Dr Andrew Lewington & Dr Suren Kanagasundaram Acute Kidney Injury Clinical Practice Guidelines UK Renal Association 5th Edn, 2011.
Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit. Critical care research and practice. 2013.
Carbonell N, Blasco M, Sanjuán R, García-Ramón R, Blanquer J, Carrasco AM. Acute renal failure in critically ill patients. A prospective epidemiological study. Nefrologia. 2004;24(1):47–53.
CAS
PubMed
Google Scholar
Bahloul M, Ben Hamida C, Damak H, et al. Incidence and prognosis of acute renal failure in the intensive care unit. Retrospective study of 216 cases. TunisieMedicale. 2003;81(4):250–7.
Google Scholar
Metnitz PGH, Krenn CG, Steltzer H, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30(9):2051–8.
Article
Google Scholar
Paudel MS, Wig N, Mahajan S, et al. A study of incidence of AKI in critically ill patients. Ren Fail. 2012;34:1217–22.
Article
Google Scholar
Katayama S, Nunomiya S, Koyama K, Wada M, Koinuma T, Goto Y, et al. Markers of acute kidney injury in patients with sepsis: the role of soluble thrombomodulin. Critical Care. 2017;21:229.
Article
Google Scholar
CalábriaBaxmann A, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM, et al. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum CystatinC. Clin J Am Soc Nephrol. 2008 Mar;3(2):348–54.
Article
Google Scholar
Anto’nio Lopes J’, Jorge S, Resina C, Santos C, Pereira A’l, Neves J, et al. Acute kidney injury in patients with sepsis: a contemporary analysis. International Journal of Infectious Diseases. 2009;13:176–81.
Article
Google Scholar
Thongprayoon C, Cheungpasitporn W, Kashani K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J Thorac Dis. 2016;8(5):E305–11.
Article
Google Scholar
Sanjeevani S, Pruthi S, Kalra , Goel A, KalraOPRole of neutrophil gelatinase-associated lipocalin for early detection of acute kidney injury, Int J CritIllnInj Sci 2014; 4(3): 223–228.
Mårtensson J, Bell M. Oldner. A et al Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury Intensive Care Med. 2010;36:1333.
PubMed
Google Scholar
Zhang A, Cai Y, Wang P-F, Qu J-N, Luo Z-C, Chen X-D, et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis. Critical Care. 2016;20:41.
Article
Google Scholar
Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, the ADQI workgroup, et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care. 2004;8:R204–12.
Article
Google Scholar
Biomarkers of AKI: A Review of Mechanistic Relevance and Potential Therapeutic Implications Joseph L. Alge and John M. ArthurCJASN January 2015, 10 (1) 147–155;
Camou F, Oger S, Paroissin C, Guilhon E, Guisset O, Mourissoux G, et al. Plasma neutrophil gelatinase-associated lipocalin (NGAL) predicts acute kidney injury in septic shock at ICU admission. Ann FrAnesthReanim. 2013;32(3):157–64.
CAS
Google Scholar
De Rosa S, Samoni S, Ronco C, et al. Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care. Critical Care. 2016;20:69.
Article
Google Scholar
Soto K, Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, Fidalgo P, Frade F. Devarajan P Plasma NGAL for the diagnosis of AKI in patients admitted from the emergency department setting. Clin J Am SocNephrol. 2013;8(12):2053–63.
Article
CAS
Google Scholar
Muhammad Usman Munir, Dilshad Ahmed Khan, Farooq Ahmad Khan, Syed Muhammad Shahab Naqvi.Comparison of urine with plasma neutrophil gelatinase associated lipocalin in detecting acute kidney injury after cardiopulmonary bypass surgery.
Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, Fidalgo P, et al. Plasma NGAL for the Diagnosis of AKI in Patients Admitted from the Emergency Department Setting Karina. Clin J Am Soc Nephrol. 2013;8:2053–63.
Article
Google Scholar
Wang HX, Mu HB, Zheng RQ, Lin H, Yu JQ, Wu XY. Neutrophilgelatinaseassociatedlipocalin for the early diagnosis of sepsis in patients with acute kidney injury. J Clin Med Pract. 2014;18(21):183–4.
Google Scholar
Yamashita T, Doi K, Hamasaki Y, Matsubara T, Ishii T, Yahagi N, et al. Evaluation of urinary tissue inhibitor of metalloproteinase-2 in acute kidney injury: a prospective observational study. Crit Care. 2014;18(6):716.
Article
Google Scholar
Dai X, Zeng Z, Fu C, Zhang S, Cai Y, Chen Z. Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C, and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Crit Care. 2015;19:223.
Article
Google Scholar
Ralib A m, mat M, john W. Pickering plasma neutrophil gelatinase-associated Lipocalin diagnosed acute kidney injury in patients with systemic inflammatory disease and sepsis. Nephrology (Carlton). 2017;22(5):412–9.
Corbacıoglu SK, Cevik Y, Akinci E, Uzunosmanoglu H, Dagar S, Safak T, et al. Value of plasma neutrophil gelatinase-associated lipocalin (NGAL) in distinguishing between acute kidney injury (AKI) and chronic kidney disease (CKD). Turk J Emerg Med. 2017;2017(3):85–8.
Article
Google Scholar
Devarajan P. Neutrophilgelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med. 2010;4(2):265–80.
Article
CAS
Google Scholar