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Abstract

Zinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene
regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are
characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger
motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases,
especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death
worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus
(HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the
prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely
understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC
tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and
prognostic evaluation.
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Background
Zinc finger proteins (ZFPs), which constitute the largest
transcription factor family with finger-like DNA binding
do- mains, play a significant role in multiple biological
processes. ZFPs primarily function as transcription fac-
tors in tumorigenesis and tumor progression. Transcrip-
tion factors (TFs) are proteins that play a vital role in
complicated biological processes, such as metabolism,
autophagy, apoptosis, immune responses, stemness

maintenance and differentiation. TFs regulate transcrip-
tion of genes by recognizing or binding to DNA se-
quences directly [1, 2]. So far, zinc finger motifs have
been classified into eight different categories according
to their main-chain conformation and secondary struc-
ture around their zinc-binding sites, including Cys2His2
(C2H2) like, Zn2/Cys6, Treble clef, Zinc ribbon, Gag
knuckle, TAZ2 domain like, Zinc binding loops and Me-
tallothionein [3, 4]. In addition to these zinc motifs,
ZFPs also contain several domains that play different
roles in cell biological processes, including BTB (Broad-
Complex, Tramtrack, and Bric-a-brac), the Krüppel-As-
sociated Box (KRAB) domain, SET domain and SCAN
(SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) do-
main. Because of the diversity of zinc finger motifs and
these domains, ZFPs can play different roles in gene
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regulation under various cellular environments and
other stimuli.
Hepatocellular carcinoma (HCC) accounts for a major

part of the global cancer category. It accounts for approxi-
mately 75–80% of primary liver cancer [5, 6]. According
to the Global online database of infectious diseases ana-
lysis, the incidence of liver cancer decreased in many
Asian countries during 1978 ~ 2012. Still, it rebounded in
India, the United States and other European countries [6].
Since patients have no obvious clinical symptoms in the
early stage of HCC, the early diagnosis of HCC becomes
extremely difficult. Although there are many treatments,
including surgical resection, chemotherapy, targeted ther-
apy, the prognosis of liver cancer is still not optimistic.
However, the numerous molecular mechanisms in HCC
pathogenesis remain unclear. In recent years, studies
about ZFPs functions in multiple cancers have been con-
stantly emerging [7–14]. These studies offered promising
treatments for malignancies, including HCC [15]. In this
review, we will discuss ZFPs basic spatial structures and
the complex mechanisms of ZFPs in HCC.

Structures of zinc finger proteins
BTB domain
The BTB domain (also known as the POZ domain) is a
multifaceted protein-protein interaction motif found in
whole eukaryotes. At the same time, it has been reported
in previous literature that some poxvirus proteins are
similar to a part of ZFPs, like ZID, GagA and ZF5; this
domain has been named as POZ (poxvirus and zinc fin-
ger) domain [16, 17]. As a highly conserved structure, it
engaged in multiple cellular functions, including tran-
scription repression, cytoskeleton dynamics, tetrameriza-
tion and gating of ion channels, and targeting proteins
for ubiquitination [18–23]. The BTB domain consists of
a cluster of five α-helixes, one end covered by a short
three-chain β-fold, which is compact and spherical [24].
In different BTB domains, their primary structure is less
conservative, but their secondary structure is broadly
similar. It has been reported that the BTB domain can
be classified into four families: T1, Skp1, ElonginC, and
BTB-ZF, but the details have not yet been worked out.
Interestingly, the BTB domain in ZFPs can be homolo-
gous and heterogenous, or the BTB domain can recruit
co-inhibitors of transcription. The function of proteins
containing the BTB domain can be roughly divided into
two categories: transcriptional inhibition and protein
degradation, which are crucial for genes to function in
cell development [25–27]..

SCAN domain
Scan domain, a highly conservative domain, consists of
84 amino acids rich in leucine residues, is also known as
the leucine-rich region [28, 29]. To date, about 244

protein products containing the scan domain have been
identified in the human genome, of which about 50
scan-containing transcription factors have been de-
scribed. The scan domain has an amphipathic secondary
structure that participates in protein-protein interaction,
especially self-binding and mediated oligomerization [25,
30, 31]. Further studies of the domain have shown that
it can interact with separated scan domains, such as scan
domain protein 1 (SDP1), or with other family members
with scan domains [32]. It is worth mentioning that this
interaction is not universal but selective, suggesting that
not all family members can form oligomerization. Inter-
actions between different scan-containing transcription
factors lead to various transcription activities. In
addition, few proteins may have several special names
depending on their domain. As can be seen from the
NCBI gene database, the human ZSCAN (zinc finger
and scan) transcription factor family members have a
uniform name ranging from ZSCAN1 to ZSCAN54 [33].

