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Abstract 

The production of functional mature RNA transcripts from genes undergoes various pre-transcriptional regulation and 
post-transcriptional modifications. Accumulating studies demonstrated that gene transcription carries out in tissue 
and cancer type-dependent ways. However, RNA transcript-level specificity analysis in large-scale transcriptomics data 
across different normal tissue and cancer types is lacking. We applied reference-based de novo transcript assembly 
and quantification of 27,741 samples across 33 cancer types, 29 tissue types, and 25 cancer cell line types. We totally 
identified 231,836 specific RNA transcripts (SRTs) across various tissue and cancer types, most of which are found 
independent of specific genes. Almost half of tumor SRTs are also tissue-specific but in different tissues. Further-
more, we found that 10 ~ 20% of tumor SRTs in most tumor types were testis-specific. The SRT database (SRTdb) was 
constructed based on these resources. Taking liver cancer as an example, we showed how SRTdb resource is utilized 
to optimize the identification of RNA transcripts for more precision diagnosis of particular cancers. Our results provide 
a useful resource for exploring transcript specificity across various cancer and tissue types, and boost the precision 
medicine for tumor patients.
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Introduction
Over the past decade, high-throughput RNA sequenc-
ing (RNA-seq) technology has largely improved our 
understanding of the roles transcriptome play in vari-
ous human physiological and pathological processes 
[1]. Transcriptome-wide analysis has become indis-
pensable for the investigation of systematic changes in 
numerous aspects of RNA biology and the discovery 
of novel functional RNAs [2–4]. Mature RNA tran-
scripts are the major carriers to deliver genetic codes 

from DNA to proteins and exert regulatory roles, which 
undergoes diverse pre-transcriptional regulations and 
post-transcriptional modifications from nascent RNA 
products [5]. Through alternative processing of nas-
cent RNAs, individual genes can transcribe different 
RNA transcripts in distinct physiological or pathologi-
cal conditions to execute specific functions [6, 7]. How-
ever, most transcriptome-wide studies have focused on 
gene-level activities, neglecting the specific RNA tran-
scripts (SRTs). Emerging evidence has demonstrated the 
importance to determine the SRTs of genes in particular 
physiological and pathological conditions [8, 9].

Recently, accumulating studies have shed light on the 
advantage of transcript-level analysis over gene-level 
ones. A pilot study of alternative transcriptional iso-
forms across multiple human tissues revealed the uni-
versal of alternative transcriptions in different tissue 
types, indicating the necessity and importance of RNA 
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transcript-level analysis [10]. In a previous study, we 
identified one alternative transcript of UGP2 gene, which 
showed significantly differential expression and indicated 
benign prognosis in liver cancer [9]. Zheng et al. ana-
lyzed approximately 1000 normal and liver cancer RNA-
seq samples to identify transcripts that were exclusively 
expressed in liver cancer samples over normal liver sam-
ples [11]. They found that tumor-specific transcripts were 
frequently expressed in liver cancer and experimentally 
demonstrated their biological functions in liver cancer. 
These nonnegligible findings were masked in the stream 
of gene-level analysis. The specificity feature of RNA 
transcripts also suggests enormous potentials in tumor 
specific diagnosis in clinical practice.

To maximize the utility of human tissue and cancer 
SRTs, we conducted de novo transcriptome assembly 
of 27,741 RNA-seq samples across various tissue/can-
cer types and presented SRTdb (http://​www.​sheng​lilabs.​
com/​SRTdb/), which is a comprehensive database of 
human tissue and cancer SRTs. In total, SRTdb database 
contains 1,160,216 RNA transcripts across 29 different 
tissue types, 33 cancer types, and 25 cancer cell line lin-
eages. We identified 228,752, 212,214, and 231,836 SRTs 
in human normal tissue types, cancer types, and cell line 
types, respectively. Further analysis revealed that tissue/
cancer SRTs are independent of corresponding specific 
genes (SRGs) and about half of tumor SRTs are also spe-
cific in other normal tissues, especially the testis. Overall, 
our results offered a panorama of RNA transcript speci-
ficity across various tissue and cancer types, and laid a 
solid data foundation for cancer precision medicine.

