Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol. 2013;31:2205–18. https://doi.org/10.1200/JCO.2012.46.3653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22. https://doi.org/10.1016/j.ccell.2014.10.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast Cancer. N Engl J Med. 2018;379:2108–21. https://doi.org/10.1056/NEJMoa1809615.
Article
CAS
PubMed
Google Scholar
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57. https://doi.org/10.1038/35025220.
Article
CAS
PubMed
Google Scholar
Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388:518–29. https://doi.org/10.1016/S0140-6736(15)01088-0.
Article
CAS
PubMed
Google Scholar
Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. 2018;128:2104–15. https://doi.org/10.1172/JCI96582.
Article
PubMed
PubMed Central
Google Scholar
Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–40. https://doi.org/10.1038/nrclinonc.2018.29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motz GT, Coukos G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol. 2011;11:702–11. https://doi.org/10.1038/nri3064.
Article
CAS
PubMed
Google Scholar
Schmittnaegel M, Rigamonti N, Kadioglu E, Cassara A, Wyser Rmili C, Kiialainen A, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. 2017;9:eaak9670. https://doi.org/10.1126/scitranslmed.aak9670.
Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20:607–15. https://doi.org/10.1038/nm.3541.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 2013;73:2943–8. https://doi.org/10.1158/0008-5472.CAN-12-4354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol. 2005;174:215–22. https://doi.org/10.4049/jimmunol.174.1.215.
Article
CAS
PubMed
Google Scholar
Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92:4150–66 https://www.ncbi.nlm.nih.gov/pubmed/9834220.
Article
CAS
PubMed
Google Scholar
Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020;52:1475–85. https://doi.org/10.1038/s12276-020-00500-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139–48. https://doi.org/10.1084/jem.20140559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73:539–49. https://doi.org/10.1158/0008-5472.CAN-12-2325.
Article
CAS
PubMed
Google Scholar
Vetsika EK, Koukos A, Kotsakis A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and Angiogenic network in Cancer. Cells. 2019;8:1647. https://doi.org/10.3390/cells8121647.
Palazon A, Tyrakis PA, Macias D, Velica P, Rundqvist H, Fitzpatrick S, et al. An HIF-1alpha/VEGF-A Axis in cytotoxic T cells regulates tumor progression. Cancer Cell. 2017;32:669–83 e5. https://doi.org/10.1016/j.ccell.2017.10.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim CG, Jang M, Kim Y, Leem G, Kim KH, Lee H, et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci Immunol. 2019;4:eaay0555. https://doi.org/10.1126/sciimmunol.aay0555.
Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, et al. TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature. 2019;571:211–8. https://doi.org/10.1038/s41586-019-1325-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coffelt SB, Chen YY, Muthana M, Welford AF, Tal AO, Scholz A, et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol. 2011;186:4183–90. https://doi.org/10.4049/jimmunol.1002802.
Article
CAS
PubMed
Google Scholar
Murdoch C, Tazzyman S, Webster S, Lewis CE. Expression of tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol. 2007;178:7405–11. https://doi.org/10.4049/jimmunol.178.11.7405.
Article
CAS
PubMed
Google Scholar
Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15:310–24. https://doi.org/10.1038/nrclinonc.2018.9.
Article
CAS
PubMed
Google Scholar
De Falco S. The discovery of placenta growth factor and its biological activity. Exp Mol Med. 2012;44:1–9. https://doi.org/10.3858/emm.2012.44.1.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Odorisio T, Schietroma C, Zaccaria ML, Cianfarani F, Tiveron C, Tatangelo L, et al. Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. J Cell Sci. 2002;115:2559–67 https://www.ncbi.nlm.nih.gov/pubmed/12045226.
Article
CAS
PubMed
Google Scholar
Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res. 2009;19:116–27. https://doi.org/10.1038/cr.2008.326.
Article
CAS
PubMed
Google Scholar
Tian M, Neil JR, Schiemann WP. Transforming growth factor-beta and the hallmarks of cancer. Cell Signal. 2011;23:951–62. https://doi.org/10.1016/j.cellsig.2010.10.015.
Article
CAS
PubMed
Google Scholar
Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E, Bergers G. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep. 2015;11:577–91. https://doi.org/10.1016/j.celrep.2015.03.055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 2007;25:911–20. https://doi.org/10.1038/nbt1323.
