Scheurer ME, Bondy ML, Gurney JG. Epidemiology of Childhood Cancer. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. 6th ed. Philadelphia: Lippincott Williams and Wilkens; 2011. p. 2–16.
Google Scholar
Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.
Article
PubMed
CAS
Google Scholar
Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6:e2014073.
Article
PubMed
PubMed Central
Google Scholar
Rodrigues KE, Camargo B. Diagnóstico precoce do câncer infantil: responsabilidade de todos. Rev Assoc Med Bras. 2003;49:29–34.
Article
PubMed
Google Scholar
Michalowski MB, Lorea CF, Rech A, Santiago P, Lorenzoni M, Taniguchi A, et al. Diagnóstico precoce em oncologia pediátrica: uma urgência médica. Bol Cient Pediatr. 2012;01:13–8.
Google Scholar
Parker CE, Borchers CH. Mass spectrometry based biomarker discovery, verification, and validation e Quality assurance and control of protein biomarker assays. Mol Oncol. 2014;8(4):840–58.
Article
PubMed
CAS
Google Scholar
Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, et al. STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–16.
Article
PubMed
CAS
PubMed Central
Google Scholar
Andersen JD, Boylan KL, Jemmerson R, Geller MA, Misemer B, Harrington KM, et al. Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients. J Ovarian Res. 2010;3:21.
Article
PubMed
PubMed Central
Google Scholar
Tung CL, Lin ST, Chou HC, Chen YW, Lin HC, Tung CL, et al. Proteomics-based identification of plasma biomarkers in oral squamous cell carcinoma. J Pharm Biomed Anal. 2013;75:7–17.
Article
PubMed
CAS
Google Scholar
Liu Y, Luo X, Hu H, Wang R, Sun Y, Zeng R, et al. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer. PLoS One. 2012;7:e51748.
Article
PubMed
CAS
PubMed Central
Google Scholar
Park S, Mathis KW, Lee IK. The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Reviews in Endocrine and Metabolic Disorders. 2014;15:45–53.
Article
PubMed
CAS
Google Scholar
Antonelou MH, Kriebardis AG, Stamoulis KE, Trougakos IP, Papassideri IS. Apolipoprotein J/clusterin in human erythrocytes is involved in the molecular process of defected material disposal during vesiculation. PLoS One. 2011;6:e26033.
Article
PubMed
CAS
PubMed Central
Google Scholar
Trougakos IP, So A, Jansen B, Gleave ME, Gonos ES. Silencing expression of the clusterin/apolipoprotein j gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative stress. Cancer Res. 2004;64:1834–42.
Article
PubMed
CAS
Google Scholar
Parczyk K, Pilarsky C, Rachel U, Koch-Brand C. Gp80 (clusterin:TRPM-2) mRNA levels is enhanced in human renal clear cell carcinomas. J Cancer Res Clin Oncol. 1994;120:186–8.
Article
PubMed
CAS
Google Scholar
Steinberg J, Oyasu R, Lang S, Sintich S, Rademaker A, Lee C, et al. Intracellular levels of SGP-2 (clusterin) correlate with tumor grade in prostate cancer. Clin Cancer Res. 1997;3:1707–11.
PubMed
CAS
Google Scholar
Wellmann A, Thieblemont C, Pittaluga S, Sakai A, Jaffe ES, Siebert P, et al. Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood. 2000;96:398–404.
PubMed
CAS
Google Scholar
Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ. Coordinately up-regulated genes in ovarian cancer. Cancer Res. 2001;61:3869–76.
PubMed
CAS
Google Scholar
Guo W, Ma X, Xue C, Luo J, Zhu X, Xiang J, et al. Serum clusterin as a tumor marker and prognostic factor for patients with esophageal cancer. Dis Markers. 2014;2014:1–7. Article ID 168960.
