Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–54. doi:10.1038/nrc2682.
Article
CAS
PubMed
Google Scholar
Larsen NB, Hickson ID. RecQ Helicases: Conserved Guardians of Genomic Integrity. Adv Exp Med Biol. 2013;767:161–84. doi:10.1007/978-1-4614-5037-5_8.
Article
CAS
PubMed
Google Scholar
Weinert BT, Rio DC. DNA strand displacement, strand annealing and strand swapping by the Drosophila Bloom's syndrome helicase. Nucleic Acids Res. 2007;35(4):1367–76. doi:10.1093/nar/gkl831.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sung P, Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol. 2006;7(10):739–50. 10. 1038/nrm2008.
Article
CAS
PubMed
Google Scholar
Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol. 2015;210(2):191–208. doi:10.1083/jcb.201410061.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kamath-Loeb A, Loeb LA, Fry M. The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures. PLoS One. 2012;7(1):e30189. doi:10.1371/journal.pone.0030189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Damerla RR, Knickelbein KE, Strutt S, Liu FJ, Wang H, Opresko PL. Werner syndrome protein suppresses the formation of large deletions during the replication of human telomeric sequences. Cell Cycle. 2012;11(16):3036–44. doi:10.4161/cc.21399.
Article
PubMed Central
CAS
PubMed
Google Scholar
Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, et al. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem. 2005;280(37):32069–80. doi:10.1074/jbc.M505211200.
Article
CAS
PubMed
Google Scholar
Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J, et al. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell. 2003;2(4):191–9.
Article
PubMed
Google Scholar
Kobayashi J, Okui M, Asaithamby A, Burma S, Chen BP, Tanimoto K, et al. WRN participates in translesion synthesis pathway through interaction with NBS1. Mech Ageing Dev. 2010;131(6):436–44. doi:10.1016/j.mad.2010.06.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Karmakar P, Snowden CM, Ramsden DA, Bohr VA. Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res. 2002;30(16):3583–91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol. 2013;20(3):347–54. doi:10.1038/nsmb.2501.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu X, Parvathaneni S, Hara T, Lal A, Sharma S. Replication stress induces specific enrichment of RECQ1 at common fragile sites FRA3B and FRA16D. Mol Cancer. 2013;12(1):29. doi:10.1186/1476-4598-12-29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Popuri V, Croteau DL, Brosh Jr RM, Bohr VA. RECQ1 is required for cellular resistance to replication stress and catalyzes strand exchange on stalled replication fork structures. Cell Cycle. 2012;11(22):4252–65. doi:10.4161/cc.22581.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li XL, Lu X, Parvathaneni S, Bilke S, Zhang H, Thangavel S, et al. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion. Cell Cycle. 2014;13(15):2431–45.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sekelsky JJ, Brodsky MH, Rubin GM, Hawley RS. Drosophila and human RecQ5 exist in different isoforms generated by alternative splicing. Nucleic Acids Res. 1999;27(18):3762–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol. 2005;25(9):3431–42. doi:10.1128/MCB.25.9.3431-3442.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hansen GM, Skapura D, Justice MJ. Genetic profile of insertion mutations in mouse leukemias and lymphomas. Genome Res. 2000;10(2):237–43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, Williams H, et al. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell. 2014;157(5):1037–49. doi:10.1016/j.cell.2014.03.048.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rezazadeh S. RecQ helicases; at the crossroad of genome replication, repair, and recombination. Mol Biol Rep. 2011. doi:10.1007/s11033-011-1243-y
Economopoulou P, Pappa V, Papageorgiou S, Dervenoulas J, Economopoulos T. Abnormalities of DNA repair mechanisms in common hematological malignancies. Leuk Lymphoma. 2011;52(4):567–82. doi:10.3109/10428194.2010.551155.
Article
CAS
PubMed
Google Scholar
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human B cells. Nat Genet. 2005;37(4):382–90. doi:10.1038/ng1532.
Article
CAS
PubMed
Google Scholar
Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823–34. doi:10.1172/JCI26833.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brune V, Tiacci E, Pfeil I, Doring C, Eckerle S, van Noesel CJ, et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med. 2008;205(10):2251–68. doi:10.1084/jem.20080809.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stegmaier K, Ross KN, Colavito SA, O'Malley S, Stockwell BR, Golub TR. Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nat Genet. 2004;36(3):257–63. doi:10.1038/ng1305.
