Bull C, Heise T, Adema GJ, Boltje TJ. Sialic acid mimetics to target the sialic acid-Siglec axis. Trends Biochem Sci. 2016;41(6):519–31.
Article
CAS
PubMed
Google Scholar
Gianchecchi E, Arena A, Fierabracci A. Sialic acid-Siglec axis in human immune regulation, involvement in autoimmunity and cancer and potential therapeutic treatments. Int J Mol Sci. 2021;22(11):5774.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Gunten S, Bochner BS. Basic and clinical immunology of Siglecs. Ann N Y Acad Sci. 2008;1143:61–82.
Article
CAS
Google Scholar
Adams OJ, Stanczak MA, von Gunten S, Läubli H. Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology. 2018;28(9):640–7.
CAS
PubMed
Google Scholar
Büll C, den Brok MH, Adema GJ. Sweet escape: sialic acids in tumor immune evasion. Biochim Biophys Acta. 2014;1846(1):238–46.
PubMed
Google Scholar
Duan S, Paulson JC. Siglecs as immune cell checkpoints in disease. Annu Rev Immunol. 2020;38:365–95.
Article
CAS
PubMed
Google Scholar
Flores R, Zhang P, Wu W, Wang X, Ye P, Zheng P, et al. Siglec genes confer resistance to systemic lupus erythematosus in humans and mice. Cell Mol Immunol. 2019;16(2):154–64.
Article
CAS
PubMed
Google Scholar
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7(4):255–66.
Article
CAS
PubMed
Google Scholar
Rosenstock P, Kaufmann T. Sialic acids and their influence on human NK cell function. Cells. 2021;10(2):263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14(10):653–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito Y, Ohnishi K, Miyashita A, Nakahara S, Fujiwara Y, Horlad H, et al. Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma. Cancer Immunol Res. 2015;3(12):1356–63.
Article
CAS
PubMed
Google Scholar
Zhang Y, Li JQ, Jiang ZZ, Li L, Wu Y, Zheng L. CD169 identifies an anti-tumour macrophage subpopulation in human hepatocellular carcinoma. J Pathol. 2016;239(2):231–41.
Article
CAS
PubMed
Google Scholar
Ohnishi K, Yamaguchi M, Erdenebaatar C, Saito F, Tashiro H, Katabuchi H, et al. Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci. 2016;107(6):846–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strömvall K, Sundkvist K, Ljungberg B, Halin Bergström S, Bergh A. Reduced number of CD169(+) macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate. 2017;77(15):1468–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiota T, Miyasato Y, Ohnishi K, Yamamoto-Ibusuki M, Yamamoto Y, Iwase H, et al. The clinical significance of cd169-positive lymph node macrophage in patients with breast cancer. PLoS One. 2016;11(11):e0166680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jing W, Guo X, Wang G, Bi Y, Han L, Zhu Q, et al. Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol. 2020;78:106012.
Article
CAS
PubMed
Google Scholar
Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much More than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263.
PubMed
PubMed Central
Google Scholar
O’Neill AS, van den Berg TK, Mullen GE. Sialoadhesin - a macrophage-restricted marker of immunoregulation and inflammation. Immunology. 2013;138(3):198–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller J, Nitschke L. The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat Rev Rheumatol. 2014;10(7):422–8.
Article
CAS
PubMed
Google Scholar
Lim J, Sari-Ak D, Bagga T. Siglecs as therapeutic targets in cancer. Biology. 2021;10(11):1178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benmerzoug S, Chevalier MF, Verardo M, Nguyen S, Cesson V, Schneider AK,et al. Siglec-6 as a New Potential Immune Checkpoint for Bladder Cancer Patients. Eur Urol Focus. 2021;S2405-4569(21):00163–2.
Yu Y, Blokhuis BRJ, Diks MAP, Keshavarzian A, Garssen J, Redegeld FA. Functional inhibitory Siglec-6 is upregulated in human colorectal cancer-associated mast cells. Front Immunol. 2018;9:2138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovalovsky D, Yoon JH, Cyr MG, Simon S, Voynova E, Rader C, et al. Siglec-6 is a target for chimeric antigen receptor T-cell treatment of chronic lymphocytic leukemia. Leukemia. 2021;35(9):2581–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin CH, Yeh YC, Yang KD. Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc. 2021;120(1 Pt 1):5–24.
