Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007. https://doi.org/10.3892/etm.2020.8454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, Hanemann CO. Merlin, a multi-suppressor from cell membrane to the nucleus. FEBS Lett. 2012;586(10):1403–8. https://doi.org/10.1016/j.febslet.2012.03.016.
Article
CAS
PubMed
Google Scholar
Fuse MA, Dinh CT, Vitte J, Kirkpatrick J, Mindos T, Plati SK, et al. Preclinical assessment of MEK1/2 inhibitors for neurofibromatosis type 2-associated schwannomas reveals differences in efficacy and drug resistance development. Neuro-Oncology. 2019;21(4):486–97. https://doi.org/10.1093/neuonc/noz002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kun E, Tsang YTM, Ng CW, Gershenson DM, Wong KK. MEK inhibitor resistance mechanisms and recent developments in combination trials. Cancer Treat Rev. 2021;92:102137. https://doi.org/10.1016/j.ctrv.2020.102137.
Article
CAS
PubMed
Google Scholar
Wang J, Pollard K, Calizo A, Pratilas CA. Activation of receptor tyrosine kinases mediates acquired resistance to MEK inhibition in malignant peripheral nerve sheath tumors. Cancer Res. 2021;81(3):747–62. https://doi.org/10.1158/0008-5472.CAN-20-1992.
Article
CAS
PubMed
Google Scholar
Li N, Lu XY, Shi WY, Mao FJ, Yang XY, Luo YB, et al. Combined mTOR/MEK inhibition prevents proliferation and induces apoptosis in NF2-mutant tumors. Eur Rev Med Pharmacol Sci. 2019;23(13):5874–83. https://doi.org/10.26355/eurrev_201907_18331.
Article
CAS
PubMed
Google Scholar
Yesiloz U, Kirches E, Hartmann C, Scholz J, Kropf S, Sahm F, et al. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro-Oncology. 2017;19(8):1088–96. https://doi.org/10.1093/neuonc/nox018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moon JH, Hong SW, Kim JE, Shin JS, Kim JS, Jung SA, et al. Targeting beta-catenin overcomes MEK inhibition resistance in colon cancer with KRAS and PIK3CA mutations. Br J Cancer. 2019;120(9):941–51. https://doi.org/10.1038/s41416-019-0434-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan ZM, Real AM, Marsiglia WM, Chow A, Duffy ME, Yerabolu JR, et al. Structural basis for the action of the drug trametinib at KSR-bound MEK. Nature. 2020;588(7838):509-14. https://doi.org/10.1038/s41568-020-2760-4.
Han J, Liu Y, Yang S, Wu X, Li H, Wang Q. MEK inhibitors for the treatment of non-small cell lung cancer. J Hematol Oncol. 2021;14(1):1. https://doi.org/10.1186/s13045-020-01025-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrilli AM, Fernandez-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene. 2016;35(5):537–48. https://doi.org/10.1038/onc.2015.125.
Article
CAS
PubMed
Google Scholar
Stamenkovic I, Yu Q. Merlin, a "magic" linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Pept Sci. 2010;11(6):471–84. https://doi.org/10.2174/138920310791824011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jindal GA, Goyal Y, Burdine RD, Rauen KA, Shvartsman SY. RASopathies: unraveling mechanisms with animal models. Dis Model Mech. 2015;8(8):769–82. https://doi.org/10.1242/dmm.020339.
Article
PubMed
PubMed Central
Google Scholar
Gross AM, Frone M, Gripp KW, Gelb BD, Schoyer L, Schill L, et al. Advancing RAS/RASopathy therapies: an NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Am J Med Genet A. 2020;182(4):866–76. https://doi.org/10.1002/ajmg.a.61485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blakeley JO, Evans DG, Adler J, Brackmann D, Chen R, Ferner RE, et al. Consensus recommendations for current treatments and accelerating clinical trials for patients with neurofibromatosis type 2. Am J Med Genet A. 2012;158A(1):24–41. https://doi.org/10.1002/ajmg.a.34359.
Article
PubMed
Google Scholar
White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, et al. YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev Cell. 2019;49(3):425–43 e9. https://doi.org/10.1016/j.devcel.2019.04.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goutagny S, Raymond E, Esposito-Farese M, Trunet S, Mawrin C, Bernardeschi D, et al. Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neuro-Oncol. 2015;122(2):313–20. https://doi.org/10.1007/s11060-014-1710-0.