Article
CAS
PubMed
Google Scholar
Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular classification of multiple myeloma. Blood. 2006;108(6):2020–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi:10.1126/science.1260419.
Article
PubMed
Google Scholar
Ponten F, Jirstrom K, Uhlen M. The Human Protein Atlas--a tool for pathology. J Pathol. 2008;216(4):387–93. doi:10.1002/path.2440.
Article
CAS
PubMed
Google Scholar
Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4(12):1920–32. doi:10.1074/mcp.M500279-MCP200.
Article
CAS
PubMed
Google Scholar
Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica. 2009;94(1):131–4. doi:10.3324/haematol.13299.
Article
PubMed Central
PubMed
Google Scholar
Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011;29(10):1373–81. doi:10.1200/JCO.2010.32.7742.
Article
PubMed Central
PubMed
Google Scholar
Chen E, Ahn JS, Sykes DB, Breyfogle LJ, Godfrey AL, Nangalia J, et al. RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability. Cell reports. 2015;13(11):2345–52. doi:10.1016/j.celrep.2015.11.037.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun J, Wang Y, Xia Y, Xu Y, Ouyang T, Li J, et al. Mutations in RECQL Gene Are Associated with Predisposition to Breast Cancer. PLoS Genet. 2015;11(5):e1005228. doi:10.1371/journal.pgen.1005228.
Article
PubMed Central
PubMed
Google Scholar
Cybulski C, Carrot-Zhang J, Kluzniak W, Rivera B, Kashyap A, Wokolorczyk D, et al. Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet. 2015;47(6):643–6. doi:10.1038/ng.3284.
Article
CAS
PubMed
Google Scholar
Leich E, Salaverria I, Bea S, Zettl A, Wright G, Moreno V, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34. doi:10.1182/blood-2009-01-198580.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23. doi:10.1056/NEJMoa0802885.
Article
CAS
PubMed
Google Scholar
Suhasini AN, Brosh Jr RM. Fanconi anemia and Bloom's syndrome crosstalk through FANCJ-BLM helicase interaction. Trends Genet. 2012;28(1):7–13. doi:10.1016/j.tig.2011.09.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Poppe B, Van Limbergen H, Van Roy N, Vandecruys E, De Paepe A, Benoit Y, et al. Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet. 2001;128(1):39–42.
Article
CAS
PubMed
Google Scholar
German J, Sanz MM, Ciocci S, Ye TZ, Ellis NA. Syndrome-causing mutations of the BLM gene in persons in the Bloom's Syndrome Registry. Hum Mutat. 2007;28(8):743–53. doi:10.1002/humu.20501.
Article
CAS
PubMed
Google Scholar
Goto M, Miller RW, Ishikawa Y, Sugano H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev. 1996;5(4):239–46.
CAS
PubMed
Google Scholar
Esposito MT, So CW. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma. 2014;123(6):545–61. doi:10.1007/s00412-014-0482-9.
Article
CAS
PubMed
Google Scholar
Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP. A role for PML and the nuclear body in genomic stability. Oncogene. 1999;18(56):7941–7. doi:10.1038/sj.onc.1203367.
Article
CAS
PubMed
Google Scholar
Sanada S, Futami K, Terada A, Yonemoto K, Ogasawara S, Akiba J, et al. RECQL1 DNA repair helicase: a potential therapeutic target and a proliferative marker against ovarian cancer. PLoS One. 2013;8(8):e72820. doi:10.1371/journal.pone.0072820.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsushita Y, Yokoyama Y, Yoshida H, Osawa Y, Mizunuma M, Shigeto T, et al. The level of RECQL1 expression is a prognostic factor for epithelial ovarian cancer. J Ovarian Res. 2014;7:107. doi:10.1186/s13048-014-0107-1.
Article
PubMed Central
PubMed
Google Scholar
Gennery AR, Cant AJ, Jeggo PA. Immunodeficiency associated with DNA repair defects. Clin Exp Immunol. 2000;121(1):1–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Caddle LB, Hasham MG, Schott WH, Shirley BJ, Mills KD. Homologous recombination is necessary for normal lymphocyte development. Mol Cell Biol. 2008;28(7):2295–303. doi:10.1128/MCB.02139-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hasham MG, Donghia NM, Coffey E, Maynard J, Snow KJ, Ames J, et al. Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol. 2010;11(9):820–6. doi:10.1038/ni.1909.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sidorova JM, Li N, Folch A, Monnat Jr RJ. The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle. 2008;7(6):796–807.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yin L. Chondroitin synthase 1 is a key molecule in myeloma cell-osteoclast interactions. J Biol Chem. 2005;280(16):15666–72.
