–63.
Article
CAS
Google Scholar
Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res. 2012;35(8):1297–316.
Article
CAS
Google Scholar
Chatterjee S, Crozet L, Damotte D, Iribarren K, Schramm C, Alifano M, et al. TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non-small cell lung cancer. Cancer Res. 2014;74(18):5008–18.
Article
CAS
Google Scholar
Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N, et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest. 2012;122(11):4118–29.
Article
CAS
Google Scholar
Geller MA, Cooley S, Argenta PA, Downs LS, Carson LF, Judson PL, et al. Toll-like receptor-7 agonist administered subcutaneously in a prolonged dosing schedule in heavily pretreated recurrent breast, ovarian, and cervix cancers. Cancer Immunol Immunother. 2010;59(12):1877–84.
Article
CAS
Google Scholar
Dummer R, Hauschild A, Becker JC, Grob JJ, Schadendorf D, Tebbs V, et al. An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin Cancer Res. 2008;14(3):856–64.
Article
CAS
Google Scholar
Chow LQM, Morishima C, Eaton KD, Baik CS, Goulart BH, Anderson LN, et al. Phase Ib trial of the toll-like receptor 8 agonist, Motolimod (VTX-2337), combined with Cetuximab in patients with recurrent or metastatic SCCHN. Clin Cancer Res. 2017;23(10):2442–50.
Article
CAS
Google Scholar
Shayan G, Kansy BA, Gibson SP, Srivastava RM, Bryan JK, Bauman JE, et al. Phase Ib study of immune biomarker modulation with Neoadjuvant Cetuximab and TLR8 stimulation in head and neck Cancer to overcome suppressive myeloid signals. Clin Cancer Res. 2018;24(1):62–72.
Article
CAS
Google Scholar
Ferris RL, Saba NF, Gitlitz BJ, Haddad R, Sukari A, Neupane P, et al. Effect of adding Motolimod to standard combination chemotherapy and Cetuximab treatment of patients with squamous cell carcinoma of the head and neck: the Active8 randomized clinical trial. JAMA Oncol. 2018;4(11):1583–8.
Article
Google Scholar
Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. 2009;58(9):1375–85.
Article
CAS
Google Scholar
Monk BJ, Facciabene A, Brady WE, Aghajanian CA, Fracasso PM, Walker JL, et al. Integrative development of a TLR8 agonist for ovarian Cancer Chemoimmunotherapy. Clin Cancer Res. 2017;23(8):1955–66.
Article
CAS
Google Scholar
Monk BJ, Brady MF, Aghajanian C, Lankes HA, Rizack T, Leach J, et al. A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a gynecologic oncology group partners study. Ann Oncol. 2017;28(5):996–1004.
Article
CAS
Google Scholar
Mathé G, Amiel J, Schwarzenberg L, Schneider M, Cattan A, Schlumberger JR, et al. Active immunotherapy for acute lymphoblastic leukaemia. Lancet. 1969;293(7597):697–9.
Article
Google Scholar
Deng G, Ge J, Liu C, Pang J, Huang Z, Peng J, et al. Impaired expression and function of TLR8 in chronic HBV infection and its association with treatment responses during peg-IFN-α-2a antiviral therapy. Clin Res Hepatol Gastroenterol. 2017;41(4):386–98.
Article
CAS
Google Scholar
Mackman RL, Mish M, Chin G, Perry JK, Appleby T, Aktoudianakis V, et al. Discovery of GS-9688 (Selgantolimod) as a potent and selective Oral toll-like receptor 8 agonist for the treatment of chronic hepatitis B. J Med Chem. 2020;63(18):10188–203.
Article
CAS
Google Scholar
Ayithan N, Tang L, Tan SK, Chen D, Wallin JJ, Fletcher SP, et al. Follicular helper T (T(FH)) cell targeting by TLR8 signaling for improving HBsAg-specific B cell response in chronic hepatitis B patients. Front Immunol. 2021;12:735913.
Article
CAS
Google Scholar
Gane EJ, Kim HJ, Visvanathan K, Kim YJ, Nguyen AH, Wallin JJ, et al. Safety, pharmacokinetics, and pharmacodynamics of the Oral TLR8 agonist Selgantolimod in chronic hepatitis B. Hepatology. 2021;74(4):1737–49.
Article
CAS
Google Scholar
Daffis S, Balsitis S, Chamberlain J, Zheng J, Santos R, Rowe W, et al. Toll-like receptor 8 agonist GS-9688 induces sustained efficacy in the woodchuck model of chronic hepatitis B. Hepatology. 2021;73(1):53–67.
Article
CAS
Google Scholar
Ayithan N, Ghosh A, Dwivedi A, Wallin JJ, Tan SK, Chen D, et al. Oral selective TLR8 agonist Selgantolimod induces multiple immune cell responses in humans. Viruses. 2021;13(12).
Reyes M, Lutz JD, Lau AH, Gaggar A, Grant EP, Joshi A, et al. Safety, pharmacokinetics and pharmacodynamics of selgantolimod, an oral toll-like receptor 8 agonist: a phase Ia study in healthy subjects. Antivir Ther. 2020;25(3):171–80.
Article
CAS
Google Scholar
Amin OE, Colbeck EJ, Daffis S, Khan S, Ramakrishnan D, Pattabiraman D, et al. Therapeutic potential of TLR8 agonist GS-9688 (Selgantolimod) in chronic hepatitis B: remodeling of antiviral and regulatory mediators. Hepatology. 2021;74(1):55–71.
Article
CAS
Google Scholar
Release. N. Zhimeng Biopharma Announces Dosing of First Subject in First-in-Human Phase I Clinical Trial of CB06. Zhimeng Biopharma Announces Dosing of First Subject in First-in-Human Phase I Clinical Trial of CB06.http://www.core-biopharma.com/news/54.html?l=en-us.
Annese T, Tamma R, Ribatti D. Update in TIGIT immune-checkpoint role in Cancer. Front Oncol. 2022;12:871085.
Article
Google Scholar
Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer. 2022;10(4).
Agnihotri P, Mishra AK, Agarwal P, Vignali KM, Workman CJ, Vignali DAA, et al. Epitope mapping of therapeutic antibodies targeting human LAG3. J Immunol (Baltimore, Md : 1950). 2022;209(8):1586–94.
Article
CAS
Google Scholar
Andrews LP, Cillo AR, Karapetyan L, Kirkwood JM, Workman CJ, Vignali DAA. Molecular pathways and mechanisms of LAG-3 in Cancer therapy. Clinical cancer research : an official journal of the American association for. Cancer Res. 2022.
Pan C, Liu H, Robins E, Song W, Liu D, Li Z, et al. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13(1):29.
Article
Google Scholar
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol. 2022;15(1):118.
Article
Google Scholar
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, et al. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 2021;14(1):187.
Article
CAS
Google Scholar
Chung C, Seo W, Silwal P, Jo EK. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol. 2020;13(1):100.
Article
Google Scholar
Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol. 2022;15(1):110.
Article
CAS
Google Scholar
Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol. 2020;13(1):91.
Article
Google Scholar
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28.
Article
Google Scholar