Materials and methods
RNA‑seq data collection
The RNA-seq read alignments (BAM files) of 16,367 
human normal tissue samples from 29 different tis-
sue types were downloaded from the Genotype-Tis-
sue Expression data portal (GTEx, https://​www.​gtexp​
ortal.​org/) with official authorization. The RNA-seq 
read alignments (BAM files) of 10,358 human tumor 
samples from 33 different cancer types were obtained 
from the Genomic Data Commons data portal (GDC, 
https://​portal.​gdc.​cancer.​gov/) with official authori-
zation. The raw RNA-seq data (FASTQ files) of 1016 
human cancer cell lines from 25 different primary sites 
were downloaded from the Sequence Read Archive 
(SRA, https://​www.​ncbi.​nlm.​nih.​gov/​sra) database 
with accession of SRP186687. These data were released 
by the Cancer Cell Line Encyclopedia project (CCLE, 
https://​porta​ls.​broad​insti​tute.​org/​ccle/). Raw sequenc-
ing reads were aligned to the human reference genome 
(GRCh38) by using STAR software to generate read 
alignments for each cell line.

Transcript assembly and quantification
Individual read alignment files were provided as input 
to StringTie [12] for de novo transcript assembly. Tran-
script annotation from GENCODE version 22 was used 
as the transcript model reference to guide the assembly 
process with “-G” option. Transcript assembly was per-
formed separately in each sample. Then all assembled 
transcripts were merged to generate a nonredundant 
master set of transcripts for all samples by using the 
“--merge” mode of StringTie. StringTie quantification 
was utilized to produce transcript-level expression for 
each sample. Expression levels were normalized in TPM 
units (TPM = Transcripts Per Million mapped reads). In 
each tissue/cancer/cell type, transcripts with expression 
levels higher than 0.1 TPM in at least one sample were 
remained as expressed transcripts.

Calculation of expression specificity scores
To obtain tissue/cancer/cell type-specific transcripts, a 
specificity score was calculated for each transcript, which 
was described in our previous study [9]. In particular, the 
specificity score was equal to the logarithm of lineage 
number minus Shannon entropy of transcript expression. 
The calculation is as follows:

where St represents specificity score of transcript t, N is 
the total number of tissue/cancer/cell types, pit indicates 
the expression ratio of transcript t in tissue/cancer/cell 
type i. One specificity score and N expression ratio were 
assigned to each transcript. The expression ratio of each 
transcript across all tissue/cancer/cell types is calculated 
as follows:

where pit is the expression ratio of transcript t in tissue/
cancer/cell type i, N indicates the total number of tissue/
cancer/cell types, xit represents the expression value of 
transcript t in tissue/cancer/cell type i. When the larg-
est expression ratio is more than two times compared to 
the second largest expression ratio and specificity score is 
larger than 1, the transcript was defined as tissue/cancer/
cell type-specific transcript in the tissue/cancer/cell type 
with largest expression ratio.

Calculation of specific diagnostic scores in different tumor 
types
To further filter out transcripts specific for individual 
tumor types, we calculated one specific diagnostic score for 
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each tumor SRT by integrating the expression level, tumor 
specific scores, and tissue specific scores. Only transcripts 
that were expressed in tumor samples but not the corre-
sponding normal samples were used to calculated specific 
diagnostic scores. Specific diagnostic scores are calculated 
as follows:

where Stc is the specific diagnostic score of transcript t in 
cancer type c, xtc indicates the average expression level 
of transcript t across tumor samples in cancer type c, stc 
is the specificity score of transcript t in cancer type c, rtc 
represents the expression frequency of transcript t across 
samples in cancer type c, stt is the tissue specific score of 
transcript t in tissue t, stt is set to 1 when transcript t is 
not a tissue-specific transcript. β1 and β2 are weight coef-
ficients. β1 is set to 1 when transcript t is a specific tran-
script in cancer type c, β1 is set to −1 when transcript t 
is specific in other cancer types. β2 is set to 1 when tran-
script t isa specific transcript in tissue type t, β2 is set to 
0 when transcript t is specific in other tissue types. The 
larger Stc value is, the higher reliability of transcript t as a 
specific diagnostic biomarker in cancer type c is.

