Nesse RM, Stein DJ. Towards a genuinely medical model for psychiatric nosology. BMC Med. 2012;10:5.
Article
PubMed Central
PubMed
Google Scholar
Andresen NC. Positive vs. negative schizophrenia: a critical evaluation. Schizophr Bull. 1985;11(3):380–9.
Article
Google Scholar
Sober G, Ben-Shahab D, Cardoon M, Alkaid P, Fontan AN, Garlic M, et al. Schizophrenia: from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry. 2009;10:127–55.
Article
Google Scholar
Domenici E, Muglia P. The search for peripheral markers in psychiatry by genomic and proteomic approaches. Expr Open Med Deign. 2007;1:235–51.
CAS
Google Scholar
Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leek FM, et al. Identification of a biological signature for schizophrenia in serum. Mol Psychiatry. 2012;17:494–502.
Article
CAS
PubMed
Google Scholar
Bracken P, Thomas P, Timini S, Asen E, Behr G, Beuster C, et al. Psychiatry beyond the current paradigm. BJ Psych. 2012;201:430–4.
Google Scholar
Stayer C, Sporn A, Gogtay N, Tossell J, Lenane M, Gochman P, et al. Looking for childhood schizophrenia: case series of false positives. J Am Acad Child Adolesc Psychiatry. 2004;43(8):1026–9.
Article
PubMed
Google Scholar
McGorry PD. Paradigm failure in functional psychoses: review and implications. Aust NZ J Psychiatry. 1991;25(1):43–55.
Article
CAS
Google Scholar
Singh I, Rose N. Biomarkers in psychiatry. Nature. 2009;460:202–7.
Article
CAS
PubMed
Google Scholar
Cheniaux E, Landeira-Fernandez J, Versiani M. The diagnoses of schizophrenia, schizoaffective disorder, bipolar disorder and unipolar depression: inter-rater reliability and congruence between DSM-IV and ICD-10. Psychopathology. 2009;42:293–8.
Article
PubMed
Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. (4th Ed. Rev) (DSM IV-R). Washington DC: American Psychiatric Association; 1994.
Google Scholar
Wurtman RJ, Hefti F, Melamed E. Precursor control of neurotransmitter synthesis. Pharmacol Rev. 1980;32(4):315–35.
CAS
PubMed
Google Scholar
Krebs MO, Bellon A, Mainguy G, Jay TM, Frieling H. One-carbon metabolism and schizophrenia: current challenges and future directions. Trends Mol Med. 2009;15(12):562–70.
Article
CAS
PubMed
Google Scholar
Shea TB, Rogers E. Lifetime requirement of the methionine cycle for neuronal development and maintenance. Curr Opin Psychiatry. 2014;27:138–42.
Article
PubMed
Google Scholar
Van Kammen DP, Kelley M. Dopamine and norepinephrine activity in schizophrenia: an integrative perspective. Schizophr Res. 1991;4:173–91.
Article
PubMed
Google Scholar
Irvine DG. Hydroxy-haemopyrrolenone, not kryptopyrrole, in the urine of schizophrenics and porphyrics. Clin Chem. 1978;24(11):2069–70.
CAS
PubMed
Google Scholar
McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P, Burne TH, et al. Neonatal vitamin D status and risk of schizophrenia: a population-based case–control study. Arch Gen Psychiatry. 2010;67(9):889–94. doi:10.1001/archgenpsychiatry.2010.110.
Article
CAS
PubMed
Google Scholar
Halsted CH. B-Vitamin dependent methionine metabolism and alcoholic liver disease. Clin Chem Lab Med (CCLM). 2013;51(3):457–565.
Article
CAS
Google Scholar
Banerjee RV, Matthews RG. Cobalamin-dependent methionine synthase. FASEB J. 1990;4(5):1450–9.
CAS
PubMed
Google Scholar
Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MWP, Reynolds EH. Homocysteine, folate, methylation and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry. 2000;69:228–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Waggoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative disease. J Neurochem. 1999;72(5):2092–8.
Google Scholar
Peariso K, Goulding CW, Huang S, Matthews RG, Penner-Hahn JE. Characterization of the zinc binding site in methionine synthase enzymes of escherichia coli: the role of zinc in the methylation of homocysteine. J Am Chem Soc. 1998;120(33):8410–6.
Article
CAS
Google Scholar
Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46.