KRAB domain
Krüppel-associated box (KRAB) domain-containing zinc
finger proteins (KZFPs), which have been reported to
exist only in quadrupeds. The human genome encodes
approximately more than 350 KZFPS. In recent reports,
KZFPs mainly inhibit transposable elements (TEs) by
recruiting transcriptional regulators and heterochroma-
tin formation and DNA methylation in embryonic stem
(ES) cells [34, 35]. The KRAB domain consists of 75
amino acids, and the domain is usually disconnected
into two adjoining modules: A-box, which is mainly re-
sponsible for inhibiting activity by interacting with core-
pressors; and B-box, which is believed to augment the
ability of repression of A-box through some undiscov-
ered mechanisms [36–38]. Theoretically, the length of
KRAB-ZFP should be enough to recognize longer DNA
target sequences specifically, but in fact, the binding
motif of KRAB-ZFP is often shorter than predicted. This
implied that in KRAB-ZFP, different ZNF recognize dif-
ferent DNA motifs [39]. In addition, ZNF is not only in-
volved in contacting with DNA but also can participate
in other categorizes of interactions, such as interactions
with RNA, or proteins [40–43]. A few ZFPs contain
added domains, including BTB domain, SCAN domain,
KRAB domain, SET domain, DUF3669 domain and
C2H2 motif. Regrettably, the precise function of the
DUF3669 domain is still unclear (Fig. 1).

SET domain
The SET structural domain is widely found in eukary-
otes and consists of approximately 130 amino acids and
is named after the Drosophila proteins Suppressor of
variegation 3–9 (Su (var)3–9), Enhancer of zeste (E(z)),
and Trithorax (Trx). The biological behaviours in which

Li et al. Biomarker Research            (2022) 10:2 Page 2 of 13



the SET structural domain is involved are primarily
associated with the methylation of substrates. For ex-
ample, many SET domain-containing proteins can
mono-, di- or trimethylation of their lysine substrates
using the cofactor S-adenosyl-L-methionine (SAM),
these catalyzed targets include histones and many
non-histone substrates. In addition, the SET domain
does not usually exist as a stand-alone entity, and in
many proteins, it co-exists with other protein struc-
tural domains and interacts with proteins that regu-
late its catalytic function [44, 45].

C2H2-zinc finger motif
Among eight different groups of zinc fingers, the most
classical zinc finger is the C2H2-like finger [3]. As the
most prevalent motif in ZFPs, over 5000 C2H2-like fin-
gers have been encoded by the human genome [46]. The
zinc finger structure is generally located at the C-
terminus of the ZFPs. The consensus sequence for

C2H2 zinc fingers is CX2CX3FX5LX2HX3H, which
contains conservative hydrophobic residues wrapped in
hydrophobic cores except for its two cysteines and two
histidine residues. These conservative amino acids and a
characteristic structure is consisting of a two-stranded
antiparallel β-sheet and an α-helix [47]. It has been sug-
gested in the article that an individual zinc finger motif
binds an adjacent three-nucleotide subsequence, maybe
three to five, and a C2H2-zinc finger domain can be spe-
cified to a range of three base pair (3 bp) targets [48, 49].
C2H2-type ZFPs generally contain added anatomic do-

mains, such as BTB (Broad-Complex, Tramtrack, and
Bric-a-brac), the Krüppel-Associated Box (KRAB) do-
main, SET domain and SCAN (SRE-ZBP, CTfin51, AW-
1 and Number 18 cDNA) domain [40]. These structures
regulate immune response, cell differentiation and em-
bryonic development at the transcription and translation
level through specifically binding to the target molecule
DNA, RNA, DNA-RNA sequence, and binding to itself

Fig. 1 Several domain structures of C2H2-ZFPs. Three diverse forms of C2H2-ZFPs are described. Each C2H2-ZFP contains at least one KRAB
structural domain, BTB domain, SCAN domain, SET domain and several zinc fingers which can bind to DNA sequences. In brief, the KRAB domain
can be divided into two parts: the A-box (KRAB-A) and the B-box (KRAB-B). As shown in type 4, some C2H2-ZFPs contain a DUF3669 domain.
Functionally, BTB domain is mainly responsible for transcriptional repression and protein degradation; SCAN domain is mainly responsible for
protein binding and protein oligomerization; KRAB domain is mainly responsible for repression of transposable elements; SET domain is mainly
responsible for protein methylation (mainly histones); C2H2 motif can bind to DNA, RNA, and proteins to perform different functions, but most of
them bind to DNA.ZF: zinc finger; BTB: Broad-Complex, Tramtrack, and Bric-a-brac. KRAB:Krüppel-associated box; SCAN: SRE-ZBP, CTfin51, AW-1,
and Number 18 cDNA; DUF3669:domain of unknown function 3669
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or other ZFPs [48]. For instance, ZEB1 can actuate tran-
scription through binding to coactivators, such as p300
and P/CAF [50, 51].

