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Abstract

Eosinophilia represents a group of diseases with heterogeneous pathobiology and clinical phenotypes. Among the
alterations found in primary Eosinophilia, gene fusions involving PDGFRα, PDGFRβ, FGFR1 or JAK2 represent the
biomarkers of WHO-defined “myeloid and lymphoid neoplasms with eosinophilia”. The heterogeneous nature of
genomic aberrations and the promiscuity of fusion partners, may limit the diagnostic accuracy of current
cytogenetics approaches. To address such technical challenges, we exploited a nanopore-based sequencing assay
to screen patients with primary Eosinophilia. The comprehensive sequencing approach described here enables the
identification of genomic fusion in 60 h, starting from DNA purified from whole blood.
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To the Editor,
the 2016-WHO category of myeloid and lymphoid

neoplasms with eosinophilia and abnormalities of PDGF
Rα, PDGFRβ, FGFR1 or PCM1-JAK2 (MLN-Eo) is
defined by an absolute, persistent, eosinophil count
(AEC) ≥1500/uL [1]. In most cases, the initial diagnostic
framework relies on cytogenetics; individual molecular
probes specifically targeting PDGFRα, PDGFRβ, FGFR1
or the PCM1-JAK2 fusion are employed for FISH
analysis to identify the most recurrent translocations.
However, owing to the promiscuous nature of the fusion

events [2], including currently unknown partners, FISH
approach has anticipated shortcomings depending on
the availability of probes for known partner genes [3].
On the other hand, RNA analysis might be more inform-
ative but it poses long turnaround times and bioinformatic
challenges [4]. In this context, we exploited the potential
advantages of a long-read genome-wide nanopore sequen-
cing (NS) to detect fusion events involving PDGFRα/β,
FGFR1 and JAK2 in unamplified DNA samples [5].
To the purposes of the study, we sequenced 12 sam-

ples from patients with Eosinophilia (7 males, 5 females)
whose familiar or secondary origin were excluded and
who had stored samples collected at presentation (local
ethics committee approval: #14,560). Full set of clinical
and cytogenetic data were available for all the patients
(Supplemental Table 1). The median age, AEC and white
blood cell count at diagnosis were, respectively, 48 years
(range 25-85), 1.4/L (range, 1.1-6.7) and 14.45 × 109/L
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(range, 7.3-105). All subjects were negative for
JAK2V617F, MPLW515 or CALRexon9 mutation.
Genomic DNA was purified from whole blood and

prepared for whole genome NS as previously described
[6]. Rough sequencing data were aligned to the Human
Reference GRCh38 by Minimap2 (v2.17). Variant calling
in the regions of interest was carried out through a read-

count approach (Fig. 1 A) with Nano-GLADIATOR [7],
and by a gapped-alignment and split-read approach
(Fig. 1 B) through Sniffles [8].
Given the prevalence of the translocation FIP1L1-

PDGFRα in MLN-Eo, we first performed a read-count
analysis aimed at detecting possible interstitial deletion
involving PDGFRα [9]. A del [4](q12q12) was identified

Fig. 1 Visualization of genomic variants in two representative samples. Panel A shows the interstitial deletion at chr4(q12) detected in sample #1
and visualized by KaryoploteR. In the chart, the log2 copy ratio values, on the Y axis, reflects the ploidy along the chromosome. The black dots
represent log2 values for each examined window (log2 ratio=0 for diploid region); the copy number segmentation of the log2 ratio is visualized
by the red line. Segments were assigned gain, loss or normal copy basing on cut-off estimated by the within-segment standard deviation of
post-normalized signals. The signal reduction point at the loss of genomic material caused by the del[4](q12q12). Panel B shows a chimeric read
isolated in sample #4 resulting from the fusion between chromosome 5 (green) and chromosome 12 (dark yellow), visualized by Ribbon. The
chimeric read spanning 18,108 bp, of which 8,756 bp mapped on chromosome 12 and 9,352 bp on chromosome 5, represents the molecular
marker of the t(5;12)(q33;p13) detected in the sample

