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Abstract

The role of PLAC8 in tumorigenesis has been gradually elucidated with the development of research. Although
there are common molecular mechanisms that enforce cell growth, the impact of PLAC8 is varied and can, in some
instances, have opposite effects on tumorigenesis. To systematically understand the role of PLAC8 in tumors, the
molecular functions of PLAC8 in cancer will be discussed by focusing on how PLAC8 impacts tumorigenesis when it
arises within tumor cells and how these roles can change in different stages of cancer progression with the
ultimate goal of suppressing PLAC8-relevant cancer behavior and related pathologies. In addition, we highlight the
diversity of PLAC8 in different tumors and its functional output beyond cancer cell growth. The comprehension of
PLAC8’s molecular function might provide new target and lead to the development of novel anticancer therapies.
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Introduction
Placenta specific 8 (PLAC8), also known as Onzin, C15,
DGIC and PNAS-144, was first identified in genome-
wide expression profiling of mid-gestation placentas and
embryos using a 15,000 mouse-developmental cDNA
microarray [1, 2]. PLAC8 expression is dynamic during
pregnancy and placental development and accumulates
in an implantation-dependent manner [1, 3]. PLAC8 has
also been found to be involved in embryo development
[4–8]. And PLAC8 is found to be highly expressed in the
endometrium of pregnant cows compared to nonpreg-
nant cows, and it is upregulated in blastocysts, resulting
in calf delivery [9–12]. Subsequent research on PLAC8
was not limited to animals but also involved humans
and many plants [13–16]. During the differentiation
process of cytotrophoblast cells into interstitial extravil-
lous trophoblast cells, PLAC8 is greatly induced [17]. To
date, PLAC8 has been determined to be involved in
organ development and tumorigenesis [18–21]. In
addition, PLAC8 is a molecular marker to predict

prognosis and distinguish between different cell subpop-
ulations [17, 22]. PLAC8 also plays different roles in a
cell- or tissue-type specific manner. Throughout this re-
view, we discuss the structure of PLAC8 and how
PLAC8 evokes widely different responses in
tumorigenesis.

PLAC8 protein
The PLAC8 gene is located in human chromosome 4
and Mus musculus chromosome 5, which is one of the
placenta-regulatory genes and belongs to the cornifelin
family.
The PLAC8 protein contains five exons, coding for a

mRNA species of 829 bp and an open reading frame of
115 amino acids [1], which shows a high degree of con-
servation (83%) between humans and mice [1, 23]. In
addition, FW2.2-like (FWL) genes which are identified in
plant species and PLAC8 genes, which both contain
highly conserved cysteine-rich motifs, share a common
ancestor before the divergence between plants and ani-
mals [24]. The first 11 amino acids of this cysteine-rich
domain are reported to be required for binding of
PLAC8 with Akt1 and MDM-2 protein, and then regu-
late the activity of Akt1 and MDM-2 [25]. This same
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region is also found to be required for PLAC8 transiently
binds to the C/EBPβ promoter and induce its transcrip-
tion [26]. In addition, this cysteine-rich domain is called
the PLAC8 motif which does not conform to consensus
zinc- or RING-finger domains [27, 28]. The PLAC8
motif-containing proteins form a large family and mem-
bers which can be found in fungi, algae, higher plants
and animals [29, 30]. In plants, AtPCR1 and AtPCR2
which contain PLAC8 motif play an important role in
transport of heavy metals such as cadmium or zinc [29].
However, our knowledge about the function of PLAC8
motif-containing proteins is very limited. To some ex-
tent, although PLAC8 protein has only 115 amino acids
(Fig. 1), investigation of its intact domain will help to
provide a full understanding of its function and PLAC8
motif-containing proteins.
PLAC8 protein does not have an N-terminal signal