Google Scholar
Bertuzzi M, Marelli C, Bagnati R, Colombi A, Fanelli R, Saieva C, et al. Plasma clusterin as a candidate pre-diagnosis marker of colorectal cancer risk in the Florence cohort of the European Prospective Investigation into Cancer and Nutrition: a pilot study. BMC Cancer. 2015;15:56.
Article
PubMed
CAS
PubMed Central
Google Scholar
Redondo M, Villar E, Torres-Muñoz J, Tellez T, Morell M, Petito C. Overexpression of clusterin in human breast carcinoma. Am J Pathol. 2000;157:393–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kwon H-C, Oh SY, Lee S, Kim S-H, Han JY, Koh RY, et al. Plasma levels of prothrombin fragment F112, D-dimer and prothrombin time correlate with clinical stage and lymph node metastasis in operable gastric cancer patients. Jpn J Clin Oncol. 2008;38:2–7.
Article
PubMed
Google Scholar
Bick RL. Coagulation abnormalities in malignancy: a review. Semin Thromb Hemost. 1992;18:353–72.
Article
PubMed
CAS
Google Scholar
Luzzatto G, Schafer A. The prethrombotic state in cancer. Semin Oncol. 1990;17:147–59.
PubMed
CAS
Google Scholar
O’Connor N, Gozzard DI, Love EM, Lu Yin JA, Turck WPG. Haemostatic abnormalities and malignant disease. Lancet. 1986;8:303–4.
Google Scholar
Hillen HF. Thrombosis in cancer patients. Ann Oncol. 2000;11:273–6.
PubMed
Google Scholar
Wojtukiewicz MZ, Tang DG, Ciarelli JJ, Nelson KK, Walz DA, Diglio CA, et al. Thrombin increases the metastatic potential of tumor cells. Int J Cancer. 1993;54:793–806.
Article
PubMed
CAS
Google Scholar
Wojtukiewicz MZ, Sierko E, Zacharski LR, Zimnoch L, Kudryk B, Kisiel W. Tissue factor-dependent coagulation activation and impaired fibrinolysis in situ in gastric cancer. Semin Thromb Hemost. 2003;29:291–300.
Article
PubMed
CAS
Google Scholar
Gunji Y, Lewis J, Gorelik E. Fibrin formation inhibits the in vitro cytotoxic activity of human natural and lymphokine-activated killer cells. Blood Coagul Fibrinolysis. 1990;1:663–72.
PubMed
CAS
Google Scholar
Bruhn HD, Zurborn KH. Influences of clotting factors (thrombin, factor XIII) and of fibronectin on the growth of tumor cells and leukemic cells in vitro. Blut. 1983;46:85–8.
Article
PubMed
CAS
Google Scholar
Wojtukiewicz MZ, Sierko E, Rak J. Contribution of hemostatic system to angiogenesis in cancer. Semin Thromb Hemost. 2004;30:5–20.
Article
PubMed
CAS
Google Scholar
Di Micco P, Romano M, Niglio A, Nozzolillo P, Federico A, Petronella P, et al. Alteration of haemostasis in non-metastatic gastric cancer. Dig Liver Dis. 2001;33:546–50.
Article
PubMed
Google Scholar
Rahr HB, Sorensen JV, Larsen JF, Jensen FS, Bredahl C. Markers of coagulation and fibrinolysis in portal blood from patients with and without gastric malignancy. Scand J Gastroenterol. 1994;29:516–21.
Article
PubMed
CAS
Google Scholar
Abbasciano V, Tassinari D, Sartori S, Trevisani L, Arcudi D, Bianchi MP, et al. Usefulness of coagulation markers in staging of gastric cancer. Cancer Detect Prev. 1995;19:331–6.
PubMed
CAS
Google Scholar
Ikeda M, Furukawa H, Imamura H, Shimizu J, Ishida H, Masutani S, et al. Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann Surg Oncol. 2002;9:287–91.
Article
PubMed
Google Scholar
Lee JH, Ryu KW, Kim S, Bae JM. Preoperative plasma fibrinogen levels in gastric cancer patients correlate with extent of tumor. Hepatogastroenterology. 2004;51:1860–3.