Romagnoli et al. Biomarker Research            (2021) 9:83 Page 2 of 4



in 3 samples, involving 800±100Kb (sample #1), 700±
100Kb (sample #2) and 900±100Kb (sample #3). Further
annotation by AnnotSV [10] revealed the genes com-
prised by the reported deletions, as shown in Table 1.
Sequencing data were further analysed by Sniffles. In

samples #4 and #5, chimeric reads with multiple align-
ment pointing were detected at a t(5;12)(q32;p13) and a
t(5;14)(q32q32), respectively. The chimeric reads in sam-
ple #4 spanned from 9,394 bp to 52,545 bp, of which at
least 810 bp (up to 46,423 bp) were aligned to PDGFRβ
and 6,108 bp (up to 21,245 bp) to ETV6; more specifically,
the clustering of chimeric reads predicted the fusion
breakpoint between intron 10 of PDGFRβ (nucleotide, nt,
position 15,776) and intron 4 of ETV6 (nt position
218,066). The translocation found in sample #5 was origi-
nated by the fusion between PDGFRβ intron 9 (nt position
16,372) and CCDC88C intron 24 (nt position 19,495). The
chimeric read spanned 32,847 bp, where 22,736 bp were
aligned to PDGFRβ and 9,111 bp to CCDC88C.
In samples #6 and #7 we found, respectively, 3 and 2

chimeric reads predicting for a t(8;13)(p11;q12). The
chimeric reads in sample #6 (spanning from 16,164 bp
to 15,152 bp) were composed by the FGFR1 sequence
(min overlap: 678 bp – max overlap: 7,324 bp) fused to
ZMYM2 (min overlap: 8,911 bp – max overlap:
25,858 bp); the fusion breakpoint was located at nucleo-
tides 6,754 and 102,102 of FGFR1 and ZMYM2, respect-
ively. In sample #7, the two chimeric reads (22,890 bp
and 57,953 bp) were aligned to FGFR1 (by 13,483 or
21,753 bp) and to ZMYM2 (by 9,407 or 36,200 bp). The

fusion breakpoint was detected between nucleotides
21,209 of FGFR1 and 89,374 of ZMYM2.
No PCM1-JAK2 fusion was detected in any samples of

the cohort.
The NS screening results were in full agreement with

FISH analysis (Pearson’s R2 coefficient:1) independently
performed on the same samples of eosinophils collected
at diagnosis. We show here that long-reads analysis facil-
itated the identification of the exact breakpoints of gene
fusion in the 7 mutated patients, an information not
provided by conventional cytogenetic approaches. The
described pipeline allows to complete simultaneous
genomic search for rearrangements of PDGFRα/β,
FGFR1 and JAK2 in 60 h from blood sample collection,
at an affordable cost, currently estimated at 500 Euros
per sample. Finally, the NS long-reads sequencing of
DNA enables the identification of possible unknown fu-
sion partners by the alignment of the chimeric se-
quences to a reference genome.
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FISH: Fluorescence In Situ Hybridization; NS: Nanopore Sequencing;
nt: nucleotide
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Table 1 Genomic variants detected in the samples cohort. The table summarizes the nanopore sequencing and the F.I.S.H. results
for each patient included in the study. The genomic coordinates of the fusion breakpoint and the genes involved by the alteration
are provided for each variant reported. No fusion event was detected (ND, Not Detected) in the patients indicated as normal
karyotype (46, XX or XY) by FISH and NS analysis

Sample F.I.S.H. NS

karyotype karyotype Involved Genes Fusion Breakpoint

#1 46, XX,del(4)(q12q12) 46, XX,del(4)(q12q12) LNX1, LNX1-AS2, LOC100506444,
RPL21P44, CHIC2, GSX2, PDGFRα

Chr4:53,443,951 - Chr4:54,343,951

#2 46, XY,del(4)(q12q12) 46, XY,del(4)(q12q12) LNX1, LNX-AS2, RPL21P44, CHIC2, GSX2 Chr4:53,543,951 – Chr4:54,343,951

#3 46, XY,del(4)(q12q12) 46, XY,del(4)(q12q12) FIP1L1 (16Kb), LNX1, LNX1-AS1,
LNX1-AS2, LOC100506444, RPL21P44,
CHIC2, GSX2, PDGFRα, LINC0228

Chr4:53,443,951 – Chr4:54,143,951

#4 46, XY,t(5;12)(q32;p13) 46, XY,t(5;12)(q32;p13) PDGFRβ-ETV6 Chr5:150,129,614 – Chr12:11,867,739

#5 46, XY,t(5;14)(q32q32) 46, XY,t(5;14)(q32q32) PDGFRβ-CCDC88C Chr5:150,129,617 – Chr14:91,290,817

#6 46, XX,t(8;13)(p11;q12) 46, XX,t(8;13)(p11;q12) FGFR1-ZMYM2 Chr8:38,417,891 – Chr13:20,059,507

#7 46, XX, t(8;13)(p11;q12) 46, XX, t(8;13)(p11;q12) FGFR1-ZMYM2 Chr8:38,957,173 – Chr13:206,235,585

#8 46, XX 46, XX ND ND

#9 46, XY 46, XY ND ND

#10 46, XY 46, XY ND ND

#11 46, XY 46, XY ND ND

#12 46, XX 46, XX ND ND
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