Protein‑coding potential prediction of unannotated 
transcripts
CPAT (http://​lilab.​resea​rch.​bcm.​edu/​cpat/) [13] and CPC2 
[14] (http://​cpc2.​cbi.​pku.​edu.​cn/) were employed to predict 
the protein-coding potential of unannotated transcripts. 
Coding potential scores of transcripts in CPAT that were 
larger than the default value of 0.364 were labeled as pro-
tein-coding. The transcript was considered with coding 
potential when it was predicted in both two algorithms.

Database and web site implementation
SRTdb database was built with Python FLASK_REST 
API (https://​flask-​restf​ul.​readt​hedocs.​io/) as back-
end web framework. In SRTdb database, MongoDB 
(https://​www.​mongo​db.​com) was adopted for data 
deposition and management. Angular (https://​angul​ar.​
io/) was utilized to develop web interfaces of SRTdb. 
The frontend framework was constructed by using 
Bootstrap (https://​getbo​otstr​ap.​com). Data visuali-
zation was carried out by Echarts (https://​echar​ts.​
apache.​org/). The SRTdb online database is tested and 
supported in popular web browsers, including Micro-
soft Edge, Google Chrome, Firefox, and Safari.

Results
SRTdb is resourced from over 27,000 human RNA‑seq 
samples
SRTdb is a database aiming to collect and annotate human 
specific transcript RNAs, especially cancer-specific 

Stc = β1 × log2(xtc + 1)× stc × rtc + β1 × β2 × stt

transcripts, from large-scale RNA-seq datasets. Cur-
rently, SRTdb analyzed 27,741 samples across 33 tumor 
types, 29 normal tissue types, and 25 cancer cell line-
ages (Table 1). To make the transcript identification more 
sensitive to tumor, we first performed refence-based de 
novo transcriptome assembly across 10,358 tumor sam-
ples (Fig.  1A). Briefly, de novo transcript assembly was 
separately conducted in individual tumor samples (see 
Materials and Methods). Then, all assembled transcripts 
were merged to generate one non-redundant set of tran-
scripts as the master transcript annotation for following 
analyses. In total, 1,160,216 transcripts were identified, 
of which 198,256 are annotated transcripts and 961,960 
(82.91%) are novel transcripts (Fig.  1B). The length of 
identified transcripts ranged widely from 200 bp to 30 kb, 
with median length of 5192 bp (Fig.  1C). About 40% of 
transcripts are composed by 2 ~ 5 exons, and approxi-
mately 10% have more than 20 exons (Fig.  1D). Among 
the novel transcripts, 96.1% (924,470/961,960) are 
multi-exon transcripts, indicating that these transcripts 
might undergo post-transcriptional processing, such as 
alternative splicing. In addition, most of the novel tran-
scripts were non-coding, and only 2% of the transcripts 
were predicted to have protein-coding potential. These 
transcripts were then quantified in 16,367 normal tissue 
samples and 1016 cancer cell line samples. By median 
numbers, 248,832, 294,601, and 299,394 transcripts were 
identified expressed in tumor, normal tissues, and cancer 
cell lines, respectively (Supplemental Table S1). In tumor, 
the largest number of transcripts were detected in stom-
ach cancer (i.e., 358,830), while uveal melanoma samples 
express the smallest number of transcripts (i.e., 183,267). 
The testis tissue shows the highest levels of transcrip-
tional diversity with 427,963 different transcripts 
expressed, whereas muscle tissue expresses the lowest 
amount with 209,973 transcripts. Cell lines derived from 
biliary tract tumor expressed the most transcripts (i.e., 
351,217), while only 147,731 transcripts were detected 
transcriptionally active in small intestine cancer-derived 
cell lines. Based on expression profiles of transcripts from 
over 27,000 samples, expression specificity scores were 
calculated to identify specific RNA transcripts across dif-
ferent tumor types, normal tissue types, and cancer cell 
line types.

