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Abstract

eagerly awaited.

Polycythemia vera (PV) and essential thrombocythemia (ET) are both driven by JAK-STAT pathway activation and
consequently much of the recent research efforts to improve the management and outcomes of patients with
these neoplasms have centered around inhibition of this pathway. In addition to newer JAK inhibitors and
improved interferons, promising novel agents exploiting a growing understanding of PV and ET pathogenesis and
disease evolution mechanisms are being developed. These agents may modify the disease course in addition to
cytoreduction. Histone deacetylase, MDM2 and telomerase inhibitors in patients with PV/ET have demonstrated
clinically efficacy and serve as chief examples. Hepcidin mimetics, limiting iron availability to red blood cell
precursors, offer an exciting alternative to therapeutic phlebotomy and have the potential to revolutionize
management for patients with PV. Many of these newer agents are found to improve hematologic parameters and
symptom burden, but their role in thrombotic risk reduction and disease progression control is currently unknown.
The results of larger, randomized studies to confirm the early efficacy signals observed in phase 1/2 trials are
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Introduction

Polycythemia vera (PV) and essential thrombocythemia
(ET) are the most common Philadelphia chromosome-
negative myeloproliferative neoplasms (MPNs). This ob-
servation is not solely due to their incidence of 1.0-2.0
per 100,000 person-years, but also patients’ near-normal
life expectancy, culminating in a prevalence of approxi-
mately 25-50 per 100,000 people [1]. Although
biologically-distinct diseases, ET and PV share a patho-
genesis generally rooted in JAK-STAT activation, which
prompts the unregulated proliferation of hematopoietic
stem/progenitor cells (HSCs). Ninety nine percent of PV
is driven by acquired mutations in the Janus kinase 2
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(JAK2) gene, almost always JAK2-V617F [2-4]. A JAK2-
V617F mutation is found in approximately 50% of pa-
tients with ET [5-8]. In contrast to PV, about 20-25
and 5% of ET is characterized by a CALR and MPL
mutation, respectively [9-12]. Up to 10% of ET has no
detectable canonical driver mutation and is typically
regarded as being “triple negative,” but rare non-
canonical CALR, MPL and JAK2 variants have been de-
tected in “triple negative” disease [3, 13].

Although predicting a near-normal life expectancy,
true to their categorization as myeloid malignancies, PV
and ET are associated with an increased risk of the de-
velopment of thrombosis, secondary myelofibrosis, mye-
lodysplastic syndrome (MDS) and transformation to
acute myeloid leukemia (AML) with these entities pre-
dicting a shorter life expectancy than otherwise expected
with a PV or ET diagnosis itself [14—17]. In addition to
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these tangible outcomes, patients with PV and ET are also
frequently burdened with symptoms including fatigue,
night sweats, headaches, pruritus, early satiety/weight loss,
and symptomatic splenomegaly [18]. It is for these reasons
as well as to reduce the risk of arterial/venous thrombosis
and bleeding that therapy for PV or ET is initiated. How-
ever, despite this need and a firm understanding of patho-
genesis, hydroxyurea, anagrelide, pegylated interferon alfa
2a (PEG-IFN alfa-2a), ruxolitinib and busulfan constitute
the bulk of cytoreductive therapies available to providers
charged with the care of patients with PV and ET, but
most have little to no evidence of disease-modifying activ-
ity. Inteferons have been used for the management of
MPN for >30vyears and are favored by some providers
due to their immunomodulatory, anti-inflammatory, anti-
angiogenic and anti-proliferative properties [19]. The
introduction of pegylated interferon preparations im-
proved tolerability, but are still associated with flu-like,
autoimmune and psychiatric side effects [19]. A recent
meta-analysis of 44 studies including 1359 patients treated
with interferon (730 ET, 629 PV) showed high response
rates among patients with PV (overall response rate
[ORR] of 81%, complete hematologic response [CHR] of
59%) and ET (ORR of 77%, CHR of 49%) without signifi-
cant differences observed between pegylated and non-
pegylated formulations [20].