peptide, indicating that this protein is not a secretory
protein and functions within the cytoplasm or the nu-
cleus [31]. And the precise cellular location of PLAC8
varies greatly depending on its specific context. For in-
stance, the intracellular distribution of the PLAC8 pro-
tein is dynamic and regulated in an implantation-
dependent manner [32]. PLAC8 is specifically expressed
in the interstitial extravillous trophoblast cells on the
fetomaternal interface, while its expression is hardly de-
tectable in the endovasculare trophoblast cells [17].
PLAC8 is found exclusively at the apical domain of fully
differentiated normal colonic epithelium in both colono-
cytes and goblet cells [33], and it localizes at the tropho-
blast cell periphery [17]. In addition, PLAC8 has been
found in nasopharyngeal carcinoma and breast cancer
cell cytoplasm and membrane [34, 35]. After breast can-
cer cells acquired drug resistance, PLAC8 accumulated
both in nucleus and cytoplasm [36]. In pancreatic cancer
cells, PLAC8 is located in the inner plasma membrane
[37]. However, in pancreatic ductal adenocarcinoma,
PLAC8 is mainly located in lysosomes [38]. The lyso-
somes contain transporters and participates in the ex-
port of molecules [39]. The location of PLAC8 in

lysosomes might cause the different location of PLAC8
because of lysosomes interact with other organelles thus
leading fusion or non-fusogenic contacts. And these
varying localizations may result in its functional
differences.
Since PLAC8 was identified 20 years ago, many studies

have been performed to identify the characteristics and
molecular functions of PLAC8 in cancer (Fig. 2) [40].
PLAC8 promotes the growth of tumor cells in prostate
cancer cells [41] but significantly inhibits the growth of
tumor cells in hepatocellular carcinoma [42]. This inter-
esting phenomenon prompts us to explore the under-
lying mechanisms and regulatory network of PLAC8.
Therefore, research on PLAC8 will help us to further
understand the biological characteristics of tumors.

Connections with cancer
As a key regulator of growth in different species, includ-
ing fungi [43], plants [24, 44] and mammals [3, 30, 45,
46], PLAC8 participates in many important physiological
activities in different contexts [31, 47–49]. Such as, the
ratio of FAIM3:PLAC8 might be a diagnostic biomarker
in sepsis [47]. And PLAC8 is related with septic shock
[49]. To date, researchers have also found that PLAC8
acts as a tumor associated gene that is involved in many
cancer processes (Fig. 3) [50–55]. We further discuss the
various molecular functions of PLAC8 in cancer in our
review.

Programed cell death
Programmed cell death, referring to apoptosis, autoph-
agy, programmed necrosis and ferroptosis, may jointly
decide the fate of malignant neoplasm cells [56–58].
These forms of programmed cell death balance cell
death with cell survival, thus regulating cancer cell fate.
Many oncogenes or tumor suppressor genes are linked
with tumorigenesis through programmed cell death [59–
61]. PLAC8, as an oncogene, promotes colorectal and
prostate cancer cell growth [62–64]. Cancer growth is al-
ways accompanied by programmed cell death. As

Fig. 1 PLAC8 structure. The cysteine-rich domain of the human PLAC8 protein is located between amino acids 28 and 61
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expected, PLAC8 regulates cell apoptosis in various can-
cers [65]. We found that PLAC8 inhibits breast cancer
cell apoptosis, thus promoting cell proliferation [34].
PLAC8 decreases the sensitivity of lung adenocarcinoma
cells to gefitinib-induced apoptosis by reducing the ex-
pression of cleaved caspase 3 and cleaved PARP [45].
The mRNA levels of PLAC8 are increased in stool, and
that its increased expression correlates with colorectal
cells relapse [63, 66]. PLAC8 is also upregulated in late-
stage colorectal patient’s tissues and butyrate which pro-
duces microorganisms downregulated PLAC8

expression. And butyrate increased cleaved PARP frag-
ment and then induced apoptosis in colorectal cells [62].
Exception of cancer cells, PLAC8 can also inhibits cell
apoptosis of primary human and established rat fibro-
blasts via promoting the activation of MDM-2 and
AKT1 and then inhibiting p53 [25]. Akt/MDM-2/p53
pathway serves an important role in the regulation of
cell apoptosis [67]. And autophagy, is a process that de-
livers cytoplasmic components to the lysosomes which
PLAC8 locates in [38], has opposing and context-
dependent roles in cancer [68]. Autophagy induces

Fig. 2 Timeline of PLAC8 research. A brief history of functional and pharmacological studies of PLAC8