Article
CAS
PubMed
Google Scholar
Wolf TL, Kotun J, Meador-Woodruff JH. Plasma copper, iron, ceruloplasmin and ferroxidase activity in schizophrenia. Schizophr Res. 2006;86(1–3):167–71.
Article
PubMed
Google Scholar
Brown DD, Tomchick R, Axelrod J. The distribution and properties of a histamine-methylating enzyme. J Biol Chem. 1959;234:2948–50.
CAS
PubMed
Google Scholar
Hustad S, Midttun O, Schneede J, Vollset SE, Grotmol T, Ueland PM. The methylenetetrahydrofolate reductase 677CT Polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. Am J Hum Gen. 2007;80(5):546–855.
Article
CAS
Google Scholar
Bradley AP. The use of the area under the ROC Curve in the evaluation of machine-learning algorithms. Pattern Recogn. 1997;30:1145–58.
Article
Google Scholar
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.
Article
CAS
PubMed
Google Scholar
Addinsoft: XLSTAT. 2013. Available at: http://www.xlstat.com/en/about-us/news.html.
Mathwave. 2013. http://www.brothersoft.com/easyfit-for-excel-219559.html.
Grund B, Sabin C. Analysis of biomarker data: logs, odds ratios and ROC curves. Curr Opin HIV AIDS. 2010;5(6):473–9.
Article
PubMed Central
PubMed
Google Scholar
Lijmer JG, Mol BW, Heisterkamp S, Bonsei GJ, Prins MH, van der Meulen JHP, et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA. 1999;282(11):1061–6. e141.
Article
CAS
PubMed
Google Scholar
Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–76.
Article
CAS
PubMed
Google Scholar
Cleveland WS, Devlin SJ. Locally- Weighted Regression: An Approach to Regression Analysis by Local Fitting. J Am Stat Assoc. 1988;83(403):596–601.
Article
Google Scholar
Viertiö S, Laitinen A, Perälä J, Saami SI, Koskinen S, Lönnqvist J, et al. Visual impairment in persons with psychotic disorder. Soc Psychiatry Psychiatr Epidemiol. 2007;42(11):902–8.
Article
PubMed
Google Scholar
Carter C, Robertson L, Nordahl T, Chaderjian M, Kraft L, O’Shora-Celaya L. Spatial working memory deficits and their relationship to negative symptoms in unmedicated schizophrenia patients. Biol Psychiatry. 1996;40(9):930–2.
Article
CAS
PubMed
Google Scholar
Bustillo JR, Thacker G, Buchanan RW, Moran M, Kirkpatrick B, Carpenter WT. Visual information processing impairments in deficit and non-deficit schizophrenia. Am J Psych. 1997;154:647–54.
Article
CAS
Google Scholar
Lobel DS, Swanda RM, Losonczy MF. Lateralized visual-field inattention in schizophrenia. Percept Mot Skills. 1994;79(1):699–702.
Article
CAS
PubMed
Google Scholar
Mackay-Sim A, Féron F, Eyles D, Burne T, McGrath J. Schizophrenia, vitamin D and brain development. Int Rev Neurobiol. 2004;59:351–80.
Article
CAS
PubMed
Google Scholar
Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab. 2002;13(3):100–5.
Article
CAS
PubMed
Google Scholar
Kukreja SC, Hargis GK, Bowser N, Henderson WJ, Fisherman EW, Williams GA. Role of adrenergic stimuli in parathyroid hormone secretion in man. J Clin Endocrinol Metabol. 1975;40(3):478–81.
Article
CAS
Google Scholar
Baksi SN, Hughes MJ. Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Res. 1982;242(2):387–90.
Article
CAS
PubMed
Google Scholar
Constantine-Paton M, Cline HT, Debski E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci. 1990;13:129–54.
Article
CAS
PubMed
Google Scholar
Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12(3):426–45.
Article
CAS
PubMed
Google Scholar
Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53(4):865–71.
Article
PubMed
Google Scholar
Silverstein SM, Keane BP. Vision science and schizophrenia research: toward a re-view of the disorder: Editors introduction to special session. Schizophr Bull. 2011;37(4):681–9.
Article
PubMed Central
PubMed
Google Scholar
Conklin HM, Curtis CE, Katsanis J, Iacono WG. Verbal working memory impairment in schizophrenia patients and their first-degree relatives: evidence from the digit span task. Am J Psych. 2000;157(2):275–7.
