Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. https://doi.org/10.1056/NEJMra1011442.
Article
CAS
PubMed
Google Scholar
Jakubowiak AJ, Dytfeld D, Griffith KA, Lebovic D, Vesole DH, Jagannath S, et al. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood. 2012;120(9):1801–9. https://doi.org/10.1182/blood-2012-04-422683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landgren O, Owen RG. Better therapy requires better response evaluation: paving the way for minimal residual disease testing for every myeloma patient. Cytometry B Clin Cytom. 2016;90(1):14–20. https://doi.org/10.1002/cyto.b.21273.
Article
PubMed
Google Scholar
Landgren O, Iskander K. Modern multiple myeloma therapy: deep, sustained treatment response and good clinical outcomes. J Intern Med. 2017;281(4):365–82. https://doi.org/10.1111/joim.12590.
Article
CAS
PubMed
Google Scholar
Korde N, Roschewski M, Zingone A, Kwok M, Manasanch EE, Bhutani M, et al. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 2015;1(6):746–54. https://doi.org/10.1001/jamaoncol.2015.2010.
Article
PubMed
PubMed Central
Google Scholar
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol. 2021;18(3):152–69. https://doi.org/10.1038/s41571-020-00442-4.
Article
CAS
PubMed
Google Scholar
Yang Y, Li Y, Gu H, Dong M, Cai Z. Emerging agents and regimens for multiple myeloma. J Hematol Oncol. 2020;13(1):150. https://doi.org/10.1186/s13045-020-00980-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holthof LC, van der Schans JJ, Katsarou A, Poels R, Gelderloos AT, Drent E, et al. Bone marrow mesenchymal stromal cells can render multiple myeloma cells resistant to cytotoxic machinery of CAR T cells through inhibition of apoptosis. Clin Cancer Res. 2021;27(13):3793–803. https://doi.org/10.1158/1078-0432.Ccr-20-2188.
Article
CAS
PubMed
Google Scholar
Approvals Expand Multiple Myeloma Treatment Options. Cancer Discov. 2021;11(6):Of5. https://doi.org/10.1158/2159-8290.Cd-nb2021-0338.
Deng M, Zhang M, Xu-Monette ZY, Pham LV, Tzankov A, Visco C, et al. XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53. J Hematol Oncol. 2020;13(1):148. https://doi.org/10.1186/s13045-020-00982-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ, Crowley J. Curing myeloma at last: defining criteria and providing the evidence. Blood. 2014;124(20):3043–51. https://doi.org/10.1182/blood-2014-07-552059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson KC, Auclair D, Adam SJ, Agarwal A, Anderson M, Avet-Loiseau H, et al. Minimal residual disease in myeloma: application for clinical care and new drug registration. Clin Cancer Res. 2021. https://doi.org/10.1158/1078-0432.Ccr-21-1059.
Durie BG, Harousseau JL, Miguel JS, Bladé J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73. https://doi.org/10.1038/sj.leu.2404284.
Article
CAS
PubMed
Google Scholar
Sidana S, Tandon N, Dispenzieri A, Gertz MA, Buadi FK, Lacy MQ, et al. Relapse after complete response in newly diagnosed multiple myeloma: implications of duration of response and patterns of relapse. Leukemia. 2019;33(3):730–8. https://doi.org/10.1038/s41375-018-0271-1.
Article
CAS
PubMed
Google Scholar
Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e46. https://doi.org/10.1016/s1470-2045(16)30206-6.
Article
PubMed
Google Scholar
Sievers EL, Loken MR. Detection of minimal residual disease in acute myelogenous leukemia. J Pediatr Hematol Oncol. 1995;17(2):123–33. https://doi.org/10.1097/00043426-199505000-00005.
Article
CAS
PubMed
Google Scholar
Pileri S, Poggi S, Baglioni P, Montanari M, Sabattini E, Galieni P, et al. Histology and immunohistology of bone marrow biopsy in multiple myeloma. Eur J Haematol Suppl. 1989;51(S51):52–9. https://doi.org/10.1111/j.1600-0609.1989.tb01493.x.
Article
CAS
PubMed
Google Scholar
Bird JM, Russell NH, Samson D. Minimal residual disease after bone marrow transplantation for multiple myeloma: evidence for cure in long-term survivors. Bone Marrow Transplant. 1993;12(6):651–4.
CAS
PubMed
Google Scholar
Almeida J, Orfao A, Ocqueteau M, Mateo G, Corral M, Caballero MD, et al. High-sensitive immunophenotyping and DNA ploidy studies for the investigation of minimal residual disease in multiple myeloma. Br J Haematol. 1999;107(1):121–31. https://doi.org/10.1046/j.1365-2141.1999.01685.x.