Article
CAS
Google Scholar
Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 2020;139(4):643–65. https://doi.org/10.1007/s00401-019-02029-5.
Article
PubMed
Google Scholar
Evans DG, Howard E, Giblin C, Clancy T, Spencer H, Huson SM, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A. 2010;152A(2):327–32. https://doi.org/10.1002/ajmg.a.33139.
Article
CAS
PubMed
Google Scholar
Blakeley JO, Plotkin SR. Therapeutic advances for the tumors associated with neurofibromatosis type 1, type 2, and schwannomatosis. Neuro-Oncology. 2016;18(5):624–38. https://doi.org/10.1093/neuonc/nov200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legius E, Brems H. Genetic basis of neurofibromatosis type 1 and related conditions, including mosaicism. Childs Nerv Syst. 2020;36(10):2285–95. https://doi.org/10.1007/s00381-020-04771-8.
Article
PubMed
Google Scholar
Klose A, Ahmadian MR, Schuelke M, Scheffzek K, Hoffmeyer S, Gewies A, et al. Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Hum Mol Genet. 1998;7(8):1261–8. https://doi.org/10.1093/hmg/7.8.1261.
Article
CAS
PubMed
Google Scholar
Ahmadian MR, Kiel C, Stege P, Scheffzek K. Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J Mol Biol. 2003;329(4):699–710. https://doi.org/10.1016/S0022-2836(03)00514-X.
Article
CAS
PubMed
Google Scholar
Summers MA, Vasiljevski ER, Mikulec K, Peacock L, Little DG, Schindeler A. Developmental dosing with a MEK inhibitor (PD0325901) rescues myopathic features of the muscle-specific but not limb-specific Nf1 knockout mouse. Mol Genet Metab. 2018;123(4):518–25. https://doi.org/10.1016/j.ymgme.2018.02.009.
Article
CAS
PubMed
Google Scholar
Stansfield BK, Bessler WK, Mali R, Mund JA, Downing BD, Kapur R, et al. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation. Am J Pathol. 2014;184(1):79–85. https://doi.org/10.1016/j.ajpath.2013.09.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klesse LJ, Jordan JT, Radtke HB, Rosser T, Schorry E, Ullrich N, et al. The use of MEK inhibitors in Neurofibromatosis type 1-associated tumors and management of toxicities. Oncologist. 2020;25(7):e1109–e16. https://doi.org/10.1634/theoncologist.2020-0069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013;123(1):340–7. https://doi.org/10.1172/JCI60578.
Article
CAS
PubMed
Google Scholar
Dombi E, Ardern-Holmes SL, Babovic-Vuksanovic D, Barker FG, Connor S, Evans DG, et al. Recommendations for imaging tumor response in neurofibromatosis clinical trials. Neurology. 2013;81(21 Suppl 1):S33–40. https://doi.org/10.1212/01.wnl.0000435744.57038.af.
Article
PubMed
PubMed Central
Google Scholar
Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, et al. Activity of Selumetinib in Neurofibromatosis type 1-related Plexiform Neurofibromas. N Engl J Med. 2016;375(26):2550–60. https://doi.org/10.1056/NEJMoa1605943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss BPS, Widemann B, et al. NF106: Phase 2 trial of the MEK inhibitor PD-0325901 in adolescents and adults with NF1-related plexiform neurofibromas: an NF clinical trials consortium study. Neuro Oncol. 2018;20(Suppl 2):i143. https://doi.org/10.1093/neuonc/noy059.514.
Vaassen P, Durr N, Rohrig A, Willing R, Rosenbaum T. Trametinib induces Neurofibroma shrinkage and enables surgery. Neuropediatrics. 2019;50(5):300–3. https://doi.org/10.1055/s-0039-1691830.
Article
CAS
PubMed
Google Scholar
Caruana M, Hatami A, Marcoux D, Perreault S, McCuaig CC. Isotretinoin for the treatment of severe acneiform eruptions associated with the MEK inhibitor trametinib. JAAD Case Rep. 2020;6(10):1056–8. https://doi.org/10.1016/j.jdcr.2020.07.021.
Article
PubMed
PubMed Central
Google Scholar
Papalia H, Audic F, Riviere GR, Verschuur A, Andre N. Quick and sustained clinical response to MEK inhibitor I in a NF1 patient with neurofibromas. Ecancermedicalscience. 2018;12:862.
Article
PubMed
PubMed Central
Google Scholar
Burki TK. Selumetinib for children with plexiform neurofibromas. Lancet Oncol. 2017;18(2):e69. https://doi.org/10.1016/S1470-2045(17)30009-8.