Article
CAS
PubMed
Google Scholar
Huang Y, Kim BYS, Chan CK, Hahn SM, Weissman IL, Jiang W. Improving immune-vascular crosstalk for cancer immunotherapy. Nat Rev Immunol. 2018;18:195–203. https://doi.org/10.1038/nri.2017.145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 2019;25:5449–57. https://doi.org/10.1158/1078-0432.CCR-18-1543.
Article
CAS
PubMed
Google Scholar
Bruno A, Pagani A, Pulze L, Albini A, Dallaglio K, Noonan DM, et al. Orchestration of angiogenesis by immune cells. Front Oncol. 2014;4:131. https://doi.org/10.3389/fonc.2014.00131.
Article
PubMed
PubMed Central
Google Scholar
Stockmann C, Schadendorf D, Klose R, Helfrich I. The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol. 2014;4:69. https://doi.org/10.3389/fonc.2014.00069.
Article
PubMed
PubMed Central
Google Scholar
Ahmed FS, Gaule P, McGuire J, Patel K, Blenman K, Pusztai L, et al. PD-L1 protein expression on both tumor cells and macrophages are associated with response to Neoadjuvant Durvalumab with chemotherapy in triple-negative breast Cancer. Clin Cancer Res. 2020;26:5456–61. https://doi.org/10.1158/1078-0432.CCR-20-1303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96. https://doi.org/10.1038/ni.1937.
Article
CAS
PubMed
Google Scholar
Albini A, Bruno A, Noonan DM, Mortara L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol. 2018;9:527. https://doi.org/10.3389/fimmu.2018.00527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivera LB, Bergers G. Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol. 2015;36:240–9. https://doi.org/10.1016/j.it.2015.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. https://doi.org/10.1016/j.cell.2010.03.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen P, Bonaldo P. Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies. Int Rev Cell Mol Biol. 2013;301:1–35. https://doi.org/10.1016/B978-0-12-407704-1.00001-4.
Article
CAS
PubMed
Google Scholar
Watkins SK, Egilmez NK, Suttles J, Stout RD. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol. 2007;178:1357–62. https://doi.org/10.4049/jimmunol.178.3.1357.
Article
CAS
PubMed
Google Scholar
Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85. https://doi.org/10.1002/path.4133.
Article
CAS
PubMed
Google Scholar
Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A. 2016;113:4476–81. https://doi.org/10.1073/pnas.1525360113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson TE, Kirkpatrick ND, Huang Y, Farrar CT, Marijt KA, Kloepper J, et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci U S A. 2016;113:4470–5. https://doi.org/10.1073/pnas.1525349113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reusser NM, Dalton HJ, Pradeep S, Gonzalez-Villasana V, Jennings NB, Vasquez HG, et al. Clodronate inhibits tumor angiogenesis in mouse models of ovarian cancer. Cancer Biol Ther. 2014;15:1061–7. https://doi.org/10.4161/cbt.29184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer. 2006;95:272–81. https://doi.org/10.1038/sj.bjc.6603240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011;19:512–26. https://doi.org/10.1016/j.ccr.2011.02.005.
Article
CAS
PubMed
Google Scholar
De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007;28:519–24. https://doi.org/10.1016/j.it.2007.09.004.
Article
CAS
PubMed
Google Scholar
Piqueras B, Connolly J, Freitas H, Palucka AK, Banchereau J. Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood. 2006;107:2613–8. https://doi.org/10.1182/blood-2005-07-2965.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46. https://doi.org/10.1038/nri1001.
Article
CAS
PubMed
Google Scholar
Asselin-Paturel C, Trinchieri G. Production of type I interferons: plasmacytoid dendritic cells and beyond. J Exp Med. 2005;202:461–5. https://doi.org/10.1084/jem.20051395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression. Nature. 2017;545:98–102. https://doi.org/10.1038/nature22311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Lee WS, Kong SJ, Kim CG, Kim JH, Chang SK, et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Invest. 2019;129:4350–64. https://doi.org/10.1172/JCI125413.
Article
PubMed
PubMed Central
Google Scholar
Fathallah-Shaykh HM, Zhao LJ, Kafrouni AI, Smith GM, Forman J. Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol. 2000;164:217–22. https://doi.org/10.4049/jimmunol.164.1.217.