Exploring tumor and tissue‑specific RNA transcripts 
with SRTdb
The expression profiles of transcripts were adopted to 
cluster samples separately in tumor and normal samples 
by using top 2000 variable transcripts. Transcript expres-
sion profiles showed notable performance to distinguish 
different tumor types (Fig.  2A) and normal tissue types 
(Fig. 2B). To identify exclusively expressed transcripts in 

http://lilab.research.bcm.edu/cpat/
http://cpc2.cbi.pku.edu.cn/
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https://www.mongodb.com
https://angular.io/
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https://getbootstrap.com
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https://echarts.apache.org/
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individual tumor types, normal tissue types, and cancer 
cell line types, expression specificity scores were calcu-
lated by employing a method of Shannon entropy (see 

Materials and Methods). In the current version of SRTdb, 
we totally identified and curated 212,214, 231,836, and 
228,752 SRTs in tumors, cancer cell lines, and normal 

Table 1  The numbers of samples in each cancer, tissue, and cell line type

a ACC​ adrenocortical carcinoma, BLCA Bladder Urothelial Carcinoma, LAML Acute Myeloid Leukemia, LGG Brain Lower Grade Glioma, GBM Glioblastoma multiforme, 
BRCA​ Breast invasive carcinoma, CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma, COAD Colon adenocarcinoma, ESCA Esophageal 
carcinoma, KIRP Kidney renal papillary cell carcinoma, KIRC Kidney renal clear cell carcinoma, KICH Kidney Chromophobe, LIHC Liver hepatocellular carcinoma, LUAD 
Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, PCPG Pheochromocytoma and Paraganglioma, OV Ovarian serous cystadenocarcinoma, PAAD Pancreatic 
adenocarcinoma, PRAD Prostate adenocarcinoma, SKCM Skin Cutaneous Melanoma, STAD Stomach adenocarcinoma, TGCT​ Testicular Germ Cell Tumors, THCA Thyroid 
carcinoma, UCS Uterine Carcinosarcoma, UCEC Uterine Corpus Endometrial Carcinoma, CHOL Cholangiocarcinoma, SARC​ Sarcoma, DLBC Lymphoid Neoplasm Diffuse 
Large B-cell Lymphoma, HNSC Head and Neck squamous cell carcinoma, MESO Mesothelioma, READ Rectum adenocarcinoma, THYM Thymoma, UVM Uveal Melanoma