Article
CAS
Google Scholar
Keith RW. SCAN-3 Test for Adolescents and Adults, Pearson Clinical and Talent Assessment. 2009.
Google Scholar
Løberg EM, Hugdahl K, Green MF. Hemispheric asymmetry in schizophrenia: a “dual deficits” model. Biol Psychiatry. 1999;45(1):76–81.
Article
PubMed
Google Scholar
Korboot PJ, Damiani N. Auditory processing speed and signal detection in schizophrenia. J Abnorm Psychol. 1976;85(3):287–95.
Article
CAS
PubMed
Google Scholar
Gallinat J, Mulert C, Bajbouj M, Herrmann WM, Schunter J, Senkowski D, et al. Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. Neuroimage. 2002;17(1):110–27.
Article
PubMed
Google Scholar
Braff DL, Saccuzzo DP. Effect of antipsychotic medication on speed of information processing in schizophrenic patients. Am J Psych. 1982;139(9):1127–30.
Article
CAS
Google Scholar
Saedisomeolia A, Djalali M, Moghadam AM, Ramezankhani O, Najmi L. Folate and vitamin B12 status in schizophrenic patients. J R M S. 2011;16(S1):S437–41.
Google Scholar
Durga J, Verhoef P, Lucien JC, Anteunis LJC, Schouten E, Kok FJ. Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med. 2007;146(1):1–9.
Article
PubMed
Google Scholar
Wade LA, Katzman R. Synthetic amino acids and the nature of L dopa transport at the blood–brain barrier. J Neurochem. 1975;25:837–42. doi:10.1111/j.1471-4159.1975.tb04415.
Article
CAS
PubMed
Google Scholar
Allen GFG, Neergheen V, Oppenheim M, Fitzgerald JC, Footitt E, Hyland K, et al. Pyridoxal 5′-phosphate deficiency causes a loss of aromatic l-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic l-amino acid decarboxylase and vitamin B-6 deficiency states. J Neurochem. 2010;114(1):87–96.
CAS
PubMed
Google Scholar
Niu X, Tahera Y, Canlon B. Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav. 2007;92(1–2):34–9.
Article
CAS
PubMed
Google Scholar
Crow TJ, Baker HF, Cross AJ, Joseph MH, Lofthouse R, Longden A, et al. Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br J Psychiatry. 1979;134:249–56.
Article
CAS
PubMed
Google Scholar
Meltzer HY, Stahl SM. The dopamine hypothesis of schizophrenia: a review. Schizophr Bull. 1976;2(1):19–76.
Article
CAS
PubMed
Google Scholar
Kemali D, Del Vecchio M, Maj M. Increased noradrenaline levels in CSF and plasma of schizophrenic patients. Biol Psychiatry. 1982;7(6):711–7.
Google Scholar
Gomes UC, Shanley BC, Potgieter L, Roux JT. Noradrenergic overactivity in chronic schizophrenia: evidence based on cerebrospinal fluid noradrenaline and cyclic nucleotide concentrations. BJ Psych. 1980;137:346–51.
CAS
Google Scholar
Kosten TR, Mason JW, Giller EL, Ostroff RB, Harkness L. Sustained norepinephrine and epinephrine elevation in post-traumatic stress disorder. Psychoneuroendocrinology. 1987;12(1):13–20.
Article
CAS
PubMed
Google Scholar
Kennedy BL, Dhaliwal N, Pedley L, Sahner C, Greenberg R, Manshadi MS. Post-traumatic stress disorder in subjects with schizophrenia and bipolar disorder. J KMA. 2002;100(9):395–9.
Google Scholar
Adler LE, Gerhardt GA, Franks R, Baker N, Nagamoto H, Drebing C, et al. Sensory physiology and catecholamines in schizophrenia and mania. Psychiatry Res. 1990;31(3):297–309.
Article
CAS
PubMed
Google Scholar
Walker E, Mittal V, Tessner K. Stress and the hypothalamic pituitary axis in the developmental course of schizophrenia. Annu Rev Clin Psychol. 2008;4:189–216.
Article
PubMed
Google Scholar
Ryan MCM, Sharifi N, Condren R, Thakore JH. Evidence of basal pituitary–adrenal overactivity in first episode, drug naïve patients with schizophrenia. Psychoneuroendocrinology. 2004;29(8):1065–70.