Article
PubMed
Google Scholar
Coyne GGA, Dombi E, et al. Phase II trial of the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886 Hydrogen Sulfate in adults with neurofibromatosis type 1 (NF1) and inoperable plexiform neurofibromas). J Clin Oncol. 2020;38(15_suppl):3612.
Article
Google Scholar
Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable Plexiform Neurofibromas. N Engl J Med. 2020;382(15):1430–42. https://doi.org/10.1056/NEJMoa1912735.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross AWP, Baldwin A, et al. SPRINT: phase II study of the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) in children with neurofibromatosis type 1 (NF1) and inoperable plexiform neurofibromas (PN). J Clin Oncol. 2018;36(15Suppl):10503.
Article
Google Scholar
Jackson S, Baker EH, Gross AM, Whitcomb P, Baldwin A, Derdak J, et al. The MEK inhibitor selumetinib reduces spinal neurofibroma burden in patients with NF1 and plexiform neurofibromas. Neurooncol Adv. 2020;2(1):vdaa095.
PubMed
PubMed Central
Google Scholar
D'Angelo F, Ceccarelli M, Garofano L, Zhang J, Frattini V, et al. The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat Med. 2019;25(1):176–87. https://doi.org/10.1038/s41591-018-0263-8.
Article
CAS
PubMed
Google Scholar
Karajannis MA, Legault G, Fisher MJ, Milla SS, Cohen KJ, Wisoff JH, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro-Oncology. 2014;16(10):1408–16. https://doi.org/10.1093/neuonc/nou059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selt F, van Tilburg CM, Bison B, Sievers P, Harting I, Ecker J, et al. Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neuro-Oncol. 2020;149(3):499–510. https://doi.org/10.1007/s11060-020-03640-3.
Article
CAS
Google Scholar
Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a pediatric brain tumor consortium (PBTC) study. Neuro-Oncology. 2017;19(8):1135–44. https://doi.org/10.1093/neuonc/now282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011–22. https://doi.org/10.1016/S1470-2045(19)30277-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perreault S, Larouche V, Tabori U, Hawkin C, Lippe S, Ellezam B, et al. A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer. 2019;19(1):1250. https://doi.org/10.1186/s12885-019-6442-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondyli M, Larouche V, Saint-Martin C, Ellezam B, Pouliot L, Sinnett D, et al. Trametinib for progressive pediatric low-grade gliomas. J Neuro-Oncol. 2018;140(2):435–44. https://doi.org/10.1007/s11060-018-2971-9.
Article
CAS
Google Scholar
Manoharan N, Choi J, Chordas C, Zimmerman MA, Scully J, Clymer J, et al. Trametinib for the treatment of recurrent/progressive pediatric low-grade glioma. J Neuro-Oncol. 2020;149(2):253–62. https://doi.org/10.1007/s11060-020-03592-8.
Article
CAS
Google Scholar
Knight T, Shatara M, Carvalho L, Altinok D, Poulik J, Wang ZJ. Dramatic response to trametinib in a male child with neurofibromatosis type 1 and refractory astrocytoma. Pediatr Blood Cancer. 2019;66(1):e27474. https://doi.org/10.1002/pbc.27474.
Article
PubMed
Google Scholar
Paul MR, Pehlivan KC, Milburn M, Yeh-Nayre L, Elster J, Crawford JR. Trametinib-based treatment of pediatric CNS tumors: a single institutional experience. J Pediatr Hematol Oncol. 2020;42(8):e730–e7. https://doi.org/10.1097/MPH.0000000000001819.
Article
CAS
PubMed
Google Scholar
Sellmer L, Farschtschi S, Marangoni M, Heran MK, Birch P, Wenzel R, et al. Non-optic glioma in adults and children with neurofibromatosis 1. Orphanet J Rare Dis. 2017;12(1):34. https://doi.org/10.1186/s13023-017-0588-2.
Article
PubMed
PubMed Central
Google Scholar
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 2005;8(2):119–30. https://doi.org/10.1016/j.ccr.2005.07.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez PP, Kim J, Galvao RP, Cruickshanks N, Abounader R, Zong H. p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia. 2018;66(5):999–1015. https://doi.org/10.1002/glia.23297.