Comparison of the functions between these structural
domains
The domains of ZFPs are not only diverse, but the func-
tions of these domains are also very distinct. For ex-
ample, although both the BTB domain and the SCAN
domain can bind to the protein, but the BTB domain
mostly inhibits the transcriptional activity of the target
gene by recruiting transcription co-repressors, while the
SCAN domain causes oligomerization of target proteins
through its specific binding [27, 31]. In addition, KZFPs
can inhibit transposable elements through DNA methy-
lation, while SET domains that have different substrates
are through protein methylation to play its catalytic role
[34, 44]. In a word, various C2H2-type ZFPs contain dif-
ferent types of the above-mentioned domains, and these
ZFPs with different functions play a significant role in in
cell biological processes.

Biological functions of zinc finger proteins
Among the numerous biological functions of ZFPs, tran-
scription regulation occupies a highly prominent pos-
ition. ZFP relies on the domain-containing zinc finger in
one segment to bind to the promoter region of the target
gene and act as a transcription enhancer or transcription
inhibitor. In addition to transcriptional regulation, ZFPs
can induce protein-protein interactions, bind to RNA, and
interact with proteins and RNAs in the meantime [52–55].

Transcription regulation
As the most prominent role of ZFPs, the functions of
transcriptional regulation are mainly reflected in both
transcriptional promotion and transcriptional repression.
It has been recently reported that ZEB1 (Zinc finger E-
box binding homeobox 1) can bind to the HDGF (hepa-
toma-derived growth factor) promoter to stimulate
HDGF transcription in EC (endometrial carcinoma) cells
[56]. Another example on the contrary, ZNF322A, a
C2H2 zinc finger transcription factor, can directly bind
and recruit histone deacetylation enzyme 3 to the c-Myc
promoter to suppress c-Myc expression at the level of
transcription. Then increase mitochondrial phosphoryl-
ation to promote cell movement and ultimately maintain
stem cell-like characteristics in lung cancer [57].

Protein interactions
As well as functioning as transcription factors, numbers
of ZFPs that can induce protein interactions have also
been identified in recent years [58]. For example, the
striated muscle RING zinc finger protein (SMRZ) is a
novel human striated muscle ZFP which has a ring

domain at its N-terminal. In recent studies, the SMRZ
was reported to interact with SMT3b, which was a
ubiquitin-like protein, and their interactions are com-
pleted by the ring domain of SMRZ. This kind of inter-
action may contribute to the regulation of cell cycle that
occurs during the process of growth in striated muscle
cells [59].

Post-transcriptional regulation
Some ZFPs also have RNA binding properties, and these
ZFPs are generally thought to be involved in post-
transcriptional regulatory processes such as mRNA mat-
uration splicing and degradation [60, 61]. Recently, the
zinc finger protein Regnase-1, which had been revealed
to regulate self-renewal of HSPCs (Hematopoietic Stem
and Progenitor Cells) through modulating mRNA stabil-
ity. More specifically, Regnase-1 could degrade the
mRNAs of Gata2 and Tal1 by targeting the 3’UTR re-
gion of their mRNAs, and caused a decrease in the ex-
pression of GATA2 and Tal1, which could ultimately
lead to a slowdown in the self-renewal of HSPCs and af-
fected the homeostasis of HSPCs [62].

Effects of ZFPs via different mechanisms
Lipid metabolism
An increasing number of studies have shown that meta-
bolic manipulate and signaling pathways are closely
linked, not only in normal cells but also in cancer cells
[63]. Recently, Li et al. suggested that YY1 prevented
proliferator-activated receptor gamma coactivator-1β
(PGC-1β) expression by directly binding to its promoter,
thereby inhibiting the oxidation of fatty acid β, which
led to the accumulation of lipid in HCC cells and in-
duced the carcinogenic potentiality of HCC cells. It was
worth mentioning that the reduction of the PGC-1β ex-
pression level by YY1 was independent of HIF-1α (hyp-
oxia-inducible factor-1α) expression. This provided us
with new insights into the conditions under which HIF-
1α works [64–66]. Liu et al. revealed that ZBTB20, a
regulator of lipid homeostasis, promoted hepatic de
novo lipogenesis (DNL) by directly binding to and en-
hancing the activity of the ChREBP-α promoter and in-
directly activating ChREBP-β, which provided new
insights into the transcriptional regulatory network of
DNL and had the potential to be a target for the treat-
ment of fatty liver disease (FLD) [67].