Article
CAS
PubMed
Google Scholar
Pariante CM, Dazzan P, Danese A, Morgan KD, Brudaglio F, Morgan C, et al. Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the AESOP first-onset psychosis study. Neuropsychopharmacology. 2005;30:1923–31.
Article
CAS
PubMed
Google Scholar
Hoffer A. Schizophrenia: an evolutionary defence against severe stress. JOM. 1994;9(4):205–20.
Google Scholar
Calcagni E, Elenkov I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci. 2006;1069:62–76.
Article
CAS
PubMed
Google Scholar
Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24(8):444–8.
Article
CAS
PubMed
Google Scholar
Carrisson SL, Beiting DJ, Kiani CA, Abell K, McGillis JP. Catecholamines decrease lymphocyte adhesion to cytokine-activated endothelial cells. Brain Behav Immun. 1996;10:55–67.
Article
Google Scholar
Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res. 2004;67(2–3):269–75.
Article
PubMed
Google Scholar
van Praag HM, Asnis GM, Kahn RS, Brown S, Korn M, Friedman JM, et al. Monoamines and abnormal behaviour. A multiaminergic perspective. BJ Psych. 1990;157:723–34.
Google Scholar
Adler LE, Pang K, Gerhardt G, Rose GM. Modulation of the gating of auditory evoked potentials by norepinephrine: pharmacological evidence obtained using a selective neurotoxin. Biol Psychiatry. 1998;24:179–90.
Article
Google Scholar
Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM. Alpha-1-noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry. 1999;45:26–31.
Article
CAS
PubMed
Google Scholar
Grover S, Kulhara P. Deficit schizophrenia: Concept and validity. Indian J Psychiatr. 2008;50b(1):61–6.
Google Scholar
A-E A, Ghanem, Ali EM, El-Bakary AA, El-Morsy DA, Elkanishi SMH, et al. Copper and Zinc levels in hair of both schizophrenic and depressed patients. Mansoura J Forensic Med Clin Toxicol. 2009;17(1):89–102.
Google Scholar
Wallwork JC, Boltnen JH, Sandstead HH. Zinc deficiency causes an increase in brain norepinephrine. J Nutr. 1982;112(3):514–9.
CAS
PubMed
Google Scholar
Kemperman RFJ, Veurink M, van der Wal T, Knegtering H, Bruggeman R, Fokkema MR, et al. 2006. PLEFA (Prostaglandins, Leukotrines and Essential Fatty Acids). 2006;74(2):75–85.
Article
CAS
Google Scholar
Lindström LH, Gefvert O, Hagberg G, Lundberg T, Bergström M, Hartvig P, et al. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry. 1999;46(5):681–8.
Article
PubMed
Google Scholar
Pfeiffer CC, Iliev V. Pyroluria, urinary mauve factor, Causes Double Deficiency of B6 and Zinc in Schizophrenics. Fed Am Soc Exp Biol. 1973;32:276.
Google Scholar
Hidalgo FJ, Nogales F, Zamora R. Determination of pyrrolized phospholipids in oxidized phospholipid vesicles and lipoproteins. Biochemistry. 2004;334(1):155–63.
CAS
Google Scholar
Russell CS. Biosynthesis of porphyrins and the origin of “mauve factor”. J Theor Biol. 1972;35(2):277–83.
Article
CAS
PubMed
Google Scholar
Percy MJ, McFerran NV, Lappin TR. Disorders of oxidised haemoglobin. Blood Rev. 2005;19(2):61–8.
Article
CAS
PubMed
Google Scholar
Graham DJM, Thompson GG, Moore MR, Goldberg AA. The effects of selected monopyrroles on various aspects of heme biosynthesis and degradation in the rat. Arch Biochem Biophys. 1979;65(1):132–8.
Article
Google Scholar
Cutler MG, Douglas JM, Graham DJM, Moore MR. The mauve factor of porphyria, 3-ethyl-5-hydroxy-4, 5-dimethyl-delta-3-pyrroline-2-one: Effects on behaviour of rats and mice. BCPT (Basic & Clinical Pharmacology & Toxicology. 1990;66(1):66–8.
Article
CAS
Google Scholar
McGinnis WR, Audhya T, Walsh WJ, Jackson JA, McLaren-Howard J, Lewis A, et al. Discerning the Mauve Factor, Part 1. Altern Ther Health Med. 2008;14(2):40–50.
