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The biology of YAP in programmed cell 
death
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Abstract 

In the last few decades, YAP has been shown to be critical in regulating tumor progression. YAP activity can be 
regulated by many kinase cascade pathways and proteins through phosphorylation and promotion of cytoplasmic 
localization. Other factors can also affect YAP activity by modulating its binding to different transcription factors (TFs). 
Programmed cell death (PCD) is a genetically controlled suicide process present with the scope of eliminating cells 
unnecessary or detrimental for the proper development of the organism. In some specific states, PCD is activated 
and facilitates the selective elimination of certain types of tumor cells. As a candidate oncogene correlates with many 
regulatory factors, YAP can inhibit or induce different forms of PCD, including apoptosis, autophagy, ferroptosis and 
pyroptosis. Furthermore, YAP may act as a bridge between different forms of PCD, eventually leading to different 
outcomes regarding tumor development. Researches on YAP and PCD may benefit the future development of novel 
treatment strategies for some diseases. Therefore, in this review, we provide a general overview of the cellular func-
tions of YAP and the relationship between YAP and PCD.
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Background
The transcriptional coactivator Yes-associated protein 
(YAP) is amplified in human cancer and acts as an onco-
gene in various cancers [1–3]; its abundance and activity 
are increased in many types of cancer, including gastric 
cancer, colorectal cancer, liver cancer and breast cancer, 
in which it plays an important role in initiation, progres-
sion, metastasis, and drug resistance [4–7]. YAP and its 
paralog transcriptional coactivator with PDZ-binding 
motif (TAZ) are the major downstream effectors of the 
Hippo pathway, which controls organ size and cell fate 
during embryonic development [8]. Phosphorylated YAP 
can be sequestered in the cytoplasm and then degraded 
by the ubiquitin–proteasome system. Unphosphorylated 

YAP can enter liquid droplets and then translocate to the 
nucleus, where it has a series of functions [7, 9]. Nuclear 
YAP participates in complex and only partially under-
stood molecular cascades that are responsible for the 
oncogenic responses by regulating multiple processes, in 
addition to the abovementioned processes, and by acting 
as an important mediator of cancer immunity [10] and 
cancer cell interactions [11].

It has also been discovered that YAP plays an important 
role in the regulation of programmed cell death (PCD) in 
cancer [12–14]. Different forms of PCD, including apop-
tosis, autophagy, ferroptosis and pyroptosis, have been 
characterized [15–19]. Understanding the connection 
between YAP and PCD will promote the development of 
more effective strategies for the treatment of some dis-
eases, especially cancer. In this review, we discuss the 
regulation of YAP and the connections between YAP and 
PCD.
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Synthesis and regulatory system of YAP
YAP, a small 350 kb amplicon encoding a 65 kDa protein 
on human chromosome 11q22, was identified in a screen 
for gene copy number alterations in mouse mammary 
tumors [20, 21]. YAP protein, which is highly conserved 
across different species, has a N-terminal TEAD-binding 
domain (TBD) followed by one or two WW domains 
and a C-terminal transactivation domain [22–24]. The 
WW domain is a protein–protein interaction module 
with two signature tryptophan residues spaced 38 to 40 
amino acids apart [22, 25, 26]. However, as YAP lacks a 
DNA-binding motif, it regulates gene transcription by 
binding transcription factors (TFs) such as TEAD1–4, 
p73 and ZEB1 through its TBD and WW domains 
[27–37]. The YAP–TEAD complex regulates the expres-
sion of many oncogenes (Fig. 1), such as CTGF, CYR61, 
MYC and NUAK2 [28, 38–40]. NUAK2 participates in 
a feed-forward loop that enhances YAP activity [38]. In 
addition, YAP–TEAD transcriptional activity can be reg-
ulated by different proteins through many mechanisms. 
For example, the SS18-SSX fusion protein and MRTF 
potentiate TEAD-YAP activity [41, 42], whereas TIAM1 
and RUNX3 reduce YAP–TEAD transcriptional activity 
[31, 43].