Cell differentiation
ZFPs like Snails (Snai1, Snai2/Slug, Snai3/Smuc) and the
E-box binding proteins ZEBs (ZEB1, ZEB2) can also
affect the process of cell differentiation directly or indir-
ectly [68]. Goossens et al. demonstrated that ZEB2 had
high mRNA levels in hematopoietic stem cells and
hematopoietic progenitor cells (HPCs). Sophisticated
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cellular analysis showed that ZEB2 was imperative for
normal HSC/HPC differentiation, and ZEB2 deficient
HSCs/HPCs were not properly implanted in fetal liver
or bone marrow, and exhibited boosted adhesion associ-
ated with upregulated expression of beta1 integrator and
CXCR4 [69–74]. Tang et al. expounded that Snail and
Slug could cooperatively control skeletal stem/stromal
cell (SSC) self-renewal in knockout mouse models.
Mechanistically, Snail/Slug were reported to regulate
SSC function by forming a complex with transcriptional
co-activators YAP and TAZ, thereby inhibiting the
Hippo pathway-dependent YAP/TAZ signaling cascade
regulation. The regulatory network within the above
mechanism provides new thought on cell differentiation
in normal hepatocytes and HCC cells [75]. In addition,
snail can also be involved in regulating cell stemness in
glioma stem cells (GSCs). A recent study revealed that
snail could inhibit TGFβ1 transcription and reduce its
activity through a positive feedback loop resulting from
its interaction with SMAD. This process contributes to
regulation of the opposite BMP and TGFβ pathway ac-
tivity, thereby inhibiting GSC stemness ultimately [76].

Immune response
Few ZFPs have recently been reported in immune-
related processes such as immune response, immune
homeostasis, and cytokine production in emerged new
studies [77, 78].
Gfi1, which function as a transcriptional repressor, is a

zinc finger protein that participates in diverse develop-
ment contexts. Jin et al. demonstrated that Gfi1 (growth
factor independent 1 transcriptional repressor) played a
limiting role in the inflammatory response induced by
endotoxin in mouse lung, and its regulatory function in
alveolar macrophages as downstream of LPS (Lipopoly-
saccharide) receptor (TLR4) and upstream of TNF fur-
ther elucidated the mechanism of Gfi1’s role in the
endotoxin response [79]. By the way, the toll-like recep-
tor (TLR) family plays a directive role in inflammatory
response, antiviral, and activation of transcription factors
[80]. Moreover, ZFYVE1 (zinc finger FYVE-type contain-
ing 1) can bind to poly(I:C) and TLR3 (Toll-like receptor
3) through the FYVE structural domain and enhance its
association with TLR3 in response to poly(I:C) stimula-
tion. Subsequent overexpression of ZFYVE1 can also sig-
nificantly promote the binding of TLR3 to its ligand
poly(I:C). Although the absence of ZFYVE1 can inhibit
TLR3-mediated innate immune and inflammatory re-
sponses, it cannot inhibit TLR4-mediated the same reac-
tions as TLR3 [81]. The above roles of these ZFPs in
innate immunity and the associated inflammatory re-
sponse provide deep thinking for subsequent studies.
CCCH zinc finger proteins consist of several CCCH

zinc finger domains, which are composed of one

histidine and three cysteines. A small number of CCCH
zinc finger proteins have been reported to play import-
ant roles in immune responses [82, 83]. For instance,
TTP (aka ZFP36), roquin 1 and MCPIP1, can form a
regulatory network that maintains immune homeostasis
[84–86]. The regulatory network composed of these
three ZFPs accelerates the regression of inflammation,
manage the sizes and rhythms of the adaptive immune
response, targets mRNA to regulate its half-life and reg-
ulates signal pathways [87, 88]. However, based on the
characteristics of this type of ZFP that can shuttle be-
tween different cell compartments, there is still a lot to
be studied, especially in cell metabolism and cellular im-
munity [89].