In addition to the high rates of CHR, symptomatic im-
provement and improvement in or resolution of need
for therapeutic phlebotomy, many patients with PV and
ET may experience a sustained decrease in JAK2-V617F
allelic burden with a potential for disease modification
due to malignant clone targeting by interferon [21]. A
recent study evaluated interferon discontinuation among
patients with PV and ET who accomplished CHR and
demonstrated this practice to be safe with persistence of
CHR particularly in patients with a driver mutation vari-
ant allele frequency<10% at time of discontinuation;
however disease transformation could not be evaluated
due to the very low incidence of events [21]. Due to the
overall favorable prognosis of patients with PV and ET,
studies of survival and disease transformation may be
challenging to conduct. The reduction of driver mutation
allelic burden may be a feasible surrogate, but its relation
to long-term outcomes is uncertain. Lifelong treatment
represents a major burden for these chronically-ill patients
and have to be well-tolerated without significant toxicities.
Interferons may be especially attractive for the manage-
ment of younger patients with PV or ET due to their lack
of teratogenicity. The only unequivocal disease-modifying
therapy is allogeneic hematopoietic stem cell transplant-
ation (alloHCT) for which many patients with long life
expectancy are not reasonable candidates.

Newer therapies with disease-modifying potential are
needed for patients with PV and ET, particularly those

Page 2 of 7

patients deemed to have disease that is “higher risk” or
resistant to currently available therapies. In this review
we discuss some of the emerging and more promising
therapies that are being explored and may soon become
available to patients with PV or ET as well as some of
the prospects for future investigation.

Optimizing the current treatment options

JAK inhibitors

Perhaps the greatest asset to the development of better
or novel therapies for PV was the 2005 discovery of the
gain-of-function JAK2 V617F exon 14 mutation and the
recognition that it drives 95% of PV cases; most of the
remaining cases of PV are explained by the presence of a
JAK2 exon 12 mutation that was discovered 2 years later
in 2007 [7, 22, 23]. The majority of contemporary ther-
apies, including hydroxyurea, busulfan and interferons
do not target the principal upstream element of JAK-
STAT pathway activation. The JAK 1/2 tyrosine kinase
inhibitor ruxolitinib is found to downregulate malignant
MPN clone expression of pro-inflammatory cytokines
like TNF-a and IL-6, which appear to be heavily
dependent on JAK1 and JAK2-mediated activation of
STAT3 [24-26]. In the RESPONSE trial, when com-
pared with “standard therapy” (including hydroxyurea,
interferon, anagrelide, lenalidomide/thalidomide, pipo-
broman, but excluding **P, busulfan and chlorambucil),
ruxolitinib demonstrated superior benefit with regards
to hematocrit control, spleen volume reduction, and
symptom burden reduction in patients intolerant of or
with inadequate response to hydroxyurea [27]. Later
follow-up and meta-analyses also supported its benefit
in reducing the incidence of thrombosis compared to
these standard therapies [28, 29]. Based on the RE-
SPONSE trial results, ruxoltinib in 2014 became the first
Food and Drug Administration (FDA)-approved therapy
for PV, specifically for patients with PV who are resistant
to or intolerant of hydroxyurea. The randomized, phase
3 RESPONSE-2 trial confirmed these findings in patients
specifically without palpable splenomegaly [30]. Other
JAK inhibitors, have been studied in PV. Gandotinib, a
pan-JAK inhibitor with dose-dependent selectivity for
JAK2, demonstrated a 95% ORR in patients with PV (in-
cluding those previously receiving ruxolitinib) [31, 32]
(Table 1).