Article
CAS
PubMed
Google Scholar
Paiva B, Vidriales MB, Cerveró J, Mateo G, Pérez JJ, Montalbán MA, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112(10):4017–23. https://doi.org/10.1182/blood-2008-05-159624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–33. https://doi.org/10.1200/jco.2010.33.1967.
Article
CAS
PubMed
Google Scholar
Rawstron AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT, et al. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood. 2002;100(9):3095–100. https://doi.org/10.1182/blood-2001-12-0297.
Article
CAS
PubMed
Google Scholar
Paiva B, Vidriales MB, Pérez JJ, Mateo G, Montalbán MA, Mateos MV, et al. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica. 2009;94(11):1599–602. https://doi.org/10.3324/haematol.2009.009100.
Article
PubMed
PubMed Central
Google Scholar
Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med. 2009;1(12):12ra23. https://doi.org/10.1126/scitranslmed.3000540.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I, et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci U S A. 2008;105(35):13081–6. https://doi.org/10.1073/pnas.0801523105.
Article
PubMed
PubMed Central
Google Scholar
Bolli N, Genuardi E, Ziccheddu B, Martello M, Oliva S, Terragna C. Next-generation sequencing for clinical management of multiple myeloma: ready for prime time? Front Oncol. 2020;10:189. https://doi.org/10.3389/fonc.2020.00189.
Article
PubMed
PubMed Central
Google Scholar
Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, García-Sánchez O, Böttcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103. https://doi.org/10.1038/leu.2017.29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mailankody S, Korde N, Lesokhin AM, Lendvai N, Hassoun H, Stetler-Stevenson M, et al. Minimal residual disease in multiple myeloma: bringing the bench to the bedside. Nat Rev Clin Oncol. 2015;12(5):286–95. https://doi.org/10.1038/nrclinonc.2014.239.
Article
PubMed
PubMed Central
Google Scholar
Sahota SS, Leo R, Hamblin TJ, Stevenson FK. Myeloma VL and VH gene sequences reveal a complementary imprint of antigen selection in tumor cells. Blood. 1997;89(1):219–26. https://doi.org/10.1182/blood.V89.1.219.
Article
CAS
PubMed
Google Scholar
Bakkus MH, Bouko Y, Samson D, Apperley JF, Thielemans K, Van Camp B, et al. Post-transplantation tumour load in bone marrow, as assessed by quantitative ASO-PCR, is a prognostic parameter in multiple myeloma. Br J Haematol. 2004;126(5):665–74. https://doi.org/10.1111/j.1365-2141.2004.05120.x.
Article
PubMed
Google Scholar
Logan AC, Zhang B, Narasimhan B, Carlton V, Zheng J, Moorhead M, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27(8):1659–65. https://doi.org/10.1038/leu.2013.52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Lopez J, Lahuerta JJ, Pepin F, González M, Barrio S, Ayala R, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9. https://doi.org/10.1182/blood-2014-01-550020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faham M, Zheng J, Moorhead M, Carlton VE, Stow P, Coustan-Smith E, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173–80. https://doi.org/10.1182/blood-2012-07-444042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ladetto M, Brüggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28(6):1299–307. https://doi.org/10.1038/leu.2013.375.
Article
CAS
PubMed
Google Scholar
Puig N, Sarasquete ME, Balanzategui A, Martínez J, Paiva B, García H, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28(2):391–7. https://doi.org/10.1038/leu.2013.217.
Article
CAS
PubMed
Google Scholar
van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11. https://doi.org/10.1038/sj.leu.2404586.
Article
CAS
PubMed
Google Scholar
Hillengass J, Usmani S, Rajkumar SV, Durie BGM, Mateos MV, Lonial S, et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019;20(6):e302–e12. https://doi.org/10.1016/s1470-2045(19)30309-2.
Article
PubMed
Google Scholar
Zamagni E, Tacchetti P, Barbato S, Cavo M. Role of imaging in the evaluation of minimal residual disease in multiple myeloma patients. J Clin Med. 2020;9(11). https://doi.org/10.3390/jcm9113519.
Jamet B, Zamagni E, Nanni C, Bailly C, Carlier T, Touzeau C, et al. Functional imaging for therapeutic assessment and minimal residual disease detection in multiple myeloma. Int J Mol Sci. 2020;21(15). https://doi.org/10.3390/ijms21155406.
Cavo M, Terpos E, Nanni C, Moreau P, Lentzsch S, Zweegman S, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the international myeloma working group. Lancet Oncol. 2017;18(4):e206–e17. https://doi.org/10.1016/s1470-2045(17)30189-4.
Article
PubMed
Google Scholar
Logan AC, Gao H, Wang C, Sahaf B, Jones CD, Marshall EL, et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc Natl Acad Sci U S A. 2011;108(52):21194–9. https://doi.org/10.1073/pnas.1118357109.