Zinc finger proteins in HCC
In the past decades, the role of ZFPs has been reported
in various of cancers including nasopharynx, esophagus,
lung, gastric, colorectal, breast, thyroid, prostate, ovarian
cancer [57, 90–97]. However, the number of studies in
HCC is much less than other cancer types, and there are
very few systematic reviews about HCC [98–101]. To
provide a better understanding of ZFPs in HCC and ex-
plore the potential therapeutic targets. Here, we firstly
summarize the functions of ZFPs in HCC and the spe-
cific mechanisms (Tables 1 and 2), and some specific ex-
amples are shown in the form of figure (Fig. 2).

Cell cycle
The cell cycle regulation cannot be separated from
cyclins, CDKs (Cyclin-dependent kinases) and CKIs
(Cyclin-dependent kinase inhibitors) [114]. CDC6 (cell
division cycle 6) is a protein essential for the initiation of
DNA replication [102]. The overexpression of ZNF143
facilitated HCC cell cycle progression via activating
CDC6. Concretely, ZNF143 was reported to directly acti-
vate transcription of histone demethylase mineral dust-
induced gene (MDIG) and decreased the enrichment of
H3K9me3 in the CDC6 promoter region [115]. In
addition, Cyclin D1 could form a complex with CDK4 or
CDK6, whose activity was required for cell cycle pro-
gression [116]. He et al. demonstrated that knockdown
of ZNF384 could result in sluggish of the G1/S phase
transition in HCC. Mechanistically, ZNF384 was found
to upregulate Cyclin D1 by binding to its promoter re-
gion, then accelerated G1/S phase transition and pro-
motes proliferation of HCC [110].

Apoptosis
The process of apoptosis is induced by two distinct
pathways: the intracellular pathway or the extracellular
pathway [117]. In the extracellular pathway, apoptosis
begins with binding a family of death receptors to an ap-
propriate ligand on the membrane, then the death-
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inducing signaling complex (DISC) is recruited and acti-
vated, which consists of FADD (Fas-Associated protein
with Death Domain), the death-executing protease en-
zyme caspase-8 and FLIP [118]. Liang et al. revealed that
overexpression of ZNF307 upregulated the protein level
of caspase-3 and Bax (BCL2 associated X), while de-
creased the protein level of Bcl-2 (BCL2 apoptosis regu-
lator). It was the first time that ZNF307 was reported to
function as tumor suppressor in HCC by inducing apop-
tosis by targeting these genes [103]. It was worth men-
tioning that Bax and Bcl-2 is also regulated by other ZFP
in HCC. In a previous study, GLI1 was aberrantly over-
expressed in HCC [119]. PCAF modulated the GLI1/
Bcl-2/BAX axis to induce apoptosis in HCC. Gai et al.
suggested that the cytoplasmic GLI1 protein was acety-
lated directly at lysine 518 by PCAF (P300/CBP-associ-
ated factor), while the nuclear translocation and
promoter occupancy of GLI1 were prevented. Subse-
quently, the expression of Bcl-2 was decreased, and BAX
was increased [120]. Additionally, ZNF263 could pro-
mote resistance to apoptosis in HCC indirectly by

activating ER stress-dependent autophagy, and the spe-
cific mechanism has not been further investigated [121].

Stemness maintenance
Cancer stem cells (CSCs) are responsible for self-
renewal, maintenance, and the growth of tumors [122].
The ability of CSCs to evade cell death and metastasis is
significant for tumorigenesis [107, 123]. Zinc finger pro-
tein X-linked (ZFX), which was highly conserved in ver-
tebrates. According to previous studies, ZFX was
concerned with the initiation or progression in various
of human cancers [124, 125]. Recently, Lai et al. demon-
strated that overexpression of ZFX leaded to the upregu-
lation of Nanog and SOX-2, which could play a vital role
in the development of embryonic stem cells (ESCs)
[126]. Mechanistically, ZFX could bind to the promoter
of Nanog and SOX-2 directly and activate their expres-
sion, then contributed to the maintenance of stem-like
characteristics of HCC cells [127]. Similarly, ZFX could
also upregulate the expression of epithelial cell adhesion
molecule (EpCAM) in HCC. Specifically, knocking-down

Table 1 Oncogenic role of ZFPs in HCC

ZFPs Aliases Role Target genes Mechanism in HCC Ref

ZNF384 NMP4、CAGH1 Oncogene Cyclin D1 Promotes proliferation [102]

ZNF263 ZSCAN44、FPM315 Oncogene Beclin1、LC3 Promotes proliferation, chemotherapy resistance and inhibits apoptosis [103]

ZNF703 NLZ1、ZPO1 Oncogene CLDN4 Induces EMT progress [104]

ZNF687 PDB6 Oncogene BMI1、OCT4、Nanog Enhances invasion and chemoresistance [7]