Given the understanding of the role of JAK-STAT
pathway activation in ET, JAK inhibition has been stud-
ied in this MPN as well. The first study of ruxolitinib in
ET evaluated 39 patients who were refractory to or in-
tolerant of hydroxyurea reported a favorable safety pro-
file and that a majority of patients experienced white
blood cell count, platelet count, spleen size and symp-
tom burden reductions [38]. The MAJIC-ET trial ran-
domized 110 patients with ET who were refractory to or
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Table 1 Summary of clinical data for emerging/novel therapies for polycythemia vera

Agent Mechanism of action Clinical data Reference
Gandotinib Pan-JAK inhibition Phase 1 trial; N =6 (median age 62.5 years) [31,32]
Results: 3 patients had clinic-hematologic partial response [31]
Phase 2 trial; N =20
Results: 4 patients (20%) had CR and 15 (75%) had PR, thus an ORR
of 95% [32]
Ruxolitinib + JAK1/2 inhibition + immunomodulation/  Phase 2 trial; N =32 (median age 57 years, 66% high-risk, 94% with [33]

PEG-IFN alfa-2a antiangiogenesis

prior interferon exposure)

Results: 10 patients (31%) had remission with 3 (9%) in CR and another
7 (22%) with PR. Symptom burden was improved with only 6%
drop-out rate.

Ropeginterferon  Immunomodulation/antiangiogenesis

Phase 3 trial; N =222 (median age 58-60 years) randomized to [34]

alfa-2b ropeginterferon alfa-2b
Results: improved rates of composite CHR when compared with
hydroxyurea (53% vs. 38%, p = 0.044) and improved symptom
burden at 36 months follow-up

Givinostat Histone deacetylase inhibition Phase 1b/2 trial; N =47 [35]
Results: ORR of 81%, but significant toxicity (35-50% grade < 3 diarrhea,
thrombocytopenia and creatinine elevation)

|dasanutlin MDM?2 inhibition Phase 2 trial; N =27 (median age 56 years, 26% with prior ruxolitinib [36]
exposure)
Results: 9 patients (56%) achieved hematocrit control by 32 weeks of
therapy, however significant gastrointestinal toxicity

PTG-300 Hepcidin mimesis Phase 2 trial; N =13, all requiring therapeutic phlebotomy (mean age [37]

574 years, 46% high-risk) Interim data showing normalization of iron
stores, 100% therapeutic phlebotomy-independence and improved
symptom burden

Abbreviations: CHR complete hematological response, CR complete response, ORR overall response rate, PEG-IFN alfa-2a pegylated interferon alfa 2a, PR

partial response

intolerant of hydroxyurea to either ruxolitinib or best avail-
able therapy with most patients in the latter arm receiving
anagrelide [39]. No differences in hematologic responses,
thrombosis/bleeding or disease progression were observed
between arms; however, a greater and more rapid symptom
burden reduction was noted for patients receiving ruxoliti-
nib [39]. RESET 272 is a phase 2 trial currently evaluating
ruxolitinib in comparison to anagrelide in patients with ET
who were refractory to or intolerant of hydroxyurea
(NCT03123588). RUXBETA (NCT02962388) and Ruxo-
beat (NCT02577926) are ongoing phase 3 trials in the same
population comparing ruxolitinib with best available ther-
apy (including anagrelide and interferons). With regards to
other JAK inhibitors, the same studies that evaluated gan-
dotinib in PV reported a 90% ORR in ET, including 44% of

patients with ET and no detectable JAK mutation [31, 32]
(Table 2).

Limiting the enthusiasm for frontline ruxolitinib or
other JAK inhibitor therapy for PV or ET is the lack of evi-
dence for disease course modification including long-term
risk of secondary (post-PV and post-ET myelofibrosis).
Attempts to build upon the practical use of a JAK inhibi-
tor for disease driven by JAK-STAT activation have in-
cluded studies of combination therapy. The final results of
a phase 2 trial of the combination of ruxolitinib with PEG-
IEN alfa-2a showed the combination to be reasonably
well-tolerated, to decrease both JAK2 V617F allelic burden
and symptoms as well as ultimately lead to remission in
10 of 32 patients (31%) with PV who were almost entirely
previously-intolerant of or refractory to PEG-IEN alfa-2a

Table 2 Summary of clinical data for emerging/novel therapies for essential thrombocythemia