Article
CAS
PubMed
Google Scholar
Baer C, Squadrito ML, Laoui D, Thompson D, Hansen SK, Kiialainen A, et al. Suppression of microRNA activity amplifies IFN-gamma-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol. 2016;18:790–802. https://doi.org/10.1038/ncb3371.
Article
CAS
PubMed
Google Scholar
Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol. 2008;9:970–80. https://doi.org/10.1038/ni.f.213.
Article
CAS
PubMed
Google Scholar
Freedman RS, Kudelka AP, Kavanagh JJ, Verschraegen C, Edwards CL, Nash M, et al. Clinical and biological effects of intraperitoneal injections of recombinant interferon-gamma and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma. Clin Cancer Res. 2000;6:2268–78 https://www.ncbi.nlm.nih.gov/pubmed/10873077.
CAS
PubMed
Google Scholar
Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250–4. https://doi.org/10.1038/nature21724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6. https://doi.org/10.1242/jcs.116392.
Article
CAS
PubMed
Google Scholar
Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, Ramwadhdoebe TH, Gorter A, Welters MJ, et al. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J Immunol. 2011;187:1157–65. https://doi.org/10.4049/jimmunol.1100889.
Article
CAS
PubMed
Google Scholar
DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16:91–102. https://doi.org/10.1016/j.ccr.2009.06.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407:348–54. https://doi.org/10.1016/j.bbrc.2011.03.021.
Article
CAS
PubMed
Google Scholar
Iida T, Iwahashi M, Katsuda M, Ishida K, Nakamori M, Nakamura M, et al. Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol Rep. 2011;25:1271–7. https://doi.org/10.3892/or.2011.1201.
Article
CAS
PubMed
Google Scholar
Ren L, Yu Y, Wang L, Zhu Z, Lu R, Yao Z. Hypoxia-induced CCL28 promotes recruitment of regulatory T cells and tumor growth in liver cancer. Oncotarget. 2016;7:75763–73. https://doi.org/10.18632/oncotarget.12409.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol. 2018;9:978. https://doi.org/10.3389/fimmu.2018.00978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72:2162–71. https://doi.org/10.1158/0008-5472.CAN-11-3687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475:226–30. https://doi.org/10.1038/nature10169.
Article
CAS
PubMed
Google Scholar
Bruno A, Mortara L, Baci D, Noonan DM, Albini A. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression. Front Immunol. 2019;10:771. https://doi.org/10.3389/fimmu.2019.00771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20. https://doi.org/10.1016/j.it.2016.01.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6:409–21. https://doi.org/10.1016/j.ccr.2004.08.031.
Article
CAS
PubMed
Google Scholar
Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118:3367–77. https://doi.org/10.1172/JCI35213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31. https://doi.org/10.1038/nrc2444.
Article
CAS
PubMed
Google Scholar
Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 2018;9:398. https://doi.org/10.3389/fimmu.2018.00398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guedez L, Jensen-Taubman S, Bourboulia D, Kwityn CJ, Wei B, Caterina J, et al. TIMP-2 targets tumor-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis. J Immunother. 2012;35:502–12. https://doi.org/10.1097/CJI.0b013e3182619c8e.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karakhanova S, Link J, Heinrich M, Shevchenko I, Yang Y, Hassenpflug M, et al. Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology. 2015;4:e998519. https://doi.org/10.1080/2162402X.2014.998519.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G, et al. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol. 2012;188:5365–76. https://doi.org/10.4049/jimmunol.1103553.
Article
CAS
PubMed
Google Scholar
Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, et al. Expression of vascular endothelial growth factor in ovarian Cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res. 2017;23:587–99. https://doi.org/10.1158/1078-0432.CCR-16-0387.
Article
CAS
PubMed
Google Scholar
Ferrara N. Role of myeloid cells in vascular endothelial growth factor-independent tumor angiogenesis. Curr Opin Hematol. 2010;17:219–24. https://doi.org/10.1097/MOH.0b013e3283386660.
Article
CAS
PubMed
Google Scholar
Madar S, Goldstein I, Rotter V. ‘Cancer associated fibroblasts’--more than meets the eye. Trends Mol Med. 2013;19:447–53. https://doi.org/10.1016/j.molmed.2013.05.004.
Article
CAS
PubMed
Google Scholar
Gonda TA, Varro A, Wang TC, Tycko B. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol. 2010;21:2–10. https://doi.org/10.1016/j.semcdb.2009.10.001.