Article
CAS
PubMed
Google Scholar
Gu X, Booth CJ, Liu Z, Strout MP. AID-associated DNA repair pathways regulate malignant transformation in a murine model of BCL6-driven diffuse large B cell lymphoma. Blood. 2015. doi:10.1182/blood-2015-02-628164
Hathcock KS, Padilla-Nash HM, Camps J, Shin DM, Triner D, Shaffer AL, 3rd et al. ATM deficiency in absence of T cells promotes development of NF-kB-dependent murine B cell lymphomas that resemble human ABC DLBCL. Blood. 2015. doi:10.1182/blood-2015-06-654749
Bret C, Klein B, Cartron G, Schved JF, Constantinou A, Pasero P et al. DNA repair in diffuse large B-cell lymphoma: a molecular portrait. Br J Haematol. 2014. doi:10.1111/bjh.13206
Bret C, Klein B, Moreaux J. Gene expression-based risk score in diffuse large B-cell lymphoma. Oncotarget. 2012;3(12):1700–10.
Article
PubMed Central
PubMed
Google Scholar
Kwok M, Davies N, Agathanggelou A, Smith E, Petermann E, Yates E, et al. Synthetic lethality in chronic lymphocytic leukaemia with DNA damage response defects by targeting the ATR pathway. Lancet. 2015;385 Suppl 1:S58. doi:10.1016/S0140-6736(15)60373-7.
Article
PubMed
Google Scholar
Bret C, Klein B, Moreaux J. Nucleotide excision DNA repair pathway as a therapeutic target in patients with high-risk diffuse large B cell lymphoma. Cell Cycle. 2013;12(12):1811–2. doi:10.4161/cc.25115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cottini F, Hideshima T, Suzuki R, Tai YT, Bianchini G, Richardson PG, et al. Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discov. 2015;5(9):972–87. doi:10.1158/2159-8290.CD-14-0943.
Article
CAS
PubMed
Google Scholar
Hose D, Reme T, Hielscher T, Moreaux J, Messner T, Seckinger A, et al. Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica. 2011;96(1):87–95. doi:10.3324/haematol.2010.030296.
Article
PubMed Central
PubMed
Google Scholar
Kassambara A, Gourzones-Dmitriev C, Sahota S, Reme T, Moreaux J, Goldschmidt H, et al. A DNA repair pathway score predicts survival in human multiple myeloma: the potential for therapeutic strategy. Oncotarget. 2014;5(9):2487–98.
Article
PubMed Central
PubMed
Google Scholar
Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15):e56–65. doi:10.1182/blood-2010-04-279596.
Article
CAS
PubMed
Google Scholar
Aggarwal M, Banerjee T, Sommers JA, Brosh Jr RM. Targeting an Achilles' heel of cancer with a WRN helicase inhibitor. Cell Cycle. 2013;12(20):3329–35. doi:10.4161/cc.26320.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nguyen GH, Dexheimer TS, Rosenthal AS, Chu WK, Singh DK, Mosedale G, et al. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol. 2013;20(1):55–62. doi:10.1016/j.chembiol.2012.10.016.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kassambara A, Reme T, Jourdan M, Fest T, Hose D, Tarte K, et al. GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLoS Comput Biol. 2015;11(1):e1004077. doi:10.1371/journal.pcbi.1004077.
Article
PubMed Central
PubMed
Google Scholar
Kassambara A, Klein B, Moreaux J. MMSET is overexpressed in cancers: link with tumor aggressiveness. Biochem Biophys Res Commun. 2009;379(4):840–5. doi:10.1016/j.bbrc.2008.12.093.
Article
CAS
PubMed
Google Scholar
Kassambara A, Hose D, Moreaux J, Walker BA, Protopopov A, Reme T, et al. Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma. Haematologica. 2012;97(4):622–30. doi:10.3324/haematol.2011.046821.
Article
PubMed Central
PubMed
Google Scholar
Moreaux J, Kassambara A, Hose D, Klein B. STEAP1 is overexpressed in cancers: A promising therapeutic target. Biochem Biophys Res Commun. 2012;429(3-4):148–55. doi:10.1016/j.bbrc.2012.10.123.
Article
CAS
PubMed
Google Scholar