ZNF143 SBF、STAF Oncogene MDIG Promotes proliferation and tumor growth [101]

ZNF191 ZNF24、ZSCAN3 Oncogene CTNNB1 Activates Wnt signaling pathway [105]

ZNF503 Nlz2、NOLZ1 Oncogene GATA3 Promotes migration, invasion and EMT progress [106]

ZFX ZNF926 Oncogene Nanog、SOX-2 Enhances proliferation, drug resistance, and the ability of self-renewal [107]

Gli1 PPD1、PAPA8 Oncogene MMP-2、MMP-9 Promotes migration and invasion [8]

Caveolin-1 Induces EMT and promotes the motility and invasion [9]

Twist Induces EMT progress [10]

Table 2 Tumor-suppressive roles of ZFPs in HCC

ZFPs Aliases Role Target genes Mechanism in HCC Ref

A20 TNFA1P2 TSG Twist1 Inhibits proliferation and migration [98]

FAK、RAC1 Inhibits the motility and metastasis [11]

PFKL Inhibits proliferation, migration and glycolysis [108]

GATA4 TOF、ASD2 TSG NF-κB1, NF-κB2, RELA Induces the MET transition [109]

ZNF307 ZKSCAN4 TSG Caspase-3、BAX、BCL-2 Inhibits proliferation [110]

ZNF191 ZNF24、ZSCAN3 TSG DLG1 Inhibits metastasis of HCC [111]

ZFP91 PZF、ZNF757 TSG HNRNPA1 Inhibits glucose metabolic reprogramming, proliferation and metastasis [112]

ZNF382 KS1 TSG Fos、Jun、DVL2、FZD1 Activates the p53 signaling pathway [12]

ZNF774 TSG NOTCH2 Inhibits growth and metastasis of HCC [13]

Miz1 ZBTB17、ZNF60 TSG MTDH Inhibits inflammation [113]

ZNF521 EHZF、Evi3 TSG Runx2 Inhibits growth [14]
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of ZFX could inhibit CSCs-associated gene expression,
self-renewal capacity, metastatic potential and tumori-
genicity. Depletion of ZFX was demonstrated to reduce
the transactivation and nuclear translocation of β-
catenin and maintained the stemness of liver CSCs by
activating β-catenin. The expression level of ZFX and
EpCAM could be a significant prognostic factor of pa-
tients in HCC [128].

EMT and metastasis
The epithelial to mesenchymal transition (EMT) plays a
meaningful role in the early steps of metastasis of tumor
[104]. In a previous study, TGF-β had been identified as
one of the most potential inducer of EMT, which could
play a dual role by performing an anti-oncogenic effect
at the early stages of tumor and being oncogenic at later
stages [109, 129]. As one of the classic EMT activators,
ZEB1 plays a significant role in HCC. Li et al. suggested
that ZEB1 markedly enhanced the Wnt signaling path-
way, promoted the proliferation and migration of HCC,
and this phenomenon could be abolished by miR-708
[130]. This regulatory mechanism might provide a new
therapeutic target for the treatment of HCC. In addition,
Snail, another classic transcription factor, is also in-
volved in the induction of EMT. For example, Jiao et al.
demonstrated that Snail and E-cadherin are negatively

correlated with mRNA and protein levels in HCC cells,
and the high expression level of Snail in HCC often indi-
cates a poor prognosis [131]. Recently, Wang et al. re-
vealed that ZNF703 overexpression could promote HCC
metastasis and sorafenib resistance by regulating EMT
via upregulating CLDN4. Precisely, ZNF703 activated
CLDN4 by binding directly to promoter of CLDN4.
Moreover, the Kaplan–Meier analysis showed that
ZNF703 could be considered as an indicator for predict-
ing the prognosis of patients with HCC [106]. GATA4
was shown as a ZFP that was identified as a regulator of
cardiac development and adult cardiac hypertrophy
[132]. Overexpression of GATA4 could lead to the up-
regulation of E-cadherin and the downregulation of N-
cadherin and vimentin, which were vital markers in the
EMT process. This phenomenon could result in the
mesenchymal-to-epithelial transition of HCC cells, but
the specific mechanism was still unknown [133].
ZNF503 was reported to function as a transcriptional re-
pressor in breast cancer and increase mammary epithe-
lial cell proliferation [112, 134]. Recently, the role of
ZNF503 in the development of HCC and tumor initi-
ation was uncovered. Yin et al. suggested that mRNA
level and protein level of ZNF503 were upregulated in
HCC tissues and cell lines. Additionally, ZNF503 could
promotes invasion, migration, and EMT processes in