PubMed
Google Scholar
Yamashita H, Kitayama J, Nagawa H. Hyperfibrinogenemia is a useful predictor for lymphatic metastasis in human gastric cancer. Jpn J Clin Oncol. 2005;35:595–600.
Article
PubMed
Google Scholar
Yamashita H, Kitayama J, Kanno N, Yatomi Y, Nagawa H. Hyperfibrinogenemia is associated with lymphatic as well as hematogenous metastasis and worse clinical outcome in T2 gastric cancer. BMC Cancer. 2006;6:147.
Article
PubMed
PubMed Central
Google Scholar
Yamashita H, Kitayama J, Ishikawa M, Nagawa H. Tissue factor expression is a clinical indicator of lymphatic metastasis and poor prognosis in gastric cancer with intestinal phenotype. J Surg Oncol. 2007;95:324–31.
Article
PubMed
CAS
Google Scholar
Braoudaki M, Lambrou GI, Vougas K, Karamolegou K, Tsangaris GT, Tzortzatou-Stathopoulou F. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner. J Hematol Oncol. 2013;6:52.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gettins PG. Serpin structure, mechanism, and function. Chem Rev. 2002;102:4751–804.
Article
PubMed
CAS
Google Scholar
Carrell RW. Alpha 1-Antitrypsin: molecular pathology, leukocytes, and tissue damage. J Clin Invest. 1986;78:1427–31.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, et al. Structure and variation of human alpha 1-antitrypsin. Nature. 1982;298:329–34.
Article
PubMed
CAS
Google Scholar
Higashiyama M, Doi O, Kodama K, Yokouchi H, Tateishi R. An evaluation of the prognostic significance of alpha-1-antitrypsin expression in adenocarcinomas of the lung: an immunohistochemical analysis. Br J Cancer. 1992;65:300–2.
Article
PubMed
CAS
PubMed Central
Google Scholar
Poblete MT, Nualart F, del Pozo M, Perez JA, Figueroa CD. Alpha 1-antitrypsin expression in human thyroid papillary carcinoma. Am J Surg Pathol. 1996;20:956–63.
Article
PubMed
CAS
Google Scholar
Yamaguchi N, Yamamura Y, Koyama K, Ohtsuji E, Imanishi J, Ashihara T. Characterization of new human pancreatic cancer cell lines which propagate in a protein-free chemically defined medium. Cancer Res. 1990;50:7008–14.
PubMed
CAS
Google Scholar
El-Akawi ZJ, Al-Hindawi FK, Bashir NA. Alpha-1 antitrypsin (alpha1-AT) plasma levels in lung, prostate and breast cancer patients. Neuro Endocrinol Lett. 2008;29:482–4.
PubMed
CAS
Google Scholar
El-Akawi ZJ, Abu-Awad AM, Sharara AM, Khader Y. The importance of alpha-1 antitrypsin (alpha1-AT) and neopterin serum levels in the evaluation of non-small cell lung and prostate cancer patients. Neuro Endocrinol Lett. 2010;31:113–6.
PubMed
CAS
Google Scholar
Trachte AL, Suthers SE, Lerner MR, Hanas JS, Jupe ER, Sienko AE, et al. Increased expression of alpha-1-antitrypsin, glutathione S-transferase pi and vascular endothelial growth factor in human pancreatic adenocarcinoma. Am J Surg. 2002;184:642–8.
Article
PubMed
CAS
Google Scholar
Solakidi S, Dessypris A, Stathopoulos GP, Androulakis G, Sekeris CE. Tumour-associated trypsin inhibitor, carcinoembryonic antigen and acute-phase reactant proteins CRP and alpha1-antitrypsin in patients with gastrointestinal malignancies. Clin Biochem. 2004;37:56–60.