On the other hand, the translocation of YAP between 
the nucleus and cytoplasm has emerged as an important 
means of regulating YAP activity [34, 44, 45]. Active YAP 
localizes in the nucleus. YAP can be negatively regulated 
by its circular RNA circYAP, which suppresses the assem-
bly of translation initiation machinery [46]. In addition, 
YAP protein activity can be modulated by posttransla-
tional modification. OTUB2 activates YAP protein by 
direct deubiquitination and stabilization [47]. The Hippo 
signaling pathway is the main regulator of YAP activity, 
which is accomplished by modulating YAP phosphoryla-
tion [48–52]. Through this signaling pathway, YAP can 
be phosphorylated at five conserved HXRXXS motifs, 
including the serine 127 (S127) and S397 sites [51]. Addi-
tionally, other pathways can regulate YAP activity though 
Hippo pathway. For instance, MYPT1 activates the Hippo 
pathway, resulting in YAP suppression [53]. SRC phos-
phorylates Hippo pathway kinases, thus promoting YAP 
activity [54]. PRP4K phosphorylates YAP at S111 and 
S250 to regulate this protein in parallel with the Hippo 
pathway [55]. The STARD13-correlated ceRNA network 
leads to the nuclear–cytoplasmic translocation of YAP 
through two independent pathways, the Hippo pathway 
and Rho-GTPase/F-actin signaling [56]. AKT and c-Abl 
phosphorylate YAP at S127 and Y357, respectively, thus 

Fig. 1  Signaling pathways and genes controlling YAP expression and its regulatory system. YAP can be affected by many factors. when YAP is 
phosphorylated in the cytoplasm by some factors like Hippo pathway, AKT, c-Abl, NLK, MYPT1 and PRP4K, it finally can be degraded, YAP can also 
be enhanced by OTUB2 so that it can enter in nucleus easily. Active YAP localizes in the nucleus and combines with TEAD, p73 or ZEB1 at its TED 
domain thus affect other factors. YAP-TEAD co-activator could enhance CTGF, CYR6, MYC and NUAK2, which participates in a feed-forward loop that 
enhances YAP activity by inhibit Hippo pathway. YAP-TEAD co-activator could also be inhibited by TRPS1, TIAM1 and RUNX3, and be enhanced by 
MRTF and SS18-SSX. Aurora a kinase can phosphorylate YAP in nucleus thus reduce the activity of it
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suppressing some transcriptional responses [57, 58]. NLK 
phosphorylates YAP at S128 to evoke YAP redistribution 
into the nucleus [59]. YAP interacts with Aurora A kinase 
in the nucleus, which leads to specific phosphorylation of 
YAP, and then potentiates YAP-mediated transforming 
ability [60]. Therefore, in the future, it will be important 
to examine the contribution of different TFs to the regu-
lation of YAP phosphorylation, nuclear localization and 
to determine the underlying mechanism in greater detail. 
Meanwhile, the effector molecules downstream of YAP 
should also be identified.

YAP and PCD
PCD is a normal physiological phenomenon. Under nor-
mal circumstances, PCD can help eliminate senescent 
and dangerous cells, such as cancer cells and infected 
cells. However, dysregulation of cell death often has neg-
ative consequences. And there is a crosstalk among the 
four major forms of PCD, apoptosis, autophagy, ferropto-
sis and pyroptosis [15–19]. PCD is typically dysregulated 
in certain diseases, especially in cancer, and this dysregu-
lation provides necessary conditions for tumor progres-
sion. Many oncogenes and tumor suppressor genes are 
linked to tumorigenesis through PCD, and some pro-
teins and RNAs can simultaneously regulate these dif-
ferent forms of cancer cell death [61]. Previous research 
has identified YAP-related regulatory networks in cancer. 
Among these networks and pathways, the evolutionarily 

conserved Hippo pathway plays an important role in cell 
growth and organ size control during embryonic devel-
opment. As the center of this complex network, YAP is 
necessary for PCD controlled by the Hippo pathway, but 
YAP is also regulated by many other factors and regulates 
additional factors to affect PCD (Table 1); these findings 
prompts researchers to further investigate the relation-
ship between YAP and PCD.