Article
PubMed
PubMed Central
Google Scholar
Gursel DB, Connell-Albert YS, Tuskan RG, Anastassiadis T, Walrath JC, Hawes JJ, et al. Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro-Oncology. 2011;13(6):610–21. https://doi.org/10.1093/neuonc/nor035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ameratunga M, McArthur G, Gan H, Cher L. Prolonged disease control with MEK inhibitor in neurofibromatosis type I-associated glioblastoma. J Clin Pharm Ther. 2016;41(3):357–9. https://doi.org/10.1111/jcpt.12378.
Article
CAS
PubMed
Google Scholar
Awada G, Serruys D, Schwarze JK, Van De Voorde L, Duerinck J, Neyns B. Durable complete response of a recurrent Mesencephalic Glioblastoma treated with Trametinib and low-dose Dabrafenib in a patient with Neurofibromatosis type 1. Case Rep Oncol. 2020;13(2):1031–6. https://doi.org/10.1159/000509773.
Article
PubMed
PubMed Central
Google Scholar
See WL, Tan IL, Mukherjee J, Nicolaides T, Pieper RO. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res. 2012;72(13):3350–9. https://doi.org/10.1158/0008-5472.CAN-12-0334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson KM, Mathews-Griner LA, Williamson T, Guha R, Chen L, Shinn P, et al. Mutation profiles in Glioblastoma 3D Oncospheres modulate drug efficacy. SLAS Technol. 2019;24(1):28–40. https://doi.org/10.1177/2472630318803749.
Article
CAS
PubMed
Google Scholar
Cho HJ, Zhao J, Jung SW, Ladewig E, Kong DS, Suh YL, et al. Distinct genomic profile and specific targeted drug responses in adult cerebellar glioblastoma. Neuro-Oncology. 2019;21(1):47–58. https://doi.org/10.1093/neuonc/noy123.
Article
CAS
PubMed
Google Scholar
Ho KH, Chen PH, Shih CM, Lee YT, Cheng CH, Liu AJ, et al. MiR-4286 is involved in connections between IGF-1 and TGF-beta signaling for the mesenchymal transition and invasion by glioblastomas. Cell Mol Neurobiol. 2020. https://doi.org/10.1007/s10571-020-00977-1.
Cai Z, Tang X, Liang H, Yang R, Yan T, Guo W. Prognosis and risk factors for malignant peripheral nerve sheath tumor: a systematic review and meta-analysis. World J Surg Oncol. 2020;18(1):257. https://doi.org/10.1186/s12957-020-02036-x.
Article
PubMed
PubMed Central
Google Scholar
Miettinen MM, Antonescu CR, Fletcher CDM, Kim A, Lazar AJ, Quezado MM, et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1-a consensus overview. Hum Pathol. 2017;67:1–10. https://doi.org/10.1016/j.humpath.2017.05.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams KB, Largaespada DA. New Model systems and the development of targeted therapies for the treatment of neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Genes (Basel). 2020;11(5):477. https://doi.org/10.3390/genes/11050477.
Dodd RD, Mito JK, Eward WC, Chitalia R, Sachdeva M, Ma Y, et al. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Mol Cancer Ther. 2013;12(9):1906–17. https://doi.org/10.1158/1535-7163.MCT-13-0189.
Article
CAS
PubMed
Google Scholar
Fischer-Huchzermeyer S, Dombrowski A, Wilke G, Stahn V, Streubel A, Mautner VF, et al. MEK inhibitors enhance therapeutic response towards ATRA in NF1 associated malignant peripheral nerve sheath tumors (MPNST) in-vitro. PLoS One. 2017;12(11):e0187700. https://doi.org/10.1371/journal.pone.0187700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahsan S, Ge Y, Tainsky MA. Combinatorial therapeutic targeting of BMP2 and MEK-ERK pathways in NF1-associated malignant peripheral nerve sheath tumors. Oncotarget. 2016;7(35):57171–85. https://doi.org/10.18632/oncotarget.11036.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Pollard K, Allen AN, Tomar T, Pijnenburg D, Yao Z, et al. Combined inhibition of SHP2 and MEK is effective in models of NF1-deficient malignant peripheral nerve sheath tumors. Cancer Res. 2020;80(23):5367–79. https://doi.org/10.1158/0008-5472.CAN-20-1365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elefteriou F, Kolanczyk M, Schindeler A, Viskochil DH, Hock JM, Schorry EK, et al. Skeletal abnormalities in neurofibromatosis type 1: approaches to therapeutic options. Am J Med Genet A. 2009;149A(10):2327–38. https://doi.org/10.1002/ajmg.a.33045.