Agent Mechanism of action Clinical data

Reference

Gandotinib Pan-JAK inhibition

N=1

Phase 1 trial [31]

[31,32]

Results: single included patients with ET had a PR

Phase 2 trial [32]

N =21 (median age 60 years)
Results: 3 patients (14%) had CR, 16 (76%) had PR, thus ORR of 90%

Imetelstat Telomerase activity inhibition Phase 2 trial

N =18 (44% age > 60 years, 44% with JAK2 mutation; 94 and 72% with
prior hydroxyurea and anagrelide exposure, respectively)
Results: 100% hematologic response rate with 89% CHR rate

Abbreviations: CHR complete hematological response, ORR overall response rate
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[33]. Randomized studies are needed to confirm the inde-
pendent benefit of the addition of ruxolitinib to inter-
ferons for this population of patients.

Interferons

Inteferons remain a promising class of drugs with the
potential for disease modification among patients with
MPN [20]. Alternative interferon preparations for PV
and ET patients are being studied and have largely been
developed to improve upon the burdensome weekly ad-
ministration schedule of currently-used pegylated inter-
ferons (e.g. PEG-IFN alfa-2a). Ropeginterferon alfa-2b is
produced by Escherichia coli transformed with a human
IFN plasmid and specifically modified by an additional N-
terminus proline residue and single isomer that leads to
an extended half-life allowing for dosing every 2 weeks
[41, 42]. The PROUD-PV and CONTINUATION-PV
phase 3 trials randomized 257 patients with PV and <3
years of cytoreductive therapy exposure 1:1 to receive
ropeginterferon alfa-2b every 2 weeks or hydroxyurea [34,
41]. While PROUD-PV demonstrated no clear difference
between treatment arms, patients treated with ropeginter-
feron alfa-2b on CONTINUATION-PV had better rate of
composite complete hematological response with reduced
symptom burden when compared with hydroxyurea (53%
vs. 38%, p =0.044) at 36 months follow-up [34]. In
addition, the molecular response, defined as reductions in
JAK2-V617F allelic burden, was significantly improved in
the ropeginterferon alfa-2b arm when compared with
standard therapy (66% vs. 27%; p <0.0001); these results
are durable based on 5 years of follow-up [43]. These data
demonstrated that ropeginterferon alfa-2b was at least
non-inferior to hydroxyurea for PV patients and led to the
European Medical Agency approval of ropeginterferon
alfa-2b for the frontline treatment of polycythemia with-
out significant splenomegaly in 2019; the FDA has ac-
cepted a Biologics License Application for ropeginterferon
alfa-2b for this indication within the United States and a
decision is expected during 2021.

Interferons are also among the cytoreductive options
for patients with ET. Similar to endeavors dedicated to
PV, ropeginterferon alfa-2b is being currently studied in
a phase 3 trial randomizing patients who are refractory
to or intolerant of hydroxyurea to receive either anagre-
lide or ropeginterferon alfa-2b (NCT04285086).