YAP and apoptosis
Apoptosis is initiated in cells in response to diverse phys-
iological and pathological stimuli that ultimately leads to 
the activation of apoptotic pathways [73]. The dysregula-
tion of apoptosis is one of the classical hallmarks of the 
maintenance and regulation of tumor growth [74–76]. 
YAP shows antiapoptotic effects in various cells; for 
example, YAP reduces apoptosis by upregulating Jag-1 
to activate Notch signaling in hepatocellular carcinoma 
cells, and enhancing BCAR4 expression in breast can-
cer, respectively [62, 63]. In addition, the ubiquitination 
of YAP by Fbxw7 and its subsequent proteasomal deg-
radation enhance apoptosis in hepatocellular carcinoma 
cells, while restoring YAP expression partially abrogates 
Fbxw7-induced cell apoptosis and growth arrest in vitro 
and in  vivo [64]. YAP also enhances the ability of can-
cer cells to resist apoptosis induced by chemotherapy. 
Hepatocellular carcinoma patients with a poor response 
to transarterial chemoembolization (TACE) had higher 
YAP protein levels than responsive patients, indicating 

Table 1  The relationship betweenthe changes of YAP and various types of PCD in different cells

Cell types Upstream YAP Downstream Pathway Non-genetic contexts PCD Citation

Hepatocellular 
cancer

YAP-TEAD Jag-1↑ Notch signaling Anti-Apoptosis [62]

Breast cancer YAP-TEAD BCAR4↑ Hedgehog signaling Anti-Apoptosis [63]

Hepatocellular 
cancer

Fbxw7 YAP-TEAD↓ Proteasomal degrada-
tion

Apoptosis [64]

Urothelial cell 
cancer

YAP-TEAD↓ DNA-damage Apoptosis [65]

Breast cancer Akt YAP-p73↓ Pro-apoptosis genes↓ Anti-Apoptosis [57]

Colon cancerBreast 
cancer

c-Abl YAP-p73↑ Pro-apoptosis genes↑ DNA-damage Apoptosis [58]

Cholangiocarci-
noma

YAP-TEAD MFAP5↑ Promotes angiogenesis Anti-Apoptosis [66]

Colorectal cancer GPRC5A YAP↑ Anti-apoptotic genes↑ Hypoxia Anti-Apoptosis [67]

Breast cancer YAP-TEAD↑ Autolysosome degra-
dation

Nutrient deprivation Autophagy [68]

Hepatocellular 
cancer

YAP↑ RAC1-ROS-mTOR 
pathway

Multi-drug resistance Anti-Autophagy [69]

Colorectal cancer YAP-TEAD Bcl-2↑ Anti-Autophagy [70]

Glioblastoma YAP HMGB1↑ Autophagy [71]

Epithelial cell NF2 YAP-TEAD↓ Hippo pathway High cell density Sensitivity of Ferroptosis↓ [72]
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that YAP enhances the chemoresistance of Hepatocel-
lular carcinoma by blocking apoptosis [5]. Addition-
ally, Ciamporcero et  al. found that YAP knockdown 
sensitizes urothelial carcinoma cells to chemotherapy 
and radiation via the increased accumulation of DNA 
damage and apoptosis [65]. These studies show that the 
overproduction of YAP can enhance the resistance of 
cancer cells to apoptosis, and when YAP activity is inhib-
ited, the increase in apoptosis sensitizes cancer cells to 
chemotherapy.

In cholangiocarcinoma, YAP and TEADs prevent 
apoptosis induced by cytotoxic drugs together, but YAP 
knockdown sensitizes cholangiocarcinoma cells to drug-
induced apoptosis [66]. Related research on hypoxic can-
cer cells showed that YAP can be activated by GPRC5A, 
a novel hypoxia-induced protein that protects cancer 
cells from apoptosis during oxygen deprivation, leading 
to the downregulation of proapoptotic target genes and 
the increased survival of hypoxic cancer cells. This study 
further showed that the apoptosis induced by GPRC5A 
depletion under hypoxic conditions could be rescued by 
constitutively active YAP [67]. YAP prevents apoptosis 
in acute pancreatitis, possibly by modulating the inflam-
matory response [77]. Taken together, the data indicate 
that YAP acts as a core factor in regulating cancer apop-
tosis through various mechanisms, and in the presence 
of apoptotic stimuli, YAP seems to enhance the ability of 
cells to mitigate apoptosis and survive.

Interestingly, YAP can also function as a proapop-
totic factor. When cells experience stress due to severe 
DNA damage, Akt and c-Abl phosphorylate YAP, thus 
suppressing the induction of proapoptotic gene expres-
sion and ultimately inducing apoptosis [57, 58]. YAP can 
trigger apoptosis by binding p73 instead of TEAD and 
thereby upregulating the proapoptotic gene BAX [78–80]. 
These data contradict the reported function of YAP as an 
oncogene, and it remains unknown whether targets of the 
YAP–p73 complex other than BAX are relevant to pro-
moting apoptosis and whether the engagement of other 
TFs by YAP can elicit a proapoptotic transcriptional pro-
gram. Elucidation of the precise mechanisms by which 
YAP modulates apoptosis might yield new therapeutic 
targets.