Article
CAS
PubMed
Google Scholar
Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett. 2019;17:3055–65. https://doi.org/10.3892/ol.2019.9973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48. https://doi.org/10.1016/j.cell.2005.02.034.
Article
CAS
PubMed
Google Scholar
Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94:715–25. https://doi.org/10.1016/s0092-8674(00)81731-6.
Article
CAS
PubMed
Google Scholar
Schoppmann SF, Jesch B, Riegler MF, Maroske F, Schwameis K, Jomrich G, et al. Podoplanin expressing cancer associated fibroblasts are associated with unfavourable prognosis in adenocarcinoma of the esophagus. Clin Exp Metastasis. 2013;30:441–6. https://doi.org/10.1007/s10585-012-9549-2.
Article
CAS
PubMed
Google Scholar
Pula B, Jethon A, Piotrowska A, Gomulkiewicz A, Owczarek T, Calik J, et al. Podoplanin expression by cancer-associated fibroblasts predicts poor outcome in invasive ductal breast carcinoma. Histopathology. 2011;59:1249–60. https://doi.org/10.1111/j.1365-2559.2011.04060.x.
Article
PubMed
Google Scholar
Pula B, Wojnar A, Witkiewicz W, Dziegiel P, Podhorska-Okolow M. Podoplanin expression in cancer-associated fibroblasts correlates with VEGF-C expression in cancer cells of invasive ductal breast carcinoma. Neoplasma. 2013;60:516–24. https://doi.org/10.4149/neo_2013_067.
Article
CAS
PubMed
Google Scholar
Tang D, Yuan Z, Xue X, Lu Z, Zhang Y, Wang H, et al. High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer. 2012;130:2337–48. https://doi.org/10.1002/ijc.26290.
Article
CAS
PubMed
Google Scholar
Wu MH, Hong TM, Cheng HW, Pan SH, Liang YR, Hong HC, et al. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res. 2009;7:311–8. https://doi.org/10.1158/1541-7786.MCR-08-0297.
Article
CAS
PubMed
Google Scholar
Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A. 2006;103:15975–80. https://doi.org/10.1073/pnas.0603883103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889–99. https://doi.org/10.1007/s13277-015-3942-9.
Article
CAS
PubMed
Google Scholar
Ren J, Guo H, Wu H, Tian T, Dong D, Zhang Y, et al. GPER in CAFs regulates hypoxia-driven breast cancer invasion in a CTGF-dependent manner. Oncol Rep. 2015;33:1929–37. https://doi.org/10.3892/or.2015.3779.
Article
CAS
PubMed
Google Scholar
De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, Maggiolini M. HIF-1alpha/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013;15:R64. https://doi.org/10.1186/bcr3458.
Article
PubMed
PubMed Central
Google Scholar
Lederle W, Hartenstein B, Meides A, Kunzelmann H, Werb Z, Angel P, et al. MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis. 2010;31:1175–84. https://doi.org/10.1093/carcin/bgp248.
Article
CAS
PubMed
Google Scholar
Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 2009;15:21–34. https://doi.org/10.1016/j.ccr.2008.12.004.
Article
CAS
PubMed
Google Scholar
Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64:3731–6. https://doi.org/10.1158/0008-5472.CAN-04-0074.
Article
CAS
PubMed
Google Scholar
Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A. 2012;109:17561–6. https://doi.org/10.1073/pnas.1215397109.
Article
PubMed
PubMed Central
Google Scholar
Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70:6171–80. https://doi.org/10.1158/0008-5472.CAN-10-0153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shigeta K, Matsui A, Kikuchi H, Klein S, Mamessier E, Chen IX, et al. Regorafenib combined with PD1 blockade increases CD8 T-cell infiltration by inducing CXCL10 expression in hepatocellular carcinoma. J Immunother Cancer. 2020;8:e001435. https://doi.org/10.1136/jitc-2020-001435.
Castro BA, Flanigan P, Jahangiri A, Hoffman D, Chen W, Kuang R, et al. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy. Oncogene. 2017;36:3749–59. https://doi.org/10.1038/onc.2017.1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Hou W, Gao L, Shui L, Yi C, Zhu H. Synergies of Antiangiogenic therapy and immune checkpoint blockade in renal cell carcinoma: from theoretical background to clinical reality. Front Oncol. 2020;10:1321. https://doi.org/10.3389/fonc.2020.01321.