Fig. 3 Schematic overview of PLAC8 functions in cancer progression
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pancreatic ductal adenocarcinoma cells growth [69].
Pancreatic ductal adenocarcinoma has signature onco-
genic mutations of KRAS and the inactivation of p53
[70]. Additionally, in pancreatic ductal adenocarcinoma
cell lines, PLAC8 is cooperatively induced in response to
mutations in KRAS [71] and p53 [72] which are the two
of the most commonly occurring mutations in cancer.
And then PLAC8 promote pancreatic ductal adenocar-
cinoma cell lines autophagy thus promoting tumor for-
mation [38]. The oncogenic role of PLAC8 in inducing
the prosurvival function of autophagy protects cells from
environmental stress and aids in the transformation of
prostate epithelial cells during chronic exposure to cad-
mium [41]. We previously shown that PLAC8 collabo-
rates with p62 to suppress autophagy in doxorubicin
resistant breast cancer cells [36]. PLAC8 inhibits autoph-
agy via the AKT/mTOR pathway in nasopharyngeal car-
cinoma cells [73]. In addition to cancer, PLAC8 also
enhances autophagy in adult-onset Still’s disease [74]
and promotes trophoblast cells autophagy though regu-
lating autophagy-related markers, including LC3B I/II,
ATG12 and Beclin-1 [75]. However, the relationship of
PLAC8 with programmed necrosis and ferroptosis,
which is a new form of cell death, is still unknown. We
previously discussed that an interaction exists between
ferroptosis and autophagy [76]. The crosstalk between
autophagy and apoptosis regulates testicular injury in-
duced by cadmium via PI3K and a mTOR-independent
pathway [77]. Interestingly, PLAC8 regulates the PI3K
pathway and interacts with AKT, which is an important
kinase of the PI3K pathway [34, 42, 78]. These results
strongly indicate that PLAC8 may be a core regulator in
programmed cell death, affect different forms of cell
death and decide cancer cell fate. This intriguing con-
trast in the effects of PLAC8 on cell fate in different cel-
lular contexts presents attractive possibilities for the
development of novel therapies for cancers.

Cancer stemness
Stem cells are a population of undifferentiated cells
characterized by the ability of self-renewal, such as em-
bryonic stem cells. Studies have shown that the expres-
sion of PLAC8 and several recognized stem cell markers
(NANOG [79], SOX2 [80] and POU5F1 [81]) are com-
monly highly expressed in embryo development [82]. In
POU5F1-null embryonic stem cells, PLAC8 is downregu-
lated [83]. PLAC8 also may be upstream of KLF4 which
is a stem cell marker [84] in triggering adipogenesis [51].
These studies suggest that PLAC8 may involve in stem
cell progression vis interacting with stem cell markers.
Consistant with stem cells, cancer stem cells (CSCs)
have the potential to self-renew, and they often appear
dormant and resist cancer treatments, such as radiation
and chemotherapy, leading to cancer recurrence. Higher

PLAC8 expression is found in the sphere-forming colo-
rectal cancer cells than in colorectal cancer cells. And
Id1 gene which can activate the Wnt/β-catenin and Shh
signaling pathways promote PLAC8 expression and then
maintains cell stemness in colorectal cancer [85]. In
non-small cell lung cancer, PLAC8 promotes the levels
of ALDH1A1 which is a putative marker for CSCs in nu-
merous types of tumors [86–88]. Additionally, PLAC8
regulates the expression of POU5F1, thus increasing
stemness during lung adenocarcinoma cell resistance to
radiotherapy [89]. And our previous study showed that
KLF4 regulates PLAC8 transcription in lung cancer cells
[90]. These studies strongly indicates that the regulation
loop between stem cell markers (POU5F1 and KLF4)
and PLAC8 and the various roles of PLAC8 in cancer
stemness. The precise association of PLAC8 with recog-
nized stem cell markers still need further explored.
Based on emerging evidence, PLAC8 may be a promising
stemness related marker in tumor initiation and
development.