YAP and autophagy
Autophagy is a process by which intracellular dam-
aged or excessive organelles and cytoplasmic proteins 
are degraded through a lysosome-mediated process 
[81–83]. This evolutionarily conserved process ena-
bles the recycling of nonessential cytosolic materials 
to maintain cellular homeostasis and overcome meta-
bolic stress and nutrient deprivation. A close association 
between autophagy and cancer has been established, 

and autophagy plays an important role in cell sur-
vival and death [82, 84–87]. Excessive or prolonged 
autophagy can elicit cell death. Some studies showed 
that YAP is regulated by autophagy and thus affects cell 
fate [88–91]. Impaired autophagy is a driver of nuclear 
YAP localization and promotes YAP activity to enhance 
tissue remodeling and carcinogenesis in hepatocellu-
lar carcinoma cells [92, 93]. Conversely, triple-negative 
breast cancer utilizes autophagy as a mechanism to pro-
mote YAP nuclear entry, thus promoting cell invasion 
and metastasis [94]. As mentioned above, YAP requires 
autophagy to sustain the transformed characteristics 
of cancer cells. And YAP is also involved in the lysoso-
mal degradation of autophagosomes and the fusion of 
autophagosomes with lysosomes [95]. Therefore, YAP 
is both upstream and downstream of autophagy. YAP 
increases autolysosome degradation, thereby enhanc-
ing cellular autophagic flux to protect breast cancer cells 
from nutrient deprivation-induced apoptosis [68]. YAP 
upregulation endows hepatocellular carcinoma cells 
with multi-drug resistance via the RAC1–ROS–mTOR 
pathway, resulting in the repression of autophagy [69]. 
YAP can inhibit autophagy in human colorectal cancer 
cells by transcriptionally upregulating Bcl-2, which con-
sequently promotes colorectal cancer progression [70]. 
Zhao et  al. found that in glioblastoma, YAP enhances 
HMGB1-mediated autophagy to promote glioma pro-
gression [71]. The relation between YAP and autophagy is 
not consistent, as it depends on other factors. Pavel et al. 
found that the response of YAP to autophagy can differ 
due to α-catenin levels: high basal α-catenin levels enable 
YAP to positively regulate autophagy, while low α-catenin 
levels lead to a negative correlation between YAP and 
autophagy [96]. Since autophagy can provide nutri-
ents to cells and remove toxic particles autonomously, 
this biological process is critical for cell survival, espe-
cially under nutrient-deprived conditions, such as in the 
tumor microenvironment. YAP-related autophagy seems 
to be the first step in inducing pathways and processes 
that prevent cancer cells from dying [68]. In the future, 
autophagy-related death may be controlled by regulat-
ing YAP to prevent tumor progression, The mechanism 
underlying the relationship between YAP and autophagy 
needs to be explored further.

YAP and ferroptosis
Ferroptosis is distinct from the above forms of cell death; 
since it was first proposed in 2012, it has gradually 
become a widely researched topic [97–99]. Ferroptosis, 
which is driven by cellular metabolism and iron-depend-
ent lipid peroxidation, has been implicated in cancer 
growth and drug resistance [100–103]. Epithelial-to-mes-
enchymal transition (EMT) is believed to generate cancer 
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stem cells, resulting in metastatic spread and contrib-
uting to clinical therapeutic resistance [104]. YAP was 
recently reported to be necessary for promoting EMT 
[105, 106]; however, it has been confirmed that EMT 
can improve the sensitivity of cells to ferroptosis [107, 
108], perhaps indicating that YAP promotes ferroptosis 
through EMT. In later studies, researchers found that 
the sensitivity to ferroptosis is highly influenced by cell 
contacts and cellular density [109]. The activation of TFs 
in the Hippo pathway (such as YAP and TAZ) promotes 
ferroptosis in cancer cells by regulating the expression 
of ferroptosis modulators, such as ACSL4, TFRC, EMP1 
and ANGPTL4 [72]. In addition, ovarian and renal cancer 
cells were found to be sensitive to ferroptosis induced by 
erastin treatment and cystine deprivation when they grew 
at low density or as individual cells. However, when these 
same ferroptosis-sensitive cells were grown to confluence 
or in a high-density situation (like three-dimensional 
(3D) spheres), they become highly resistant to ferroptosis 
[110]. As a sensor of cell density, TAZ can regulate cel-
lular sensitivity to ferroptosis through the Hippo path-
way in ovarian cancer and renal cell carcinoma, instead 
of YAP [109, 111]. Wu et al. reported an explanation for 
this phenomenon. In epithelial cells and mesothelioma, 
cell–cell contacts inhibit ferroptosis partly through the 
cadherin 1-mediated inhibition of YAP transcriptional 
activity. Cells at high density had high levels of ECAD, 
which activates Merlin and subsequently regulates YAP 
activity by activating the Hippo pathway, thus influencing 
the sensitivity to ferroptosis. In addition, HCT116 cells 
lacking YAP were no longer sensitized to ferroptosis by 
RNAi-mediated Merlin knockdown, demonstrating that 
Merlin suppresses ferroptosis by inhibiting YAP activity 
[72]. There have been few studies on YAP and ferroptosis, 
the mechanism underlying the relationship between YAP 
and ferroptosis needs to be explored further. In addi-
tion, autophagy is closely related to ferroptosis, and YAP 
is an important regulator of autophagy. The relationship 
between these two processes and YAP will be discussed 
below.