Article
PubMed
PubMed Central
Google Scholar
Hendry SA, Farnsworth RH, Solomon B, Achen MG, Stacker SA, Fox SB. The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front Immunol. 2016;7:621. https://doi.org/10.3389/fimmu.2016.00621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. 2017;9:eaak9679. https://doi.org/10.1126/scitranslmed.aak9679.
Farnsworth RH, Karnezis T, Shayan R, Matsumoto M, Nowell CJ, Achen MG, et al. A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res. 2011;71:6547–57. https://doi.org/10.1158/0008-5472.CAN-11-0200.
Article
CAS
PubMed
Google Scholar
Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, et al. Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 2006;66:10365–76. https://doi.org/10.1158/0008-5472.CAN-06-2977.
Article
CAS
PubMed
Google Scholar
Carriere V, Colisson R, Jiguet-Jiglaire C, Bellard E, Bouche G, Al Saati T, et al. Cancer cells regulate lymphocyte recruitment and leukocyte-endothelium interactions in the tumor-draining lymph node. Cancer Res. 2005;65:11639–48. https://doi.org/10.1158/0008-5472.CAN-05-1190.
Article
CAS
PubMed
Google Scholar
Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT, et al. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med. 2016;8:360ra135. https://doi.org/10.1126/scitranslmed.aaf5219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61:1591–602. https://doi.org/10.1002/hep.27665.
Article
CAS
PubMed
Google Scholar
Griveau A, Seano G, Shelton SJ, Kupp R, Jahangiri A, Obernier K, et al. A glial signature and Wnt7 signaling regulate Glioma-vascular interactions and tumor microenvironment. Cancer Cell. 2018;33:874–89 e7. https://doi.org/10.1016/j.ccell.2018.03.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A. 2012;109:2784–9. https://doi.org/10.1073/pnas.1018866109.
Article
PubMed
PubMed Central
Google Scholar
Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10:295–305. https://doi.org/10.1038/ncb1691.
Article
CAS
PubMed
Google Scholar
Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A. 2015;112:14325–30. https://doi.org/10.1073/pnas.1518808112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hegde PS, Jubb AM, Chen D, Li NF, Meng YG, Bernaards C, et al. Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin Cancer Res. 2013;19:929–37. https://doi.org/10.1158/1078-0432.CCR-12-2535.
Article
CAS
PubMed
Google Scholar
Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6:553–63. https://doi.org/10.1016/j.ccr.2004.10.011.
Article
CAS
PubMed
Google Scholar
Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 2010;28:2817–23. https://doi.org/10.1200/JCO.2009.26.3988.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, et al. Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol Res. 2017;5:17–28. https://doi.org/10.1158/2326-6066.CIR-16-0206.
Article
CAS
PubMed
Google Scholar
Chae SS, Kamoun WS, Farrar CT, Kirkpatrick ND, Niemeyer E, de Graaf AM, et al. Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res. 2010;16:3618–27. https://doi.org/10.1158/1078-0432.CCR-09-3073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kienast Y, Klein C, Scheuer W, Raemsch R, Lorenzon E, Bernicke D, et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin Cancer Res. 2013;19:6730–40. https://doi.org/10.1158/1078-0432.CCR-13-0081.
Article
CAS
PubMed
Google Scholar
Wu FT, Man S, Xu P, Chow A, Paez-Ribes M, Lee CR, et al. Efficacy of Cotargeting Angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res. 2016;76:6988–7000. https://doi.org/10.1158/0008-5472.CAN-16-0888.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bendell JC, Sauri T, Gracian AC, Alvarez R, Lopez-Lopez C, Garcia-Alfonso P, et al. The McCAVE trial: Vanucizumab plus mFOLFOX-6 versus Bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). Oncologist. 2020;25:e451–e9. https://doi.org/10.1634/theoncologist.2019-0291.
Article
CAS
PubMed
Google Scholar
Mpekris F, Voutouri C, Baish JW, Duda DG, Munn LL, Stylianopoulos T, et al. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc Natl Acad Sci U S A. 2020;117:3728–37. https://doi.org/10.1073/pnas.1919764117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A. Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res. 2008;14:5947–52. https://doi.org/10.1158/1078-0432.CCR-08-0229.