Type Normal tissue Tumor tissuea Cancer cell line

Adipose tissue 1204 0 0

Adrenal gland 258 79 (ACC) 0

Bladder 21 415 (BLCA) 0

Blood 929 151 (LAML) 0

Blood vessel 1335 0 0

Brain 1668 530 (LGG);169 (GBM) 65

Breast 457 1109 (BRCA) 57

Cervix 19 302 (CESC) 3

Colon 779 480 (COAD) 59

Esophagus 1434 160 (ESCA) 26

Heart 857 0 0

Kidney 89 289 (KIRP); 539 (KIRC); 65 (KICH) 32

Liver 226 372 (LIHC) 25

Lung 573 536 (LUAD); 502 (LUSC) 191

Muscle 799 0 0

Nerve 619 183 (PCPG) 16

Ovary 180 379 (OV) 47

Pancreas 328 178 (PAAD) 41

Pituitary 283 0 0

Prostate 242 500 (PRAD) 8

Salivary gland 162 0 2

Skin 1806 471 (SKCM) 56

Small intestine 187 0 1

Spleen 241 0 0

Stomach 359 375 (STAD) 37

Testis 361 156 (TGCT) 0

Thyroid 653 509 (THCA) 11

Uterus 142 56 (UCS); 552 (UCEC) 27

Vagina 156 0 0

Biliary tract 0 36 (CHOL) 8

Soft tissue 0 263 (SARC) 31

Lymphoma 0 48 (DLBC) 176

Head and Neck 0 502 (HNSC) 32

Mesothelium 0 86 (MESO) 0

Rectum 0 167 (READ) 0

Thymus 0 119 (THYM) 0

Eye 0 80 (UVM) 0

Bone 0 0 28

Pleura 0 0 11

Urinary tract 0 0 26
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tissues, respectively. The number of transcripts specific 
to each cancer type varies considerably (Fig.  2C). The 
most specifically expressed transcripts are found in acute 
myeloid leukemia (LAML), followed by esophageal car-
cinoma (ESCA), brain lower grade glioma (LGG) and 
glioblastoma multiforme (GBM). Notably, there are fewer 
SRTs for cancers of the same tissue type, such as lung 
adenocarcinoma (LUAD) and lung squamous carcinoma 
(LUSC), both of which are derived from lung tissue. 
Cancers of colorectum, colon adenocarcinoma (COAD) 
and rectum adenocarcinoma (READ), also have fewer 
SRTs. The major reason for these results is that cancers 
of the same or related tissue types have relatively simi-
lar expression patterns. A certain number of specifically 
expressed transcripts are present in each normal tissue 
type, and these transcripts may be tightly related to tis-
sue-specific functions. The testis has the highest number 

of specifically expressed RNAs, followed by pituitary, sal-
ivary gland, spleen and liver. These SRTs can be employed 
as molecular biomarkers for different tissue types. 
Similarly, distinct numbers of specific transcripts were 
obtained in different cancer cell line types. To examine 
whether specific transcripts are independent of specific 
genes, we also evaluated the specificity of corresponding 
host genes. In most cancer and tissue types, the majority 
of SRTs are not from specific genes (Fig. 2D). This result 
demonstrated that a large portion of valuable RNA tran-
scripts were neglected by the gene-level analysis.

The SRTdb data portal mainly includes “Browse”, 
“Search”, and “Download” features. Through a user-
friendly interface, users can browse the SRTs by select-
ing a specific tumor, cancer cell line, or normal tissue 
type from the dataset column on the left (Supplemen-
tary Fig. S1A), and the result will be displayed in a 

Fig. 1  The infrastructure of online SRTdb database. A Transcripts were generated from de novo transcript assembly of 10,358 tumor samples across 
33 different tumor types and 1,160,216 transcripts were totally identified. Transcript quantification was also performed in 16,367 normal tissue 
samples across 29 different tissue types and 1016 cancer cell lines across 25 different primary sites. Tumor, tissue, and cancer cell type-specific 
scores were calculated. SRTdb offers features of browse, search, visualization, and download for all users. B Piechart shows the percentages of 
annotated and novel transcripts. C The distribution of transcript length. D The distribution of exon numbers in transcripts
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table on the right. The result table contains transcript 
ID, specificity score, specificity ratio, specific cancer 
type, tissue type, gene symbol, genomic loci, sequence, 
length, and transcript type. By clicking the transcript 
ID, users will be redirected to a new web page show-
ing the transcript basic information, expression speci-
ficity and boxplots of expression profiles across cancer 

types, normal tissues, and cancer cell lines (Supple-
mentary Fig. S1B). Users can query transcripts of inter-
est by transcript ID, gene name, or genomic loci on the 
“Search” page (Supplementary Fig. S1C). In addition, 
users can also do quick search by gene symbol in the 
homepage. Files of transcript annotation and specificity 
can be downloaded from the “Download” page.

Fig. 2  Exploration of specific RNA transcripts with the SRTdb resource. A UMAP visualization of tumor samples by using top 2000 variable 
transcripts. B UMAP visualization of normal samples by using top 2000 variable transcripts. C The number distributions of SRTs across different 
tumor types, cancer cell line types, and normal tissue types. D The percentages of SRTs in host SRGs across tumor (top panel) and normal tissue 
(bottom panel) samples
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Specificity analysis reveals dual roles of tumor SRTs
To further explore the potential clinical utility of tumor 
SRTs, we examined their specificity distribution across 
multiple tumor and tissue types. In average, approxi-
mately half of tumor SRTs are also tissue SRTs (Fig. 3A). 
Interestingly, the majority of tumor SRTs are exclusively 
expressed in tissue types that are not the particular 
tumor types where SRT originate. For example, one of 
LINC01419 transcripts, ENST00000522365.1, is spe-
cifically expressed in liver cancer across multiple cancer 
types, while exclusively expresses in testis tissue across 
various tissue types (Fig.  3B). In some tumor types, the 
vast majority of tumor SRTs are also specific in origi-
nal tissues, especially liver cancer (Supplemental Fig. 