Fig. 2 Zinc finger proteins influence hepatocarcinogenesis through different ways. A: ZNF384 activates Cyclin D1 transcription by directly binding
to its promoter, and facilitates G1/S phase transition, ultimately promotes proliferation of HCC. B: ZNF703 promotes HCC metastasis and induces
through transactivating CLDN4 expression. C: A20 decreases the protein level of PFKL by promoting ubiquitination and degradation of PFKL, then
inhibits progression of HCC through downregulating glycolysis
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HCC. Mechanistically, ZNF503 was demonstrated to be
recruited to promoter of GATA4, then represses its ex-
pression, which played a reverse role of ZNF503 [135].

Metabolism reprogramming and glucose metabolism
Cellular metabolism functions as a flexible network not
only in normal tissues but also in the development of
malignancies [136]. Metabolic reprogramming is the
process that tumor cells reprogram the acquisition and
metabolism of nutrients to meet their needs for energy,
protein synthesis, and maintenance of redox homeostasis
[137]. In the past decades, ZFP91 had been reported to
be associated with inflammatory response but rarely
studied in the metabolism reprogramming [138]. Recently,
Chen et al. demonstrated that ZFP91 could inhibit hnRNP
A1-dependent PKM splicing and ultimately suppress glu-
cose metabolism reprogramming, cell proliferation and me-
tastasis of HCC. Specifically, overexpression of ZFP91
could promote the Lys48-linked ubiquitination of hnRNP
A1 at lysine 8 and proteasomal degradation, which could
block the process of hnRNP A1-dependent PKM splicing,
and result in the downregulation of PKM2 (Pyruvate kinase
M2) and the upregulation of PKM1 (Pyruvate kinase M1)
[139]. The formation of PKM2 is critical in the Warburg ef-
fect in cancer cells [108]. The Warburg effect causes an in-
crease in glucose uptake and lactate production, which
provides a selective advantage for tumor progression [140].
From the perspective of treatment, blocking up the ZFP91-
hnRNP A1 pathways may be an effective method in the
future.
A20, also known as tumor necrosis factorα-induced

protein 3 (TNFAIP3), is an E3 ubiquitin ligase contain-
ing ring finger domains and is also a hotpot in immuno-
regulation [113, 141, 142]. Recently, A20 was found to
correlate with glucose metabolism. Feng et al. revealed
that A20 could interact with PFKL (phosphofructoki-
nase, liver type) and promote its ubiquitination and deg-
radation, thus inhibiting glycolysis in HCC cell lines and
ultimately inhibiting proliferation, migration, and gly-
colysis of HCC [143]. PFK (phosphofructokinase) was
found as the most important rate-limiting enzyme in
glycolysis, and PFKL was one of its isoforms in the hu-
man liver [144, 145]. This study filled the gap in the
glycolytic pathway and provided possible therapeutic tar-
gets for HCC treatment.

Regulation of inflammation
Liver is the main organ where immune response and im-
mune tolerance occur, and many immune reactions in
normal hepatocytes and HCC cells may impact on the
immune function of the liver [146]. Recently, several re-
searches showed that ZFPs could influence important
process of immune responses. Fortunately, Zhang et al.
suggested that the ZFP Miz1 could suppress liver

tumorigenesis by restraining hepatocyte-driven macro-
phage activation and inflammation [105, 147]. On the
one hand, the cytosolic Miz1 could interfere with the
interaction between MTDH and RelA through competi-
tive binding, thereby limiting DEN/ccl4-induced activa-
tion of NF-kB in hepatocytes in HCC. Additionally,
Miz1 could inhibit MTDH phosphorylation by IKK (the
IkB kinase complex), which was an activator of NF-kB
after activated by varies extracellular stimuli, then inhi-
biting NF-kB transcriptional activity [111]. On the other
hand, hepatocyte-specific Miz1 decrease produced a
unique hepatocytes subset with the up-regulation level
of TNF-α, IL-1b, IL-6, and CCL4, which promoted
tumor-infiltrating macrophages to a pro-inflammatory
phenotype, thereby promoting an inflammatory response
in HCC.