Article
CAS
PubMed
Google Scholar
Yang L, Feng Y, Wang S, Jiang S, Tao L, Li J, et al. Siglec-7 is an indicator of natural killer cell function in acute myeloid leukemia. Int Immunopharmacol. 2021;99:107965.
Article
CAS
PubMed
Google Scholar
Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Démoulins T, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014;124(4):1810–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YC, Yu MM, Chai YF, Shou ST. Sialic acids in the immune response during sepsis. Front Immunol. 2017;8:1601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altevogt P, Sammar M, Hüser L, Kristiansen G. Novel insights into the function of CD24: a driving force in cancer. Int J Cancer. 2021;148(3):546–59.
Article
CAS
PubMed
Google Scholar
Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology. 2013;23(2):178–87.
Article
CAS
PubMed
Google Scholar
Kang FB, Chen W, Wang L, Zhang YZ. The diverse functions of Siglec-15 in bone remodeling and antitumor responses. Pharmacol Res. 2020;155:104728.
Article
CAS
PubMed
Google Scholar
Meyer SJ, Linder AT, Brandl C, Nitschke L. B Cell Siglecs-news on signaling and its interplay with ligand binding. Front Immunol. 2018;9:2820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams BA, Law A, Hunyadkurti J, Desilets S, Leyton JV, Keating A. Antibody therapies for acute myeloid leukemia: unconjugated, toxin-conjugated, radio-conjugated and multivalent formats. J Clin Med. 2019;8(8):1261.
Article
CAS
PubMed Central
Google Scholar
Mejstríková E, Kalina T, Trka J, Starý J, Hrusák O. Correlation of CD33 with poorer prognosis in childhood ALL implicates a potential of anti-CD33 frontline therapy. Leukemia. 2005;19(6):1092–4.
Article
CAS
PubMed
Google Scholar
Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science (New York, NY). 2017;356(6335):eaah4573.
Article
CAS
Google Scholar
Chng WJ, Remstein ED, Fonseca R, Bergsagel PL, Vrana JA, Kurtin PJ, et al. Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications. Blood. 2009;113(3):635–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, et al. Siglec-9 regulates an effector memory CD8(+) T-cell subset that congregates in the melanoma tumor microenvironment. Cancer Immunol Res. 2019;7(5):707–18.
Article
CAS
PubMed
Google Scholar
Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572(7769):392–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Zhang B, Wang X, Zeng Z, Huang Z, Zhang L, et al. Expression signature, prognosis value, and immune characteristics of Siglec-15 identified by pan-cancer analysis. Oncoimmunology. 2020;9(1):1807291.
Article
PubMed
PubMed Central
Google Scholar
Fan MK, Zhang GC, Chen W, Qi LL, Xie MF, Zhang YY, et al. Siglec-15 promotes tumor progression in osteosarcoma via DUSP1/MAPK pathway. Front Oncol. 2021;11:710689.
Article
PubMed
PubMed Central
Google Scholar
Li TJ, Jin KZ, Li H, Ye LY, Li PC, Jiang B, et al. SIGLEC15 amplifies immunosuppressive properties of tumor-associated macrophages in pancreatic cancer. Cancer Lett. 2022;530:142–55.
Article
CAS
PubMed
Google Scholar
Vitale C, Romagnani C, Puccetti A, Olive D, Costello R, Chiossone L, et al. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells. Proc Natl Acad Sci USA. 2001;98(10):5764–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ha SH, Kwak CH, Park JY, Abekura F, Lee YC, Kim JS, et al. 3’-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis. Glycoconj J. 2020;37(2):187–200.
Article
CAS
PubMed
Google Scholar
Jurcic JG. Targeted alpha-particle therapy for hematologic malignancies. Semin Nucl Med. 2020;50(2):152–61.
Article
PubMed
Google Scholar
Tsubata T. Inhibitory B cell co-receptors and autoimmune diseases. Immunol Med. 2019;42(3):108–16.