S2A). The transcript of APOA2, ENST00000367990.6, 
is exclusively active in liver cancer across different can-
cer types, and also specifically expressed in liver tissue 
across multiple tissue types (Supplemental Fig. S2B). To 
further explore the specificity distribution of transcripts, 
we examined the tumor specificity of tissue SRTs. Strik-
ingly, more than 30,000 testis SRTs are also specific in 
tumors, wherein most are specific in tumor types origi-
nating from tissues other than the testis (Fig.  3C). We 
next examined how many tumor SRTs are testis-specific 
in each tumor type. In all tumor types, tumor SRTs from 
LAML constitute the largest population of testis SRTs, 
followed by TGCT, ESCA, and LGG (Fig.  3D). In most 
tumor types, 10 ~ 20% of tumor SRTs are testis-specific. 

Fig. 3  The tissue origins of tumor SRTs. A The percentages of tumor SRTs specific in original tissue types, other tissue types or not tissue-specific. B 
The expression distribution of liver cancer-specific transcript, ENST00000522365.1, across multiple cancer and normal tissue types. C The number 
distribution of tissue SRTs specific in matched tumor types, other cancer types or not cancer-specific. D The numbers of testis SRTs across different 
tumor types
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As expected, the most portion (about 40%) of TGCT 
tumor SRTs are also testis SRTs. CESC has the second 
largest percent (about 30%) of tumor SRTs that are testis-
specific, which may be due to reproductive functions.

The application of SRTdb for precision cancer diagnosis: 
liver cancer as an example
A considerable part of tumor SRTs were found to be 
specifically expressed in particular normal tissues, dis-
closing possibly promiscuous assignment of specific 
RNAs in pan-cancer or paired tumor-normal stud-
ies. The SRT resources deposited in SRTdb data por-
tal can be used to develop specific diagnostic RNA 
markers in particular cancer types. Here, we took 
liver cancer as an example to show the application 
of SRTdb database for precision diagnosis of cancer. 
Liver cancer transcripts were first filtered to discard 
transcripts that were expressed at considerable level 
in normal tissues. Then a specific diagnostic score 
was calculated for each of filtered liver cancer SRTs 
(see Materials and Methods). Compared to normal 
tissues, 3234 transcripts were specifically expressed 
in liver cancer, wherein only 116 were stringently 
liver cancer-specific (Fig.  4A). For example, one of 
APO2 transcripts, ENST00000481511.4, is exclusively 
expressed in liver cancer across different cancer types, 
and showed negligible transcriptional activity across 
multiple normal tissues, including normal liver tis-
sue (Fig.  4B). The detection of ENST00000481511.4 
in any sample from liquid biopsy or liver tissue very 
likely indicate the occurrence of liver cancer. Although 
ENST00000465758.1 (one of TM4SF4 transcripts) 
is specifically expressed in liver cancer over normal 
liver tissue and any other tissue, it is also detected 
transcriptionally active in other cancer types, such as 
cholangiocarcinoma and pancreas cancer (Fig.  4C). 
In another case, the transcript ENST00000379236.3 
(from the TNFRSF4 gene) expressed much higher in 
liver cancer over normal liver tissue, but also showed 
considerable expression level in other cancer and tis-
sue types (Fig.  4D). These results demonstrated the 
necessity of examining transcript-level expression 
across different tumor and tissue types for precision 
tumor diagnosis.