YAP and pyroptosis
Pyroptosis, also known as inflammatory necrosis, is a 
kind of PCD characterized by the continuous expan-
sion of cells until the cell membrane ruptures, leading 
to the release of cell contents, which activate a strong 
inflammatory response. YAP expression is higher in tri-
ple-negative breast cancer than in other types of breast 
cancer, and YAP promotes the metastasis of triple-neg-
ative breast cancer cells [112–114]. Studies have also 
found that PD-L1 expression is higher in triple-negative 
breast cancer than in other types of breast cancer [115, 
116], and studies in other types of cancer have identified 

mutual regulation between PD-L1 and YAP [117]. For 
example, in BRAF inhibitor-resistant melanoma cells, 
YAP induces the expression of PD-L1, which participates 
in tumor escape [118]. Researchers have found that under 
hypoxia, PD-L1 accumulates in the nucleus, whereby it 
can regulate the expression and activation of gasdermin 
C, the main executor of pyroptosis, to promote this form 
of cell death [119]. Therefore, YAP may regulate pyropto-
sis by regulating various factors at the protein and mRNA 
levels. In macrophages, flagellin secreted by Salmonella 
activates the Nod-like receptor family CARD domain-
containing protein 4 (NLRC4) inflammasome, leading 
to the production of IL-1β and pyroptosis of infected 
cells. In contrast, in Salmonella-infected B cells, infection 
induces YAP phosphorylation and promotes the interac-
tion of YAP with Hck, thus preventing the transcriptional 
activation of NLRC4 and blocking B cell death. Although 
the outcomes of cellular Salmonella infection are varia-
ble, YAP activation can lead to pyroptosis [120]. Cui et al. 
found that in pancreatic ductal adenocarcinoma, MST1 
could suppress the proliferation, migration, invasion, and 
spheroid formation of pancreatic ductal adenocarcinoma 
cells via caspase 1-induced pyroptosis mediated by reac-
tive oxygen species (ROS) [121]. Whether MST1, a core 
component of the Hippo pathway, can influence pyropto-
sis by affecting YAP activation is worth studying.

Crosstalk between YAP and PCD
There are also various connections between different 
types of PCD. Although the forms of PCD differ from 
each other in the mechanism of death, they are related. 
For example, autophagy is necessary during ferroptosis. 
As a selective form of autophagy, ferroptosis is initiated 
by the degradation of ferritin, which triggers labile iron 
overload, lipid peroxidation, membrane damage, and cell 
death [122]. Yang et  al. discovered a type of autophagy 
called “clockophagy”, which involves the selective degra-
dation of the core circadian clock protein ARNTL and 
can facilitate the induction of ferroptosis [123]. Gao et al. 
identified multiple autophagy-related genes as positive 
regulators of ferroptosis and showed that ferroptosis is an 
autophagic cell death process [124]. Thus, ferroptosis and 
autophagy are closely linked. Furthermore, autophagy 
enhances labile iron availability and potentiates the 
activity of ferroptotic stimuli in glutamic-oxaloacetic 
transaminase 1(GOT1)-knockdown cells, as GOT1 inhi-
bition represses mitochondrial metabolism and pro-
motes a catabolic state [125]. Meanwhile, research on 
the dependence of breast cancer cells on exogenous glu-
tamine for growth showed that YAP can induce GOT1 
[126]. These data indicated that YAP could weaken the 
link between autophagy and ferroptosis, thereby protect-
ing cells. Taken together, the evidence suggests that YAP 
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plays an important role in the link between autophagy 
and ferroptosis.