Article
PubMed
Google Scholar
Yin SS, Gao FH. Molecular mechanism of tumor cell immune escape mediated by CD24/Siglec-10. Front Immunol. 2020;11:1324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simonetti G, Bertilaccio MT, Rodriguez TV, Apollonio B, Dagklis A, Rocchi M, et al. SIGLEC-G deficiency increases susceptibility to develop B-cell lymphoproliferative disorders. Haematologica. 2014;99(8):1356–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17(11):1273–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor-Papadimitriou J, Burchell JM, Graham R, Beatson R. Latest developments in MUC1 immunotherapy. Biochem Soc Trans. 2018;46(3):659–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubala MH, DeClerck YA. The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding. Cancer Metastasis Rev. 2019;38(3):483–92.
Article
PubMed
PubMed Central
Google Scholar
Tanida S, Akita K, Ishida A, Mori Y, Toda M, Inoue M, et al. Binding of the sialic acid-binding lectin, Siglec-9, to the membrane mucin, MUC1, induces recruitment of β-catenin and subsequent cell growth. J Biol Chem. 2013;288(44):31842–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Xia Y, Qiu CH. Functions of CD169 positive macrophages in human diseases (Review). Biomed Rep. 2021;14(2):26.
Article
CAS
PubMed
Google Scholar
Ding Y, Guo Z, Liu Y, Li X, Zhang Q, Xu X, et al. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat Immunol. 2016;17(10):1167–75.
Article
CAS
PubMed
Google Scholar
Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF, von Gunten S, et al. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest. 2018;128(11):4912–23.
Article
PubMed
PubMed Central
Google Scholar
Zhang P, Lu X, Tao K, Shi L, Li W, Wang G, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res. 2015;194(1):107–13.
Article
CAS
PubMed
Google Scholar
Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH, Qian J, et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol. 2013;14(7):741–8.
Article
CAS
PubMed
Google Scholar
Sammar M, Siwetz M, Meiri H, Fleming V, Altevogt P, Huppertz B. Expression of CD24 and Siglec-10 in first trimester placenta: implications for immune tolerance at the fetal-maternal interface. Histochem Cell Biol. 2017;147(5):565–74.
Article
CAS
PubMed
Google Scholar
Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med. 2019;25(4):656–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angata T. Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases. J Biomed Sci. 2020;27(1):10.
Article
PubMed
PubMed Central
Google Scholar
Fraschilla I, Pillai S. Viewing Siglecs through the lens of tumor immunology. Immunol Rev. 2017;276(1):178–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernández-Caselles T, Miguel RC, Ruiz-Alcaraz AJ, García-Peñarrubia P. CD33 (Siglec-3) inhibitory function: role in the NKG2D/DAP10 activating pathway. J Immunol Res. 2019;2019:6032141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawasaki Y, Ito A, Withers DA, Taima T, Kakoi N, Saito S, et al. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology. 2010;20(11):1373–9.
Article
CAS
PubMed
Google Scholar
Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur J Immunol. 2003;33(6):1642–8.
Article
CAS
PubMed
Google Scholar
Sivori S, Della Chiesa M, Carlomagno S, Quatrini L, Munari E, Vacca P, et al. Inhibitory receptors and checkpoints in human NK Cells, implications for the immunotherapy of cancer. Front Immunol. 2020;11:2156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong S, Yu C, Rodrigues E, Shi Y, Chen H, Wang P, et al. Modulation of Siglec-7 signaling via in situ-created high-affinity cis-ligands. ACS Cent Sci. 2021;7(8):1338–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao J, Zeng DN, Li JZ, Hua QM, Huang CX, Xu J,et al. Type I IFNs repolarized a CD169(+) macrophage population with anti-tumor potentials in hepatocellular carcinoma. Mol Ther. 2022;30(2):632–43.
Läubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L, Stanczak MA, et al. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci USA. 2014;111(39):14211–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibarlucea-Benitez I, Weitzenfeld P, Smith P, Ravetch JV. Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity. Proc Natl Acad Sci U S A. 2021;118(26):e2107424118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez E, Boelaars K, Brown K, Eveline Li RJ, Kruijssen L, Bruijns SCM, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12(1):1270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao N, Zhu X, Li K, Chen Y, Liu X, Xu B, et al. Blocking siglec-10(hi) tumor-associated macrophages improves anti-tumor immunity and enhances immunotherapy for hepatocellular carcinoma. Exp Hematol Oncol. 2021;10(1):36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murugesan G, Correia VG, Palma AS, Chai W, Li C, Feizi T, et al. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology. 2021;31(1):44–54.