Discussion
In the recent decade, RNA-seq techniques have 
unearthed the vast diversity of transcriptome and 
their applications in cell/tissue identity and clinical 
diagnosis/treatment [1, 15, 16]. Nevertheless, stud-
ies have focused on gene levels. For a long time, one 
genomic location of a particular gene has been deemed 
to transcribed one single or major RNA transcript [17]. 

Although experimental validations are based on RNA 
transcripts, a large portion of isoform transcripts have 
been ignored. With the development of RNA-seq tech-
niques and computational algorithms, more and more 
transcriptional isoforms and their functions have been 
discovered [18, 19]. To unveil the transcriptional diver-
sity and specificity across multiple human tissues and 
tumors, we conducted reference-based de novo tran-
script assembly and quantification of 27,741 samples 
across 29 tissue types, 33 cancer types, and 25 can-
cer cell line types. Our results revealed dual roles of 
tumor SRTs, wherein tumor SRTs also showed exclusive 
expression in particular tissues. We presented a publicly 
accessible data portal, SRTdb, to facilitate the explora-
tion of cancer transcriptome and transcriptional speci-
ficity at transcript resolution. Efforts have been made to 
identify specific transcriptional activities across various 
tissue or cancer types [20–22]. But these results were 
based on gene-level quantification, which failed to con-
sider the ubiquitous transcriptional isoforms. To mini-
mize the effect of batch effects between samples, we 
applied a widely used RNA-seq pipeline to process all 
the samples [9, 23, 24]. All the RNA-seq samples went 
through the same alignments, transcript quantification 
and expression normalization.

Some published databases also provided RNA tran-
script information in human tissues or cancers, such 
as cncRNAdb [25], NONCODE [26], and NoncoRNA 
[27], but they are quite different from the SRTdb data-
base. The cncRNAdb database collected about 2000 
experimentally supported cncRNAs (coding and non-
coding RNAs) across over 20 species. The NoncoRNA 
database curated 5568 experimentally supported non-
coding RNAs and their drug target associations in 
cancer. Both cncRNAs and NoncoRNA only provided 
gene-level but no specific transcript information of 
RNAs, and they didn’t include expression levels across 
different human tissues and cancers. The NONCODE 
database provided integrated knowledge of noncod-
ing RNAs across 39 different species. Although NON-
CODE provided the information of specific transcripts 
of RNAs, it is different from our SRTdb database in 
three major aspects: it focuses on noncoding RNAs; 
it doesn’t provide RNA specificity across human tis-
sues and cancers; these RNA transcripts were retrieved 
from published papers or databases.

Precision diagnosis of cancer is vital for prevent-
ing further deterioration and developing treatment 
strategies. Specificity of diagnostic markers or fac-
tors is crucial for differential or precision diagnosis, 
which includes discrimination from both normal tis-
sues and other cancer types. Diagnostic specificity is 
especially important in non-invasive diagnosis, such 
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as liquid biopsy, which is one of the most important 
means in the early detection of cancers [28, 29]. Our 
results found that most tumor SRTs were also spe-
cifically expressed in other tumor types or particular 
normal tissues, indicating possible misdiagnosis in 
liquid biopsy. By utilizing the SRTdb resource, we also 
developed a specific diagnosis score system to identify 
transcripts of precision diagnosis of particular cancer 
types.

The advent of the third generation of RNA sequenc-
ing (TGRS) technologies (i.e., long-read or full-length 

RNA sequencing) has expedited the more accurate 
identification of full-length RNA transcripts [30]. 
TGRS will rectify a variety of RNA transcripts that 
were assembled from RNA-seq data by computational 
algorithms. Even though, major findings from com-
putationally assembled RNA transcripts will largely 
promote the development of precision cancer medi-
cine. The SRTdb data portal presented in this study is 
expected to assist our deeper understanding of cancer 
transcriptome diversity and precision cancer diagnosis 
in the clinical practice.

Fig. 4  The diagnostic value of liver cancer-specific transcripts. A The specific diagnostic scores of transcripts for liver cancer. The expression 
distribution of transcript ENST00000481511.4 (B), ENST00000465758.1 (C), and ENST00000379236.3 (D) across different tumor and normal tissue 
types
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