ZNF191: double-edged sword in HCC
In most conditions, ZFPs tend to play only one of the
two effects, anti-oncogenic or oncogenic. However, dur-
ing the past few years, some studies have shown that
one ZFP may play both oncogenic and tumor-
suppressive roles in HCC (Fig. 3). ZNF191, also known
as ZNF24, belongs to the scan domain family’s transcrip-
tion factors containing Krüppel-like zinc finger. It in-
cludes four zinc finger motifs that can encode potential
DNA binding regions [148]. As a transcription factor
that recognizes the TCAT motif explicitly, it plays an es-
sential role in mammalian development, especially dur-
ing the embryonic period. Within other areas of
physiological function, it has been reported to promote
the migration of endothelial cells and vascular smooth
muscle cells and even promote DNA replication [148–
150]. In HCC, ZNF191 was initially reported to enhance
the transcriptional activity of β-catenin by binding to nu-
cleotides located at − 1254/− 1224 on its promoter re-
gion, thereby upregulated the expression of its
downstream target gene cyclinD1 and ultimately pro-
moting the proliferation of HCC cells [151]. A few years
later, the same team’s research about ZNF191 in HCC
emerged, and this time it was playing an adverse role.
Wu et al. revealed that ZNF191 activated DLG1 expres-
sion by directly binding to the DLG1 promoter through
its typical TCAT repeat sequence, subsequently inhibit-
ing the migration and YAP activation of HCC cells and
ultimately the metastasis of HCC [152]. Recently, an-
other study revealed that ZNF191 could activate the
WNT signaling pathway through transcriptional upregu-
lation of Wnt8B, which ultimately promoted the prolif-
eration of HCC. Like β-catenin, the promoter region of
Wnt8B was bound by ZNF191, which in turn enhanced
Wnt8B transcriptional activity, thereby activating the
Wnt signaling pathway [153]. It was worth noting that
the two mechanisms could co-exist in HCC, which
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exerted both promotion and inhibition functions. Conse-
quently, the expression level of ZNF191 and associated
disease background must be clarified before targeting
therapy for ZNF191-associated HCC, and the coexistence
of these two mechanisms in the context of ZNF191 also
deserves further investigation. We believe that ZNF191
has the potential to be a prognostic factor for HCC and a
key therapeutic target as research progresses.

Conclusion and perspectives
As one of the largest transcription factor families in the
human genome, ZFPs play diverse roles in cell biological
functions, such as cell differentiation, apoptosis, tran-
scriptional regulation, cell metabolism, immune re-
sponse. In the past decades, there have been more
reports about the role of ZFP in cancer, especially in
HCC. HCC is still one of the cancers with the highest
mortality rate in the world with many unsolved prob-
lems for early diagnosis and postoperative treatment. In
this review, we described the role and related mecha-
nisms of ZFPs in the development of HCC.
Above all, zinc finger motifs have different types, includ-

ing Cys2His2 (C2H2) like, Gag knuckle, Treble clef, Zinc
ribbon, Zn2/Cys6, TAZ2 domain like, Zinc binding loops
and Metallothionein. The C2H2 zinc finger motif is the
largest of all zinc finger motifs. In the C2H2 motif ZFP, in

addition to the zinc finger structure, also contains other
common domains, such as the KRAB domain, the BTB
domain, SCAN domain and SET domain. These domains
could bind to DNA, RNA or proteins to function. Sec-
ondly, ZFPs were also reported in regulating post-
transcriptional modification and protein-protein inter-
action. Finally, ZFPs affect the development of HCC in
different processes, such as cell cycle, apoptosis and even
metabolism. Among them, ZNF191 shows a distinct effect
in the early and late stages of HCC. Some ZFPs have also
been reported as prognostic factors in HCC. For example,
the high expression of ZBTB20 and ZNF689 in HCC pa-
tients was strongly associated with poor clinical prognosis
as well as high recurrence rates [154, 155]. In a latest
study, Sun et al. revealed that zinc finger protein 2 gene
(ZIC2) was able to predict the prognosis of HCC, and
ZIC2 was positively correlated with immune infiltration
cells in HCC patients [156]. Therefore, due to the different
roles that ZFPs play in HCC, it is possible to invent inhibi-
tors for a specific ZFP or to interfere with the expression
of its target gene, and these approaches may provide new
thinking about ZFPs in HCC and even in other cancers.
In a word, ZFPs play an important role in tumorigen-

esis of HCC, and more mechanisms need to be further
studied. The targeted drugs of ZFPs in HCC need to be
further explored.

Fig. 3 ZNF191 plays an opposite role in different stages of hepatocellular carcinoma. At early stage, ZNF191 activated the expression of CTNNB1
and its downstream gene Cyclin D1 by binding to the promoter region of CTNNB1, ultimately promoted the proliferation of HCC. At late stage,
ZNF191 activated its expression by binding to the promoter of DLG1, thereby inhibited the activation of YAP and the migration of HCC cells,
eventually inhibited the metastasis of HCC
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