PubMed
Google Scholar
Irvine DG. Pyrroles in neuropsychiatric and porphyric disorders: confirmation of metabolic structure and synthesis. Life Sci. 1978;23(9):983–90.
Article
CAS
PubMed
Google Scholar
Waggoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative disease. Neurobiol Dis. 1999;6(4):221–30.
Article
CAS
PubMed
Google Scholar
Walterfang M, March E, Varghese D, Miller K, Simpson L, Tomlinson B, et al. Schizophrenia-like psychosis and aceruloplasminemia. J Neuropsychiatr Dis Treat. 2006;2(4):577–81.
Article
Google Scholar
Gaetke LM, Chow CK. Copper toxicity, oxidative stress and antioxidant nutrients. Toxicology. 2003;189:147–63.
Article
CAS
PubMed
Google Scholar
Bar-Or D, Rael LT, Thomas GW, Kraus JP. Inhibitory effect of copper on cystathione beta synthase activity: protective effect of an analog of the human albumin N-terminus. Protein Pept Lett. 2005;12(3):271–3.
Article
CAS
PubMed
Google Scholar
Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry. 1999;38(24):7609–16.
Article
CAS
PubMed
Google Scholar
Bremner I, Beattie JH. Copper and zinc metabolism in health and disease: speciation and interactions. Proc Nutr Soc. 1995;54:489–99.
Article
CAS
PubMed
Google Scholar
Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the bad cell death signalling pathway. J Neurosci. 2003;23(5):1710–8.
CAS
PubMed
Google Scholar
Cunnane S. Evidence that adverse effects of zinc deficiency on essential fatty acid composition in rats are independent of food intake. Br J Nutr. 1998;59:273–8.
Article
Google Scholar
Martenson RE. Myelin: In: Biology and Chemistry. Boca Raton, FL 33487. USA: CRC Press Inc; 1992. p. 214.
Google Scholar
Surtees H, Mills P, Clayton P. Inborn errors affecting vitamin B6 metabolism. Future Neurol. 2006;1:615–20.
Article
CAS
Google Scholar
Smolin LA, Benevenga NJ. Accumulation of homocyst(e)ine in vitamin B-6 deficiency: a model for the study of cystathionine beta-synthase deficiency. J Nutr. 1982;112(7):1264–72.
CAS
PubMed
Google Scholar
Meier M, Janosik M, Kery V, Burkhard P. Structure of human cystathionine beta-synthase: a unique pyridoxal 5-phosphate (PLP)-dependent heme protein. EMBO J. 2001;20(15):3910–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nguyen TT, Hayakawa T, Tsuge H. Effect of vitamin B6 deficiency on the synthesis and accumulation of S-adenosylhomocysteine and S-adenosylmethionine in rat tissues. J Nutr Sci Vitaminol (Tokyo). 2001;47(3):188–94.
Article
CAS
Google Scholar
Schatz RA, Wilens TE, Sellinger OZ. Decreased transmethylation of biogenic amines after In Vivo elevation of Brain S- Adenosyl-L-Homocysteine. J Neurochem. 1981;36(5):1739–48.
Article
CAS
PubMed
Google Scholar
Deguchi T, Barchas J. Inhibition of transmethylations of biogenic amines by S-Adenosylhomocysteine. Enhancement of transmethylation by adenosylhomocysteine. J Biol Chem. 1971;246:3175–81.
CAS
PubMed
Google Scholar
Coward JK, D’Urso-Scott M, Sweet WD. Inhibition of catechol-O-methyltransferase by S-adenosylhomocysteine and S-adenosylhomocysteine sulfoxide, a potential transition-state analog. Biochem Pharmacol. 1972;21(8):1200–3.
Article
CAS
PubMed
Google Scholar
Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, et al. Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative Diseases. Neurotoxicology. 2004;25(1–2):101–15.
Article
CAS
PubMed
Google Scholar
Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry. 2006;11:143–9.
Article
CAS
PubMed
Google Scholar
Virgos C, Martorell L, Simó JM, Valero J, Figuera L, Joven J, et al. Plasma homocysteine and the methylenetetrahydrofolate reductase C677T gene variant: lack of association with schizophrenia. Neuroreport. 1999;10(10):2035–8.