Article
CAS
PubMed
Google Scholar
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9. https://doi.org/10.1038/nm1093.
Article
CAS
PubMed
Google Scholar
Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hammerling GJ. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol. 2015;16:609–17. https://doi.org/10.1038/ni.3159.
Article
CAS
PubMed
Google Scholar
De Palma M, Jain RK. CD4(+) T cell activation and vascular normalization: two sides of the same coin? Immunity. 2017;46:773–5. https://doi.org/10.1016/j.immuni.2017.04.015.
Article
CAS
PubMed
Google Scholar
Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 1997;18:89–95. https://doi.org/10.1016/s0167-5699(96)10075-x.
Article
CAS
PubMed
Google Scholar
Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273. https://doi.org/10.1016/s0065-2776(08)60911-6.
Article
CAS
PubMed
Google Scholar
Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance. Adv Cancer Res. 2001;83:117–58. https://doi.org/10.1016/s0065-230x(01)83005-0.
Article
CAS
PubMed
Google Scholar
Seliger B, Cabrera T, Garrido F, Ferrone S. HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol. 2002;12:3–13. https://doi.org/10.1006/scbi.2001.0404.
Article
CAS
PubMed
Google Scholar
Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51. https://doi.org/10.1016/j.coi.2015.12.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
del Campo AB, Kyte JA, Carretero J, Zinchencko S, Mendez R, Gonzalez-Aseguinolaza G, et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer. 2014;134:102–13. https://doi.org/10.1002/ijc.28338.
Article
CAS
PubMed
Google Scholar
Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics. 2008;60:439–47. https://doi.org/10.1007/s00251-008-0303-5.
Article
CAS
PubMed
Google Scholar
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568. https://doi.org/10.3389/fimmu.2021.636568.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman AM, Castro A, Pyke RM, Okamura R, Kato S, Riviere P, et al. MHC-I genotype and tumor mutational burden predict response to immunotherapy. Genome Med. 2020;12:45. https://doi.org/10.1186/s13073-020-00743-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624. https://doi.org/10.1038/ncomms12624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bujor IS, Cioca A, Ceausu RA, Veaceslav F, Nica C, Cimpean AM, et al. Evaluation of Vascular Proliferation in Molecular Subtypes of Breast Cancer. In Vivo. 2018;32:79–83. https://doi.org/10.21873/invivo.11207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nalwoga H, Arnes JB, Stefansson IM, Wabinga H, Foulkes WD, Akslen LA. Vascular proliferation is increased in basal-like breast cancer. Breast Cancer Res Treat. 2011;130:1063–71. https://doi.org/10.1007/s10549-011-1740-7.
Article
PubMed
Google Scholar
Kruger K, Stefansson IM, Collett K, Arnes JB, Aas T, Akslen LA. Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast. 2013;22:282–8. https://doi.org/10.1016/j.breast.2012.07.008.
Article
CAS
PubMed
Google Scholar
Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33:13–21. https://doi.org/10.1200/JCO.2014.57.0572.
Article
CAS
PubMed
Google Scholar
Kim HR, Jung KH, Im SA, Im YH, Kang SY, Park KH, et al. Multicentre phase II trial of bevacizumab combined with docetaxel-carboplatin for the neoadjuvant treatment of triple-negative breast cancer (KCSG BR-0905). Ann Oncol. 2013;24:1485–90. https://doi.org/10.1093/annonc/mds658.
Article
CAS
PubMed
Google Scholar
Gerber B, Loibl S, Eidtmann H, Rezai M, Fasching PA, Tesch H, et al. Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol. 2013;24:2978–84. https://doi.org/10.1093/annonc/mdt361.
Article
CAS
PubMed
Google Scholar
Thomssen C, Pierga JY, Pritchard KI, Biganzoli L, Cortes-Funes H, Petrakova K, et al. First-line bevacizumab-containing therapy for triple-negative breast cancer: analysis of 585 patients treated in the ATHENA study. Oncology. 2012;82:218–27. https://doi.org/10.1159/000336892.
Article
CAS
PubMed
Google Scholar
Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29:1252–60. https://doi.org/10.1200/JCO.2010.28.0982.
Article
CAS
PubMed
Google Scholar
Hamilton E, Kimmick G, Hopkins J, Marcom PK, Rocha G, Welch R, et al. Nab-paclitaxel/bevacizumab/carboplatin chemotherapy in first-line triple negative metastatic breast cancer. Clin Breast Cancer. 2013;13:416–20. https://doi.org/10.1016/j.clbc.2013.08.003.