Article
PubMed
PubMed Central
Google Scholar
Munshi NC, Avet-Loiseau H, Anderson KC, Neri P, Paiva B, Samur M, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020;4(23):5988–99. https://doi.org/10.1182/bloodadvances.2020002827.
Article
PubMed
PubMed Central
Google Scholar
Diamond BT, Rustad E, Maclachlan K, Thoren K, Ho C, Roshal M, et al. Defining the undetectable: the current landscape of minimal residual disease assessment in multiple myeloma and goals for future clarity. Blood Rev. 2020:100732. https://doi.org/10.1016/j.blre.2020.100732.
Pawlyn C, Fowkes L, Otero S, Jones JR, Boyd KD, Davies FE, et al. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia. 2016;30(6):1446–8. https://doi.org/10.1038/leu.2015.338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milani P, Murray DL, Barnidge DR, Kohlhagen MC, Mills JR, Merlini G, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am J Hematol. 2017;92(8):772–9. https://doi.org/10.1002/ajh.24772.
Article
CAS
PubMed
Google Scholar
Barnidge DR, Dasari S, Botz CM, Murray DH, Snyder MR, Katzmann JA, et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J Proteome Res. 2014;13(3):1419–27. https://doi.org/10.1021/pr400985k.
Article
CAS
PubMed
Google Scholar
Guo G, Raje NS, Seifer C, Kloeber J, Isenhart R, Ha G, et al. Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia. 2018;32(8):1838–41. https://doi.org/10.1038/s41375-018-0115-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu D, Kim SJ, Hong Y, Jo A, Kim N, Kim HJ, et al. Alterations in the transcriptional programs of myeloma cells and the microenvironment during extramedullary progression affect proliferation and immune evasion. Clin Cancer Res. 2020;26(4):935–44. https://doi.org/10.1158/1078-0432.Ccr-19-0694.
Article
CAS
PubMed
Google Scholar
Lahuerta JJ, Paiva B, Vidriales MB, Cordón L, Cedena MT, Puig N, et al. Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM clinical trials. J Clin Oncol. 2017;35(25):2900–10. https://doi.org/10.1200/jco.2016.69.2517.
Article
CAS
PubMed
Google Scholar
Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council myeloma IX study. J Clin Oncol. 2013;31(20):2540–7. https://doi.org/10.1200/jco.2012.46.2119.
Article
PubMed
Google Scholar
Munshi NC, Avet-Loiseau H, Rawstron AC, Owen RG, Child JA, Thakurta A, et al. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol. 2017;3(1):28–35. https://doi.org/10.1001/jamaoncol.2016.3160.
Article
PubMed
PubMed Central
Google Scholar
Paiva B, Gutiérrez NC, Rosiñol L, Vídriales MB, Montalbán M, Martínez-López J, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood. 2012;119(3):687–91. https://doi.org/10.1182/blood-2011-07-370460.
Article
CAS
PubMed
Google Scholar
de Tute RM, Rawstron AC, Gregory WM, Child JA, Davies FE, Bell SE, et al. Minimal residual disease following autologous stem cell transplant in myeloma: impact on outcome is independent of induction regimen. Haematologica. 2016;101(2):e69–71. https://doi.org/10.3324/haematol.2015.128215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attal M, Lauwers-Cances V, Hulin C, Leleu X, Caillot D, Escoffre M, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376(14):1311–20. https://doi.org/10.1056/NEJMoa1611750.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakraborty R, Muchtar E, Kumar SK, Jevremovic D, Buadi FK, Dingli D, et al. Impact of post-transplant response and minimal residual disease on survival in myeloma with high-risk cytogenetics. Biol Blood Marrow Transplant. 2017;23(4):598–605. https://doi.org/10.1016/j.bbmt.2017.01.076.
Article
PubMed
Google Scholar
Paiva B, Chandia M, Puig N, Vidriales MB, Perez JJ, Lopez-Corral L, et al. The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapsed multiple myeloma. Haematologica. 2015;100(2):e53–5. https://doi.org/10.3324/haematol.2014.115162.
Article
PubMed
PubMed Central
Google Scholar
Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–31. https://doi.org/10.1056/NEJMoa1607751.
Article
CAS
PubMed
Google Scholar
Mateos MV, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378(6):518–28. https://doi.org/10.1056/NEJMoa1714678.
Article
CAS
PubMed
Google Scholar
Deng SH, Xu Y, Sui WW, Wang HJ, Li ZJ, Wang TY, et al. Role of minimal residual disease detection by multiparameter flow cytometry in newly diagnosed multiple myeloma: an analysis of 106 patients. Zhonghua Xue Ye Xue Za Zhi. 2018;39(5):376–81. https://doi.org/10.3760/cma.j.issn.0253-2727.2018.05.006.