CAS
PubMed
Google Scholar
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.
Article
CAS
PubMed
Google Scholar
Läubli H, Alisson-Silva F, Stanczak MA, Siddiqui SS, Deng L, Verhagen A, et al. Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs. J Biol Chem. 2014;289(48):33481–91.
Article
PubMed
PubMed Central
Google Scholar
Pan C, Liu H, Robins E, Song W, Liu D, Li Z, et al. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13(1):29.
Article
PubMed
PubMed Central
Google Scholar
Meril S, Harush O, Reboh Y, Matikhina T, Barliya T, Cohen CJ. Targeting glycosylated antigens on cancer cells using siglec-7/9-based CAR T-cells. Mol Carcinog. 2020;59(7):713–23.
Article
CAS
PubMed
Google Scholar
Shah NN, Sokol L. Targeting CD22 for the treatment of B-Cell malignancies. ImmunoTargets Ther. 2021;10:225–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shor B, Gerber HP, Sapra P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol Immunol. 2015;67(2 Pt A):107–16.
Article
CAS
PubMed
Google Scholar
Bachanova V, Frankel AE, Cao Q, Lewis D, Grzywacz B, Verneris MR, et al. Phase I study of a bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin Cancer Res. 2015;21(6):1267–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anti-CD22 CAR Therapy Leads to ALL Remissions. Cancer Discov. 2017;7(2):120.
Loke J, Khan JN, Wilson JS, Craddock C, Wheatley K. Mylotarg has potent anti-leukaemic effect: a systematic review and meta-analysis of anti-CD33 antibody treatment in acute myeloid leukaemia. Ann Hematol. 2015;94(3):361–73.
Article
CAS
PubMed
Google Scholar
Maakaron JE, Rogosheske J, Long M, Bachanova V, Mims AS. CD33-targeted therapies: beating the disease or beaten to death? J Clin Pharmacol. 2021;61(1):7–17.
Article
CAS
PubMed
Google Scholar
Isidori A, Cerchione C, Daver N, DiNardo C, Garcia-Manero G, Konopleva M, et al. Immunotherapy in acute myeloid leukemia: where we stand. Front Oncol. 2021;11:656218.
Article
PubMed
PubMed Central
Google Scholar
Rotiroti MC, Buracchi C, Arcangeli S, Galimberti S, Valsecchi MG, Perriello VM, et al. Targeting CD33 in chemoresistant AML patient-derived xenografts by CAR-CIK cells modified with an improved SB transposon system. Mol Ther. 2020;28(9):1974–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang J, Peng H, Shaffer BC, Baskar S, Wecken IC, Cyr MG, et al. Siglec-6 on chronic lymphocytic leukemia cells is a target for post-allogeneic hematopoietic stem cell transplantation antibodies. Cancer Immunol Res. 2018;6(9):1008–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi H, Ho M, Adeniji OS, Giron L, Bordoloi D, Kulkarni AJ, et al. Development of Siglec-9 blocking antibody to enhance anti-tumor immunity. Front Oncol. 2021;11:778989.
Article
PubMed
PubMed Central
Google Scholar
Büll C, Boltje TJ, Balneger N, Weischer SM, Wassink M, van Gemst JJ, et al. Sialic acid blockade suppresses tumor growth by enhancing t-cell-mediated tumor immunity. Can Res. 2018;78(13):3574–88.
Google Scholar
Alinari L, Lapalombella R, Andritsos L, Baiocchi RA, Lin TS, Byrd JC. Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene. 2007;26(25):3644–53.
Article
CAS
PubMed
Google Scholar
Sun J, Lu Q, Sanmamed MF, Wang J. Siglec-15 as an emerging target for next-generation cancer immunotherapy. Clin Cancer Res. 2021;27(3):680–8.
Article
CAS
PubMed
Google Scholar