Article
CAS
PubMed
Google Scholar
Muntjewerff J-W, van der Put N, Eskes T, Ellenbroek B, Steegers E, Blom H, et al. Homocysteine metabolism and B-vitamins in schizophrenic patients: low plasma folate as a possible independent risk factor for schizophrenia. Psychiatry Res. 2003;121(1):1–9.
Article
CAS
PubMed
Google Scholar
Henderson DC, Borba CP, Daley TB, Boxill R, Nguyen DD, Culhane MA, et al. Dietary intake profile of patients with schizophrenia. Ann Clin Psychiatry. 2006;18(2):99–105.
Article
PubMed
Google Scholar
Braun A, Vitisky V, Lu S, Banjeree R. S-adenosylmethionine stabilises cystathionine beta synthase and modulates redox capacity. Proc Natl Acad Sci U S A. 2006;103:6489–94.
Article
PubMed Central
PubMed
CAS
Google Scholar
Matthysse S, Baldessarini RJ. S-adenosylmethionine and catechol-O-methyltransferase in Schizophrenia. Am J Psychiatry. 1972;128:1310–2.
Article
CAS
PubMed
Google Scholar
Emiliani FE, Sedlak TW, Sawa A. Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr Opin Psychiatry. 2014;27:185–90.
Article
PubMed Central
PubMed
Google Scholar
Sedvall G. Monoamines and schizophrenia. Acta Psychiatr Scand Suppl. 1990;358:7–13.
Article
CAS
PubMed
Google Scholar
Walker HA, Danielson E, Levitt M. Catechol-O-methyltransferase activity in psychotic children. J Autism Dev Discord. 1976;6(3):263–6.
Article
CAS
Google Scholar
Miller JW, Ribaya-Mercado JD, Russell RM, Shepard DC, Morrow FD, Cochary EF, et al. Effect of vitamin B-6 deficiency on fasting plasma homocysteine concentrations. Am J Clin Nutr. 1992;55(6):1154–60.
CAS
PubMed
Google Scholar
Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, et al. Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain. 2007;130(7):678–92.
Article
PubMed
Google Scholar
Breslow NE. Statistics in epidemiology: the case–control study. JASA. 1996;91:19–35.
Google Scholar
Stolley Paul D, Schlesselman James J. Case–Control Studies: Design, Conduct, Analysis. Oxford [Oxfordshire]: Oxford University Press; 1982. ISBN 0-19-502933-X.
Rutjes AWS, Reitsma JB, Vandenbroucke JP, Glas AS, Bossuyt PMM. Case control and two gate designs in diagnostic accuracy studies. Clin Chem. 2005;51(8):1335–41.
Article
CAS
PubMed
Google Scholar
Doll SR. Smoking and lung cancer. Am J Respir Crit Care Med. 2000;162(1):4–6.
Article
CAS
PubMed
Google Scholar
Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2(5):e 141.
Article
Google Scholar
Craddock N, Owen MJ. The kraepelinian dichotomy- going, going... but still not gone. Br J Psychiatry. 2010 196 (2):92-95. doi:10.1192/bjp.bp.109.073429
Duffy JC, Waterto JJ. Under-reporting of alcohol consumption in sample surveys: the effect of computer interviewing in fieldwork. Br J Addict. 1984;79(4):303–8.
Article
CAS
PubMed
Google Scholar
Lambert D, Benhayoun S, Adjalla C, Gélot MM, Renkes P, Gérard P, et al. Alcoholic cirrhosis and cobalamin metabolism. Digestion. 1997;58:64–71.
Article
CAS
PubMed
Google Scholar
Pombo S, Levy P, Bicho M, Ismail F, Cardoso JMN. Neuropsychological function and platelet monoamine oxidase activity levels in type 1 alcoholic patients. Alcohol Alcohol. 2008;43(4):423–30.
Article
CAS
PubMed
Google Scholar
Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature. 1966;379:733–6.
Article
Google Scholar
Trachte GJ, Uncini T, Hinz M. Both stimulatory and inhibitory effects of dietary 5-hydroxytryptophan and tyrosine are found on urinary excretion of serotonin and dopamine. Neuropsychiatr Dis Trea. 2009;5:227–35.
Article
CAS
Google Scholar
Starkman MN, Cameron OG, Ness RM, Zelnik T. peripheral Catecholamine levels and the Symptoms of anxiety: Studies in patients With and Without Pheochromocytoma. Psychosom Med. 1990;52:129–42.