Article
CAS
PubMed
Google Scholar
Brufsky A, Valero V, Tiangco B, Dakhil S, Brize A, Rugo HS, et al. Second-line bevacizumab-containing therapy in patients with triple-negative breast cancer: subgroup analysis of the RIBBON-2 trial. Breast Cancer Res Treat. 2012;133:1067–75. https://doi.org/10.1007/s10549-012-2008-6.
Article
CAS
PubMed
Google Scholar
Sasich LD, Sukkari SR. The US FDAs withdrawal of the breast cancer indication for Avastin (bevacizumab). Saudi Pharm J. 2012;20:381–5. https://doi.org/10.1016/j.jsps.2011.12.001.
Article
PubMed
Google Scholar
Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14:933–42. https://doi.org/10.1016/S1470-2045(13)70335-8.
Article
CAS
PubMed
Google Scholar
Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer. 2019;18:60. https://doi.org/10.1186/s12943-019-0974-6.
Article
PubMed
PubMed Central
Google Scholar
Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416:279–80. https://doi.org/10.1038/416279b.
Article
CAS
PubMed
Google Scholar
Mpekris F, Baish JW, Stylianopoulos T, Jain RK. Role of vascular normalization in benefit from metronomic chemotherapy. Proc Natl Acad Sci U S A. 2017;114:1994–9. https://doi.org/10.1073/pnas.1700340114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471–5. https://doi.org/10.1038/nature23465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396:1817–28. https://doi.org/10.1016/S0140-6736(20)32531-9.
Article
PubMed
Google Scholar
Nanda R, Liu MC, Yau C, Shatsky R, Pusztai L, Wallace A, et al. Effect of Pembrolizumab plus Neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast Cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol. 2020;6:676–84. https://doi.org/10.1001/jamaoncol.2019.6650.
Article
PubMed
Google Scholar
Karn T, Denkert C, Weber KE, Holtrich U, Hanusch C, Sinn BV, et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann Oncol. 2020;31:1216–22. https://doi.org/10.1016/j.annonc.2020.05.015.
Article
CAS
PubMed
Google Scholar
Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol. 2019;30:1279–88. https://doi.org/10.1093/annonc/mdz158.
Article
CAS
PubMed
Google Scholar
Schmid P, Cortés J, Dent R, Pusztai L, McArthur HL, Kuemmel S, et al. KEYNOTE-522: phase III study of pembrolizumab (pembro) + chemotherapy (chemo) vs placebo (pbo) + chemo as neoadjuvant treatment, followed by pembro vs pbo as adjuvant treatment for early triple-negative breast cancer (TNBC). Ann Oncol. 2019;30:v853–v4. https://doi.org/10.1093/annonc/mdz394.003.
Article
Google Scholar
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382:1894–905. https://doi.org/10.1056/NEJMoa1915745.
Article
CAS
PubMed
Google Scholar
Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288–301. https://doi.org/10.1056/NEJMoa1716948.
Article
CAS
PubMed
Google Scholar
Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–27. https://doi.org/10.1056/NEJMoa1816714.
Article
CAS
PubMed
Google Scholar
Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN renal 101 trial. Nat Med. 2020;26:1733–41. https://doi.org/10.1038/s41591-020-1044-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makker V, Rasco D, Vogelzang NJ, Brose MS, Cohn AL, Mier J, et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20:711–8. https://doi.org/10.1016/S1470-2045(19)30020-8.
Article
CAS
PubMed
Google Scholar
Zou Y, Zou X, Zheng S, Tang H, Zhang L, Liu P, et al. Efficacy and predictive factors of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis. Ther Adv Med Oncol. 2020;12:1758835920940928. https://doi.org/10.1177/1758835920940928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quintela-Fandino M, Manso Sànchez LM, Holgado Martín E, Moreno MC, Morales Murillo S, Bermejo De Las Heras B, et al. Addition of durvalumab (Dur) upon progression to bevacizumab (Bev) maintenance in advanced HER2-negative (HERNEG) breast cancer (BC): Safety, efficacy and biomarkers. Ann Oncol. 2018;29:ix24. https://doi.org/10.1093/annonc/mdy430.003.