Article
CAS
PubMed
Google Scholar
Stevenson DA, Little D, Armstrong L, Crawford AH, Eastwood D, Friedman JM, et al. Approaches to treating NF1 tibial pseudarthrosis: consensus from the Children's Tumor Foundation NF1 bone abnormalities consortium. J Pediatr Orthop. 2013;33(3):269–75. https://doi.org/10.1097/BPO.0b013e31828121b8.
Article
PubMed
Google Scholar
Stevenson DA, Zhou H, Ashrafi S, Messiaen LM, Carey JC, D'Astous JL, et al. Double inactivation of NF1 in tibial pseudarthrosis. Am J Hum Genet. 2006;79(1):143–8. https://doi.org/10.1086/504441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paria N, Cho TJ, Choi IH, Kamiya N, Kayembe K, Mao R, et al. Neurofibromin deficiency-associated transcriptional dysregulation suggests a novel therapy for tibial pseudoarthrosis in NF1. J Bone Miner Res. 2014;29(12):2636–42. https://doi.org/10.1002/jbmr.2298.
Article
CAS
PubMed
Google Scholar
Sant DW, Margraf RL, Stevenson DA, Grossmann AH, Viskochil DH, Hanson H, et al. Evaluation of somatic mutations in tibial pseudarthrosis samples in neurofibromatosis type 1. J Med Genet. 2015;52(4):256–61. https://doi.org/10.1136/jmedgenet-2014-102815.
Article
CAS
PubMed
Google Scholar
Margraf RL, VanSant-Webb C, Mao R, Viskochil DH, Carey J, Hanson H, et al. NF1 somatic mutation in dystrophic scoliosis. J Mol Neurosci. 2019;68(1):11–8. https://doi.org/10.1007/s12031-019-01277-0.
Article
CAS
PubMed
Google Scholar
Sharma R, Wu X, Rhodes SD, Chen S, He Y, Yuan J, et al. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Hum Mol Genet. 2013;22(23):4818–28. https://doi.org/10.1093/hmg/ddt333.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Hoss J, Sullivan K, Cheng T, Yu NY, Bobyn JD, Peacock L, et al. A murine model of neurofibromatosis type 1 tibial pseudarthrosis featuring proliferative fibrous tissue and osteoclast-like cells. J Bone Miner Res. 2012;27(1):68–78. https://doi.org/10.1002/jbmr.528.
Article
CAS
PubMed
Google Scholar
de la Croix NJ, Stevens DM, Vignaux G, Uppuganti S, Perrien DS, Yang X, et al. Combined MEK inhibition and BMP2 treatment promotes osteoblast differentiation and bone healing in Nf1Osx −/− mice. J Bone Miner Res. 2015;30(1):55–63.
Article
Google Scholar
He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park SJ, et al. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One. 2011;6(9):e24780. https://doi.org/10.1371/journal.pone.0024780.
Article
CAS
PubMed
PubMed Central
Google Scholar
de la Croix NJ, Makowski AJ, Uppuganti S, Vignaux G, Ono K, Perrien DS, et al. Asfotase-alpha improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med. 2014;20(8):904–10.
Article
Google Scholar
Ma Y, Gross AM, Dombi E, Pemov A, Choi K, Chaney K, et al. A molecular basis for neurofibroma-associated skeletal manifestations in NF1. Genet Med. 2020;22(11):1786–93. https://doi.org/10.1038/s41436-020-0885-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Hoss J, Cheng T, Carpenter EC, Sullivan K, Deo N, Mikulec K, et al. A combination of rhBMP-2 (recombinant human bone morphogenetic Protein-2) and MEK (MAP kinase/ERK kinase) inhibitor PD0325901 increases bone formation in a murine model of Neurofibromatosis type I Pseudarthrosis. J Bone Joint Surg Am. 2014;96(14):e117. https://doi.org/10.2106/JBJS.M.00862.
Article
CAS
PubMed
Google Scholar
Bobyn JD, Deo N, Little DG, Schindeler A. Modulation of spine fusion with BMP-2, MEK inhibitor (PD0325901), and zoledronic acid in a murine model of NF1 double inactivation. J Orthop Sci. 2020. https://doi.org/10.1016/j.jos.2020.05.016.
Sullivan K, El-Hoss J, Little DG, Schindeler A. JNK inhibitors increase osteogenesis in Nf1-deficient cells. Bone. 2011;49(6):1311–6. https://doi.org/10.1016/j.bone.2011.09.043.
Article
CAS
PubMed
Google Scholar