Article
PubMed
CAS
Google Scholar
Hong WS, Hong SI. Clinical usefulness of alpha-1-antitrypsin in the diagnosis of hepatocellular carcinoma. J Korean Med Sci. 1991;6:206–13.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bernacka K, Kuryliszyn-Moskal A, Sierakowski S. The levels of alpha 1-antitrypsin and alpha 1-antichymotrypsin in the sera of patients with gastrointestinal cancers during diagnosis. Cancer. 1988;62:1188–93.
Article
PubMed
CAS
Google Scholar
Tountas Y, Sparos L, Theodoropoulos C, Trichopoulos D. Alpha 1-antitrypsin and cancer of the pancreas. Digestion. 1985;31:37–40.
Article
PubMed
CAS
Google Scholar
Li Y, Krowka MJ, Qi Y, Katzmann JA, Song Y, Mandrekar SJ, et al. Alpha1-antitrypsin deficiency carriers, serum alpha 1-antitrypsin concentration, and non-small cell lung cancer survival. J Thorac Oncol. 2011;6:291–5.
Article
PubMed
PubMed Central
Google Scholar
Millan J, Senra A, Lorenzo A, Romero J, Rodriguez P, Gallurt P. Biological changes in serum antiproteases as related to tumor progression. Tumour Biol. 1988;9:15–20.
Article
PubMed
CAS
Google Scholar
Varela AS, Lopez Saez JJ. Utility of plasmatic levels of alpha-1-antiprotease (A1AP) as a cancer marker. Cancer Lett. 1995;89:15–21.
Article
PubMed
CAS
Google Scholar
Thompson DK, Haddow JE, Smith DE, Ritchie RF. Elevated serum acute phase protein levels as predictors of disseminated breast cancer. Cancer. 1983;51:2100–4.
Article
PubMed
CAS
Google Scholar
El-Akawi ZJ, Abu-Awad AM, Khouri NA. Alpha-1 antitrypsin blood levels as indicator for the efficacy of cancer treatment. World J Oncol. 2013;4:83–6.
CAS
Google Scholar
de Rodriguez Cordoba S, Diaz-Guillen MA, Heine-Suner D. An integrated map of the human regulator of complement activation (RCA) gene cluster on 1q32. Mol Immunol. 1999;36:803–8.
Article
Google Scholar
Niehans GA, Cherwitz DL, Staley NA, Knapp DJ, Dalmasso AP. Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin). Am J Pathol. 1996;149:129–42.
PubMed
CAS
PubMed Central
Google Scholar
Nishioka K, Kawamura K, Hirayama T, Kawashima T, Shimada K. The complement system in tumor immunity: significance of elevated levels of complement in tumor bearing hosts. Ann NY Acad Sci. 1976;276:303–15.
Article
PubMed
CAS
Google Scholar
Varsano S, Frolkis I, Rashkovsky L, Ophir D, Fishelson Z. Protection of human nasal respiratoryepitheliumfromcomplement-mediatedlysisbycell-membraneregulators of complement activation. Am J Respir Cell Mol Biol. 1996;15:731–7.
Article
PubMed
CAS
Google Scholar
Varsano S, Rashkovsky L, Shapiro H, Ophir D, Mark-Bentankur T. Human lung cancer cell lines express cell membrane complement inhibitory proteins and are extremely resistant to complement mediated lysis; a comparison with normal human respiratory epithelium in vitro, and an insight into mechanism(s) of resistance. Clin Exp Immunol. 1998;113:173–82.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pio R. Control of complement activation by cancer cells and its implications in antibody-mediated cancer immunotherapy. Inmunologia. 2006;25:173–87.
Google Scholar
Ginsberg JS, Demers C, Brill-Edwards P, Johnston M, Bona R, Burrows RF, et al. Increased thrombin generation and activity in patients with systemic lupus erythematosus and anticardiolipin antibodies: evidence for a prothrombotic state. Blood. 1993;81:2958–63.
PubMed
CAS
Google Scholar
Prisco D. Markers of increased thrombin generation. Res Clin Lab. 1990;20:217–25.
CAS
Google Scholar