Article
CAS
PubMed
Google Scholar
Gu J, Liu J, Chen M, Huang B, Li J. Longitudinal flow cytometry identified “minimal residual disease” (MRD) evolution patterns for predicting the prognosis of patients with transplant-eligible multiple myeloma. Biol Blood Marrow Transplant. 2018;24(12):2568–74. https://doi.org/10.1016/j.bbmt.2018.07.040.
Article
PubMed
Google Scholar
Li H, Li F, Zhou X, Mei J, Song P, An Z, et al. Achieving minimal residual disease-negative by multiparameter flow cytometry may ameliorate a poor prognosis in MM patients with high-risk cytogenetics: a retrospective single-center analysis. Ann Hematol. 2019;98(5):1185–95. https://doi.org/10.1007/s00277-019-03609-x.
Article
CAS
PubMed
Google Scholar
Tschautscher MA, Jevremovic D, Rajkumar V, Dispenzieri A, Lacy MQ, Gertz MA, et al. Prognostic value of minimal residual disease and polyclonal plasma cells in myeloma patients achieving a complete response to therapy. Am J Hematol. 2019;94(7):751–6. https://doi.org/10.1002/ajh.25481.
Article
CAS
PubMed
Google Scholar
Alonso R, Cedena MT, Wong S, Shah N, Ríos-Tamayo R, Moraleda JM, et al. Prolonged lenalidomide maintenance therapy improves the depth of response in multiple myeloma. Blood Adv. 2020;4(10):2163–71. https://doi.org/10.1182/bloodadvances.2020001508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina A, Puig N, Flores-Montero J, Jimenez C, Sarasquete ME, Garcia-Alvarez M, et al. Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma. Blood Cancer J. 2020;10(10):108. https://doi.org/10.1038/s41408-020-00377-0.
Article
PubMed
PubMed Central
Google Scholar
Paiva B, Puig N, Cedena MT, Rosiñol L, Cordón L, Vidriales MB, et al. Measurable residual disease by next-generation flow cytometry in multiple myeloma. J Clin Oncol. 2020;38(8):784–92. https://doi.org/10.1200/jco.19.01231.
Article
CAS
PubMed
Google Scholar
Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Bladé J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20. https://doi.org/10.1200/jco.2005.04.242.
Article
PubMed
Google Scholar
Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised international staging system for multiple myeloma: a report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–9. https://doi.org/10.1200/jco.2015.61.2267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paiva B, Corchete LA, Vidriales MB, Puig N, Maiso P, Rodriguez I, et al. Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood. 2016;127(15):1896–906. https://doi.org/10.1182/blood-2015-08-665679.
Article
CAS
PubMed
Google Scholar
Diamond BT, Rustad E, Maclachlan K, Thoren K, Ho C, Roshal M, et al. Defining the undetectable: the current landscape of minimal residual disease assessment in multiple myeloma and goals for future clarity. Blood Rev. 2021;46:100732. https://doi.org/10.1016/j.blre.2020.100732.
Article
CAS
PubMed
Google Scholar
Perrot A, Lauwers-Cances V, Corre J, Robillard N, Hulin C, Chretien ML, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood. 2018;132(23):2456–64. https://doi.org/10.1182/blood-2018-06-858613.
Article
CAS
PubMed
PubMed Central
Google Scholar
FDA US. Hematologic malignancies: regulatory considerations for use of minimal residual disease in development of drug and biological products for treatment - guidance for industry. 2020. Available from: https://www.fda.gov/media/134605/downloa.
Google Scholar
An G, Yan Y, Xu Y, Mao X, Liu J, Fan H, et al. Monitoring the cytogenetic architecture of minimal residual plasma cells indicates therapy-induced clonal selection in multiple myeloma. Leukemia. 2020;34(2):578–88. https://doi.org/10.1038/s41375-019-0590-x.
Article
CAS
PubMed
Google Scholar
Goicoechea I, Puig N, Cedena MT, Burgos L, Cordón L, Vidriales MB, et al. Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood. 2021;137(1):49–60. https://doi.org/10.1182/blood.2020006731.
Article
CAS
PubMed
Google Scholar
Paíno T, Paiva B, Sayagués JM, Mota I, Carvalheiro T, Corchete LA, et al. Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia. 2015;29(5):1186–94. https://doi.org/10.1038/leu.2014.321.
Article
PubMed
Google Scholar
Consuegra-Fernández M, Lin F, Fox DA, Lozano F. Clinical and experimental evidence for targeting CD6 in immune-based disorders. Autoimmun Rev. 2018;17(5):493–503. https://doi.org/10.1016/j.autrev.2017.12.004.
Article
CAS
PubMed
Google Scholar
Schiano C, Soricelli A, De Nigris F, Napoli C. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert Rev Clin Immunol. 2019;15(3):289–301. https://doi.org/10.1080/1744666x.2019.1561283.
Article
CAS
PubMed
Google Scholar