Epithelial-mesenchymal transition
Epithelial–mesenchymal transition (EMT) is a cellular
process in which cells lose their epithelial characteristics
and acquire mesenchymal features that have been asso-
ciated with metastasis [91]. Studies have shown that
PLAC8 overexpression contributes to MAPK pathway
activation and metastatic phenotypes [92] and that
PLAC8 plays a role in the epithelial-mesenchymal transi-
tion [93] in different types of cancer. PLAC8 promotes
trophoblast cell, non-small cell lung cancer cell, and
clear cell renal cell carcinoma invasion and migration
[17, 88, 94, 95]. However, PLAC8 inhibits oral squamous
cell invasion [95]. PLAC8 reflects the expression of
epithelial-mesenchymal related markers including E-cad-
herin, N-cadherin and vimentin thus involving epithelial-
mesenchymal transition process. In breast cancer cells,
embryonic kidney 293 T cells, colorectal cancer cells and
nasopharyngeal carcinoma cells, PLAC8 downregulates
the level of E-cadherin thus regulating cell migration
and invasion [34, 35, 96, 97]. On the other hand, PLAC8
upregulates N-cadherin and vimentin levels in breast
cancer and nasopharyngeal carcinoma cells [34, 73].
Interestingly, PLAC8 decreases E-cadherin expression
but increases P-cadherin and vimentin expression; how-
ever, the level of N-cadherin is stable in colorectal can-
cer cells [33]. These studies demonstrate that the
molecular function of PLAC8 varies in different contexts.
The difference in cellular position may not be sufficient
to explain this phenomenon, and in-depth research is
needed in the future. In addition to cadherin family pro-
teins, the abundant expression of PLAC8 in interstitial
extravillous trophoblast cells promotes cell invasion and
migration partially by upregulating the activation of
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RAC1 and CDC42 without change their expression [17].
PLAC8 not only promotes EMT progression but is also
involved in cancer metastasis, such as bone metastasis in
prostate cancer cells and lung metastasis in colorectal
cancer cells in vivo [62, 64]. Taken together, PLAC8 may
reflect epithelial-mesenchymal related genes thus involv-
ing EMT progression and cancer metastasis. Addition-
ally, the expression of PLAC8 can predict of changes in
EMT markers, including E-cadherin, N-cadherin and
vimentin and be the hallmark of EMT progression.

Cancer immunity
PLAC8 exists in a variety of immune cells and the level
of PLAC8 varies in different immune cells. PLAC8 is
higher expressed by Th1 CD4 T-cells compared to Th2,
Th17 and iTreg CD4 T-cells [22]. In addition, PLAC8 is
relatively highly expressed in airway T helper 2 (Th2)
cells which play a pathogenic role in allergies [98].
PLAC8 is robustly downregulated in CD39+ human
regulatory T-cells [99]. In addition to being expressed in
immune cells, PLAC8 also interacts with immune factors
and regulates inflammation. For example, PLAC8 sup-
presses the production of the pro-inflammatory cyto-
kines, IL-1b and IL-18, via enhancement of autophagy in
adult-onset Still’s disease [74]. PLAC8 is important for
suppressing IFNγ production by IL-12 stimulation in
CD4 T-cell [22]. And CD4 T-cell expression of PLAC8
correlates with potent termination of Chlamydia replica-
tion and relative independence from IFNγ pretreatment
of epithelial monolayers [100, 101]. And Chlamydia-
specific CD8 T-cell clones do not express PLAC8 [102],
but PLAC8 also promotes effector CD8 T-cell establish-
ment through a T cell-intrinsic mechanism. In addition,
PLAC8 is identified in placental functions, and PLAC8 is
relatively higher in placentitis cells [103]. PLAC8 mRNA
is also increased in the myometrium of adenomyosis pa-
tients, indicating the role of the immune response in the
myometrium of women with adenomyosis [104]. These
evidences suggest that PLAC8 may play an important
role in immune system [31, 105, 106]. Determining fac-
tors that regulate PLAC8 expression in T cells may help
to identify how it can be utilized therapeutically during
T cell-driven inflammation, and the functions of PLAC8
in the immune system, especially in the regulation of dif-
ferent populations of immune cells, need to be explored
further.
When referred to cancer immunity, PLAC8 is found to

be most intensively expressed in the FXIII-A dim sub-
group and helps to define three novel subpopulations in
pediatric B-cell progenitor acute lymphoblastic leukemia
[107]. And RNA sequencing data of clear cell renal cell
carcinoma has shown that PLAC8 is mainly involved in
immunity-related pathways [94]. With unbiased RNA se-
quence analysis, CXCL5, which is an inflammatory