Article
CAS
PubMed
Google Scholar
Bernheim MLC. An Investigation of Platelet Monoamine Oxidase Activity in Schizophrenia and Schizoaffective Psychosis (Chapter 18). In: Ciba Foundation Symposium 29- Monoamine Oxidase and its Inhibition. Chichester, UK: John Wiley and Sons Ltd; 2008.
Google Scholar
Pira L, Mongeau R, Pani L. The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex. Eur J Pharmacol. 2004;504(1–2):61–4.
Article
CAS
PubMed
Google Scholar
Svensson TH. α-Adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuro-Psychopharmacol Biol Psychiat. 2003;27(7):1145–58.
Article
CAS
Google Scholar
Hawkins DJ, Unwin P. Paradoxical and severe hypotension in response to adrenaline infusions in massive quetiapine overdose. Crit Care Resusc. 2008;10(4):320–2.
PubMed
Google Scholar
Takebayashi M, Motohashi N, Saito H, Kagaya A, Yamawaki S. Effect of acute treatment with sodium valproate on catecholamine and serotonin synthesis in mouse cerebral cortex. Neuropsychobiology. 1995;32(3):124–7.
Article
CAS
PubMed
Google Scholar
Mitsikostas D, Sfikakis A, Papadopoulou-Daifoti Z, Varonos D. The effects of valproate in brain monoamines of juvenile rats after stress. Prog Neuro-Psychopharmacol Biol Psychiat. 1993;17(2):295–310.
Article
CAS
Google Scholar
Baf MH, Subhash MN, Lakshmana KM, Rao R. Sodium Valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int. 1994;24(1):67–72.
Article
CAS
PubMed
Google Scholar
Whittle SR, Turner AJ. Effects of the anticonvulsant sodium valproate on γ-amino butyrate and aldehyde metabolism in ox brain. J Neurochem. 1978;31(6):1453–9.
Article
CAS
PubMed
Google Scholar
Zimmer R, Teelken AW, Gündürewa M, Rüther E, Cramer H. Effect of sodium-valproate on CSF GABA, cAMP, cGMP and homovanillic acid levels in men. Brain Res Bull. 1980;5(2):585–8.
Article
CAS
Google Scholar
Hinz M, Stein A, Trachte G, Uncini T. Neurotransmitter testing of the urine: a comprehensive analysis. OJU. 2010;2:177–83.
CAS
Google Scholar
Marc DT, Ailts JW, Campeau DG, Bull MJ, Olson KL. Neurotransmitters excreted in the urine as biomarkers of nervous system activity: validity and clinical applicability. Neurosci Biobehav Rev. 2011;35(3):635–44.
Article
CAS
PubMed
Google Scholar
Erdelyi DJ, Elliott M, Phillips B. Urine catecholamines in paediatrics. Arch Dis Child Educ Pract Ed. 2011;96:107–11.
Article
PubMed
Google Scholar
Grouzmann E, Lamine F. Determination of catecholamines in plasma and urine. Best Pract Research J Clin Endocrinol Metab. 2013;27(5):713–23.
Article
CAS
Google Scholar
Simpson GM, Angus JWS. A rating scale for extrapyramidal side effects. Acta Psychiatr Scand. 1970;212(44):11–9.
Article
CAS
Google Scholar
Zilles D, Gruber E, Falkai P, Gruber O. Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks. Eu Arch Psychiatry Clin Neurosci. 2010;260(7):519–25.
Article
Google Scholar
Park S, Holzman PS. Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry. 1992;49(12):975–82.
Article
CAS
PubMed
Google Scholar
Riordan-Eva P, Cunningham Jr ET. Vaughan & Asbury’s General Ophthalmology, Lange Medical Book. 18th ed. New York: McGraw-Hill; 2011.
Google Scholar
Maico Diagnostics. Operating Instructions MA 40, Diagnostic GmbH, 2005 Salzufer 13/14, D-10583, Berlin, Germany. Also available: via http://www.audiomedical.cl/maico/SpecSheet.MA39-40-41-42.NEW.pdf.
Cleveland WS, Devlin SJ. Locally-Weighted Regression: An Approach to Regression Analysis by Local Fitting. J Am Stat Assoc. 1988; 83(403):596–601.