The findings in this case - MLL rearrangements, abnormalities of the IGH@, 12p abnormalities, and rearrangements of 9p24 involving the JAK2 locus - have been previously described in B-ALL [1–3]. Abnormalities involving IGH@ have only been recently identified as a biologically and clinically relevant sub-group of B-ALL [7]. However deletions of the 5′ IGH@ region have not been well characterized in B-ALL in conjunction with JAK2 rearrangements and MLL abnormalities. JAK2 translocations have been reported in B-ALL, although at low frequencies. These B-ALL patients are most often male, present with hyperleukocytosis, respond poorly to chemotherapy, often relapse, and tend to have little to no cytogenetic abnormalities apart from those involving JAK2
[1]. This fact may suggest that JAK2 rearrangements play a driving role in the leukemogenesis of B-ALL.
JAK2 translocations induce dimerization or oligomerization of JAK2 without ligand binding, resulting in constitutive activation of JAK2-mediated tyrosine kinase pathways. It has been speculated that other cytogenetic abnormalities occurring in conjunction with JAK2 rearrangements in B-ALL may recruit other altered tyrosine kinase pathways that in turn, lead to an inferior clinical outcome. A correlation has also been observed between CRLF2 (cytokine receptor-like factor 2) overexpression and JAK2 mutations, most likely because CRLF2 is a JAK-binding, Box 1 motif-containing cytokine receptor. Increased expression of CRLF2 independently has been correlated with a poor prognosis in B-ALL, and the synergistic effects of CRLF2 overexpression and JAK2 constitutive activation may play a major role in the leukemogenesis of the disease that can be prognostically considered and therapeutically targeted [8]. Similarly, even point mutations and rearrangements in the CRFL2 gene have been reported to activate aberrant JAK2 signaling [9].
While JAK2 translocations are not common in lymphoblastic leukemia, it is clear that newly developed small molecular JAK2 inhibitors such as TG101348 and TG10129 developed by TargetGen, Inc. show promising results in blocking the action of mutated JAK2 in myeloproliferative disorders [2, 10]. There are at least 10 different JAK inhibitors undergoing various phases of clinical trials [11] including a group of TKIs used for both MPDs and non-MPDs, namely MK-0457 (previously VX-680), that has had JAK2 inhibitory action in MPD and reduced kinase activity in T315I-positive ALL and CML [2]. Lestaurtinib I(CEP-701), used mainly for myeloid malignancies, has also been used in a clinical trial to treat children with B-ALL [11]. However, among neoplasias dependent on tyrosine kinases, treatment with ATP-mimetic inhibitors has invariably resulted in the development of inhibitor resistance mutations [9]. A novel JAK2 inhibitor, NVP_BVB808 (BVB808), has been used experimentally in mice xenografted with human B-ALL to recover E864K, Y931C, and G935R mutations within the kinase domain of JAK2 that confer resistance to multiple JAK2 enzymatic inhibitors [9]. In addition, treatment with inhibitors of heat shock protein 90 (HSP90) has now been used experimentally to overcome all three resistance mutations and potentially kill cells dependent on JAK2. However, development of new therapies that target the abnormal JAK2 tyrosine kinase activity may benefit patients diagnosed with ALL presenting with JAK2 rearrangements [9].
Structural abnormalities involving the MLL gene (11q23) with various partner genes have been reported in ALL in ~6% of cases, but an MLL insertion at 6q27 has not been reported to the best of our knowledge [12]. Herein, conventional and molecular cytogenetic metaphase analysis solely revealed an insertion of MLL on chromosome 6q27 with an unknown fusion partner gene; however, further molecular cytogenetic studies on interphase nuclei unveiled a second clonal population of cells harboring an MLL rearrangement. Inversion of MLL may, however, have followed rearrangements with chromosome 6 (as opposed to preceding it). Limited sample material prevented further molecular characterization. Furthermore, MLL insertions have been reported to result in chimeric fusion genes and are usually associated with a poor prognosis [3, 12].
In short, our case highlights the importance of using multiple tools, namely conventional cytogenetic and molecular genetic analysis, to elucidate complex rearrangements involving JAK2 and MLL genes. The detection and therapeutic targeting of MLL as well as JAK2 abnormalities in cases of ALL may be prognostically beneficial as they may represent a distinct subtype of acute lymphoblastic leukemia. To the best of our knowledge, this study is the first reported case of a pediatric B-ALL that shows a concurrent MLL gene rearrangement with a JAK2 translocation and deletion of the 5′ IGH@ region. This case sheds light on the potential significance of JAK2 and MLL as prognostic and therapeutic targets in lymphoblastic leukemias, and suggests further investigation to determine the benefits of the newly developed JAK2 inhibitors against translocations involving JAK2 in pediatric B-ALL.