mediator, has been identified as one of the downstream
targets of PLAC8 overexpression in osteosarcoma [92].
Gong et al. found that PLAC8 is abnormally overex-
pressed in gallbladder carcinoma cells and that its ex-
pression positively correlates with PD-L1 expression,
which is the main checkpoint of the immune system
[108]. However, time and more research will begin to
address questions that how PLAC8 involves cancer im-
munity. While these findings were initially unexpected,
PLAC8 is an immune-related gene and may be a target-
ing gene for immune reactions in cancer.

Drug resistance
In the ericoid mycorrhizal fungus, Oidiodendron maius,
PLAC8-containing proteins have been reported to be in-
volved in cadmium tolerance [28]. Additionally, specific-
ally targeting PLAC8 may affect prostate carcinogenesis
in humans, and PLAC8 activation may be used as a bio-
marker for the early detection of prostate cancer in
cadmium-exposed populations [41]. These findings indi-
cate that the expression of PLAC8 might be altered upon
exposure to certain drugs. Drug resistance is one of the
main reasons for the failure of tumor therapy, which
greatly limits the choice and use of cancer drugs. Re-
searchers have demonstrated that PLAC8 is related to
multidrug resistance in various cancers. In nasopharyn-
geal carcinoma cells, knockout of PLAC8 radiosensitizes
nasopharyngeal carcinoma cells by activating the PI3K/
AKT/GSK3β pathway [78]. Our study found that overex-
pression of PLAC8 can promote tamoxifen resistance in
breast cancer and that the expression of PLAC8 can be
reduced by curcumin [96]. In addition to endocrine re-
sistance, PLAC8 regulates RAC1 levels, and another
study has reported that RAC1 promotes breast cancer
chemoresistance by influencing DNA damage repair [17,
109]. These findings indicate that PLAC8 may predict
multidrug resistance in breast cancer. In non-small cell
lung cancer, overexpression of PLAC8 in parental cells
markedly decreases osimertinib sensitivity [88]. En-
hanced sensitivity to cisplatin treatment following silen-
cing of PLAC8 in clear cell renal cell carcinoma cells
suggests a potential therapeutic target of PLAC8 [94].
PLAC8 overexpression decreases sensitivity to gemcita-
bine and oxaliplatin in gallbladder carcinoma cells [108].
Overexpression of PLAC8 significantly decreases the
sensitivity of lung adenocarcinoma to gefitinib [45].
Taken together, these results suggest that PLAC8 may
predict drug resistance in various cancer cells and be a
promising therapeutic target.

Other diseases
In addition to its important role in tumors, PLAC8 also
participates in other disease processes, such as respira-
tory diseases and some infectious diseases [98, 102, 110].
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For example, PLAC8 is upregulated in activated mono-
cytes and in monocytes isolated from active ASD pa-
tients [74]. In addition, many studies have shown that
PLAC8 is related to glucose metabolism [26]. However,
animal models have shown that PLAC8 is expressed at
different levels in F344-fa and F344-fa-nidd2 rats and is
closely related to obesity and glucose loading [15]. The
AIM3:PLAC8 ratio is a candidate biomarker that can be
used to assist in the rapid diagnosis of CAP on ICU ad-
mission [111]. The study of PLAC8 in different systemic
diseases in humans may help to further understand the
function of this gene.

Overview of the PLAC8-regulated network
There is mounting evidence of the potential role of
PLAC8-regulated network in cancer (Fig. 4) [104, 111,
112]. PLAC8 can be regulated at the transcriptional
level. For example, PLAC8 is involved in pro-
mesonephros regulation, and PAX2 regulates the tran-
scription of PLAC8 [113]. PLAC8 is upregulated by
IFNT [114], and the expression of PLAC8 is upregu-
lated under hypoxia [17]. PLAC8 acts as a