Recent studies have revealed that autophagy can facili-
tate apoptosis in different ways. Autophagy promotes 
apoptosis through the degradation of antiapoptotic 
and cell survival factors; for instance, the autophagic 
degradation of caveolin-1 contributes to apoptosis in 
rat hippocampal astrocytes [127]. The product of the 
autophagy-related gene Atg5 is required for the formation 
of autophagosomes. The calpain-mediated cleavage of 
Atg5 generates a proapoptotic protein that associates with 
the antiapoptotic molecule Bcl-xL to stimulate intrin-
sic apoptosis [128]. However, the presence of YAP alters 
this relationship; in particular, YAP-induced autophagy 
always inhibits apoptosis to elicit cancer cell survival. 
In an immunohistochemical analysis of clinical thyroid 
papillary carcinoma tissue microarrays, YAP silenc-
ing was accompanied by decreases in Beclin1 and Atg5 
expression [129]. In addition, YAP prompted an increase 
in autophagy by enhancing autolysosome degradation; 
thus, YAP plays a protective role in cisplatin-resistant 
human ovarian cancer cells by reducing apoptosis [130]. 
When breast cancer cells are exposed to nutrient depri-
vation, YAP increases autolysosome degradation, thereby 
enhancing autophagic flux in breast cancer cells and pro-
tecting these cells from apoptosis [68]. As stated above, 
the relationship between YAP and autophagy is complex, 
but YAP ultimately regulate autophagy and then affect cell 
survival by inhibiting other forms of PCD.

Apoptosis is also connected to ferroptosis. In a study 
of acute lung injury (ALI), ferroptosis contributed to 
intestinal ischemia/reperfusion-induced ALI in vivo, and 
inhibitor of apoptosis-stimulating protein of p53 (iASPP) 
was found to inhibit ferroptosis and alleviate intestinal 
ischemia/reperfusion-induced ALI through the Nrf2/
HIF-1/TF signaling pathway [131]. In a study on bladder 
cancer, researchers demonstrated the presence of cross-
talk between YAP and Nrf2 [132]; therefore, although 
there is not sufficient evidence to prove its role in the 
relationship between apoptosis and ferroptosis, YAP is 
very likely involved.

YAP can prevent further apoptosis by regulating the 
inflammatory response [77], with which pyroptosis is 
strongly associated [133]; these data suggest that YAP 
can connect these two types of PCD. However, there is 
a lack of research in this area. In summary, YAP plays a 
key role in the regulation of various forms of PCD and 
their relationships, and the specific mechanism is not yet 
clear and worthy of further in-depth study. In addition, 
researchers need to focus on the involvement of YAP in 
the relationships among different types of PCD.

Conclusion
Since the discovery of YAP several decades ago, the bio-
logical functions and consequences of YAP have gradu-
ally been revealed. YAP is an important downstream 
effector of the Hippo pathway and a transcriptional 
cofactor involved in the transcription of many known 
important tumor factors. As such, YAP is an important 
factor that should be studied in relation to tumorigene-
sis, including tumor development and metastasis, as well 
as the prevention of drug resistance. Numerous studies 
have shown that YAP is involved in cancer cell death. 
Our review summarizes the knowledge of PCD and YAP, 
explores the important regulatory role of YAP in PCD. As 
stated above, YAP not only regulates individual types of 
PCD but also is likely a bridging factor that connects dif-
ferent types of PCD. As an oncogene, YAP is supposed 
to promote cancer progression and inhibit PCD, how-
ever, YAP is found to promote PCD such as apoptosis 
[134] and ferroptosis [72] in some studies. There is great 
value in discovering the specific underlying mechanism. 
Moreover, the role of YAP in pyroptosis remains unclear 
but will be further explored in future research. Research 
on the association between YAP and PCD could help to 
establish a systematic tumorigenesis mechanism, guide 
the development of new cancer treatments, and aid in the 
discovery of treatments for other inflammatory-related 
diseases.
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