Article
Google Scholar
Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M, et al. Regorafenib plus Nivolumab in patients with advanced gastric or colorectal Cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol. 2020;38:2053–61. https://doi.org/10.1200/JCO.19.03296.
Article
CAS
PubMed
Google Scholar
Shigeta K, Datta M, Hato T, Kitahara S, Chen IX, Matsui A, et al. Dual programmed death Receptor-1 and vascular endothelial growth factor Receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology. 2020;71:1247–61. https://doi.org/10.1002/hep.30889.
Article
CAS
PubMed
Google Scholar
Ciciola P, Cascetta P, Bianco C, Formisano L, Bianco R. Combining immune checkpoint inhibitors with anti-Angiogenic agents. J Clin Med. 2020;9:675. https://doi.org/10.3390/jcm9030675.
Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26:2375–91. https://doi.org/10.1093/annonc/mdv383.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin L, Li X, Stroiney A, Qu J, Helgager J, Reardon DA, et al. Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology. 2017;59:135–45. https://doi.org/10.1007/s00234-016-1769-8.
Article
PubMed
PubMed Central
Google Scholar
Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27:2542–52. https://doi.org/10.1200/JCO.2008.19.9356.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Ma L, Wang X, Mo H, Wu D, Lan B, et al. Reactive capillary hemangiomas: a novel dermatologic toxicity following anti-PD-1 treatment with SHR-1210. Cancer Biol Med. 2019;16:173–81. https://doi.org/10.20892/j.issn.2095-3941.2018.0172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chelala E, Dirani A, Fadlallah A. Intravitreal anti-VEGF injection for the treatment of progressive juxtapapillary retinal capillary hemangioma: a case report and mini review of the literature. Clin Ophthalmol. 2013;7:2143–6. https://doi.org/10.2147/OPTH.S53243.
Article
PubMed
PubMed Central
Google Scholar
Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4:2516. https://doi.org/10.1038/ncomms3516.
Article
CAS
PubMed
Google Scholar
Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci U S A. 2011;108:3725–30. https://doi.org/10.1073/pnas.1100446108.
Article
PubMed
PubMed Central
Google Scholar
Pinter M, Jain RK. Targeting the renin-angiotensin system to improve cancer treatment: implications for immunotherapy. Sci Transl Med. 2017;9:eaan5616. https://doi.org/10.1126/scitranslmed.aan5616.
Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci U S A. 2013;110:18632–7. https://doi.org/10.1073/pnas.1318415110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goede V, Coutelle O, Neuneier J, Reinacher-Schick A, Schnell R, Koslowsky TC, et al. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br J Cancer. 2010;103:1407–14. https://doi.org/10.1038/sj.bjc.6605925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rigamonti N, Kadioglu E, Keklikoglou I, Wyser Rmili C, Leow CC, De Palma M. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 2014;8:696–706. https://doi.org/10.1016/j.celrep.2014.06.059.
Article
CAS
PubMed
Google Scholar
De Palma M, Naldini L. Angiopoietin-2 TIEs up macrophages in tumor angiogenesis. Clin Cancer Res. 2011;17:5226–32. https://doi.org/10.1158/1078-0432.CCR-10-0171.
Article
CAS
PubMed
Google Scholar
D'Souza NM, Fang P, Logan J, Yang J, Jiang W, Li J. Combining radiation therapy with immune checkpoint blockade for central nervous system malignancies. Front Oncol. 2016;6:212. https://doi.org/10.3389/fonc.2016.00212.
Article
PubMed
PubMed Central
Google Scholar
Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT. Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol. 2007;8:63–74. https://doi.org/10.1016/S1470-2045(06)71012-9.
Article
PubMed
Google Scholar
Fournier LS, Vanel D, Athanasiou A, Gatzemeier W, Masuykov IV, Padhani AR, et al. Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels. Eur J Radiol. 2009;69:43–9. https://doi.org/10.1016/j.ejrad.2008.07.038.
Article
PubMed
Google Scholar
Zhang J, Tan X, Zhang X, Kang Y, Li J, Ren W, et al. Efficacy of shear-wave elastography versus dynamic optical breast imaging for predicting the pathological response to neoadjuvant chemotherapy in breast cancer. Eur J Radiol. 2020;129:109098. https://doi.org/10.1016/j.ejrad.2020.109098.
Article
PubMed
Google Scholar