transcription factor involved in the expression of dif-
ferent genes. In CD4 T cells, PLAC8 suppresses IL-
12-induced IFNγ production at the transcriptional
level [22]. PLAC8 binds to the C/EBPβ promoter to
induce its transcription [26]. PLAC8 activates the
Akt/MDM-2 pathway, ultimately leading to an inabil-
ity to upregulate p53. In addition, PLAC8 directly in-
teracts with MDM-2 and Akt, thereby influencing the
localization of both proteins [25]. In functional extra-
villous trophoblasts, PLAC8 colocalizes with p53 and
regulates p53 expression at the posttranslational level
[75]. In addition, the expression of PLAC8 can be re-
duced by curcumin in tamoxifen resistant breast can-
cer [96]. And butyrate reduced the expression of
PLAC8 in colorectal cancer cells [62]. In acute mye-
loid leukemic cell lines, all-trans retinoic acid (ATRA)
and phorbol 12-myristate 13-acetate (PMA) downreg-
ulate PLAC8 expression though PKCɛ-ERK2 signaling
pathway [50]. As shown in Fig. 3, PLAC8 interacts
with tumor-related genes both at the transcriptional
and posttranscriptional levels, thereby playing a func-
tional role in cancer progression.

Fig. 4 Signaling pathways and genes controlling PLAC8 expression and its regulatory system. PLAC8 regulation is driven by different factors in
both the nucleus and cytoplasm. It is important to point out that published mechanisms of PLAC8 regulation are not yet completely understood.
Studies have shown that growth-related signaling pathways, such as the AKT, MAPK and TGF-β/Smad pathways, interact with PLAC8. Some drugs,
such as curcumin and PAM, directly and indirectly affect PLAC8 levels. In addition, PLAC8, as a transcription factor, promotes C/EBPβ transcription
and inhibits PU.1 transcription. The dashed lines depict mechanisms that are not completely understood. C/EBPβ, enhancer-binding protein β;
ALDH1A1, aldehyde dehydrogenase 1 family member A1; CDC42, cell division control protein 42; POU5F1, POU Class 5 homeobox 1; RAC1, ras-
related C3 botulinum toxin substrate 1; KLF4, Kruppel-like factor-4; PLAC8, placenta-specific gene 8; PU.1, Spi-1 proto-oncogene; CD98,
ectonucleoside triphosphate diphosphohydrolase 1; ID1, inhibitor of differentiationId-1; PKCɛ, protein kinase C ɛ; ERK2, extracellular regulated
protein kinases 2; c-Myc, cellular myelocytomatosis viral oncogene; CXCL5, C-X-C motif chemokine 5; DUSP6, dual specificity phosphatase 6; MDM-
2, murine double minute 2; p53, tumor protein 53
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Conclusion and perspectives
Our understanding of the molecular mechanisms of
PLAC8 has expanded over the last decade, and this
knowledge has been used to build better models that
allow us to unravel the complicated role of the PLAC8
gene in human diseases. Furthermore, these studies have
led to the identification of putative therapeutics to target
PLAC8. While PLAC8 accumulates in most tumor cells,
it tends to contribute to tumor progression by inducing
tumorigenesis, immune reactions, chemoresistance and
metastasis. As discussed above, PLAC8 has been identi-
fied in breast cancer, prostate cancer, lung cancer gall-
bladder cancer and nasopharyngeal cancer (Fig. 5). The
molecular functions of PLAC8 in the brain, gastric car-
cinoma and osteocarcinoma remain unknown and need
to be explored. Based on these studies, we suggest that
PLAC8 may be a promising marker and predictor for
clinical drug selection, immunotherapy response and
tumor prognosis. The precise roles of PLAC8 in different
cancers vary, and its underlying mechanisms should be
determined in the future. In addition, the relative net-
work related to PLAC8 is still not clear. Therefore, the
mechanisms by which PLAC8 selects its downstream
partners and is reflected by other genes may reveal new
players and mechanisms by which PLAC8 orchestrates
cancer cell behavior, thereby suggesting new targets for
therapy. Another aspect that deserves attention is to
understand the functional structure of each region of the
PLAC8 protein, which will help to comprehend the re-
lated molecular mechanism of the protein. Further
characterization of the PLAC8 protein in different cell

types is paramount not only to enrich our understanding
of this gene in normal physiology but also to enhance
our ability to target it to reduce cancer progression.
Thus, the precise roles of PLAC8 in different forms of
programmed cancer death need to be discovered in the
future.
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