Novel agents

In addition to efforts to optimize the use of current stand-
ard of care classes of agents, several novel compounds are
being studied as therapy for PV. Targeting of epigenetic
pathways, particularly the varied status of post-translational
histone acetylation/de-acetylation which contribute to the
regulation of gene transcription critical to cell cycling, offer
a promising therapeautic opportunity [44]. The histone
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deacetylase inhibitors (HDACis) are theorized to reverse
histone/DNA complex compaction and thus open the
chromatin structure to restore pro-apoptotic gene tran-
scription [44]. Although an oversimplified view, the HDA-
Cis are hypothesized to have a role in the treatment of
MPN [45]. The HDACis vorinostat, panobinostat and givi-
nostat have demonstrated that ability to inhibit proliferation
and induce apoptosis of JAK2-mutated MPN cells in
ex vivo studies [46—48]. Givinostat is a novel and potent
histone deacetylase inhibitor that in ex vivo experiments
was shown to suppress JAK2-V617F as well as STAT3 and
STATS5 protein activation, ultimately leading to the inhib-
ition of JAK2-V617F-mutated cell proliferation without
affecting JAK2 wild-type cells [48]. Release of pro-
inflammatory cytokines like IL-1, IL-6 and TNF-a by malig-
nant cells is also shown to be inhibited with exposure to
givinostat [49, 50]. A pilot phase 2 study of givinostat in pa-
tients with MPN (including 12 with PV) demonstrated sig-
nificant reduction of splenomegaly and symptom burden,
appreciable hematologic responses and a safe toxicity pro-
file [51]. A subsequent phase 2 trial restricted to patients
with PV unresponsive to hydroxyurea studied the addition
of givinostat and reported impressive rate of pruritus reso-
lution, good tolerance and a 50 and 55% complete (CR)
and partial response (PR) rate, respectively [52]. More re-
cently, the dose expansion phase of another phase 2 trial of
givinostat monotherapy in 35 patients with previously-
treated PV reported an 81% response rate, although grade <
3 diarrhea, thrombocytopenia and creatinine elevations
were observed in 35-50% of patients [35]. A phase 3 study
comparing frontline givinostat to standard-of-care hydroxy-
urea in high-risk patients with PV is being planned [53]
(Table 1). Similarly, IMG-7289 (bomedemstat) is a first-in-
class, small molecule inhibitor of lysine-specific demethy-
lase 1, which in in vitro and in vivo studies have shown to
influence myeloid hematopoietic progenitor differentiation
and self-renewal in JAK2-mutated cells [54]. A phase 2
study of IMG-7289 of patients with PV or ET refractory to
prior cytoreductive therapy is underway (NCT04262141).
Another class of drugs being investigated for PV treat-
ment is the MDM2 inhibitors. MDM2 acts a chief nega-
tive regulator of TP53, which is a pleiotropic and critical
mediator of pro-apoptotic responses to cellular stress
and damage [55]. MDM2-mediated TP53 regulation is
multifactorial and includes direct inhibition of transcrip-
tional activity as well as functioning as an E3 ubiquitin
ligase modifier thus leading to TP53 proteasome-
mediated degradation [55]. Overexpression of MDM2
downregulates TP53 activity in JAK2-mutated CD34+
MPN cells [56, 57]; conversely, in vitro treatment with
an MDM2 inhibitor was shown to increase cellular TP53
levels/activity and consequently selective CD34+ PV cell
death [56]. A phase 1 trial of idasanutlin, an oral MDM?2
antagonist, in 13 patients with high-risk, previously-
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treated PV and ET (PV =12, ET = 1) demonstrated a fa-
vorable toxicity profile with 7 out of 12 patients (58%)
achieving CR or PR, including both symptomatic and mo-
lecular responses. The lone patient ET unfortunately de-
veloped deep venous thrombosis 1 week into therapy and
was removed from the trial [58]. Interim analyses from an
ongoing phase 2 study of idasanutlin for hydroxyurea-
resistant/intolerant PV demonstrated that 9 of 16 (56%)
patients achieved hematocrit control by 32 weeks of ther-
apy [36]. Unfortunately, 63% of patients required dose
modification with most prompted by significant nausea/
vomiting and diarrhea [36] (Table 1). Recent data also
suggest that idasanutlin stimulates the expansion of TP53-
mutated clones, although these clones regressed with dis-
continuation of treatment [59]. Due to its side effect pro-
file, the development of idasanutlin for PV management
was discontinued. Novel and more potent MDM2 inhibi-
tors have also been developed. KRT-232 was investigated
in a phase 2 trial of patients with PV and hydroxyurea re-
sistance/intolerance (NCT03669965), but the study was
halted due to low accrual.

Telomerase activity inhibition via targeting of the
RNA template of the telomerase subunit hTERC can in-
hibit the growth of megakaryocytic colony-forming units
obtained from patients with ET while sparing the normal
megakaryocytic proliferation of samples from healthy
controls [60, 61]. Imetelstat, the telomerase activity
inhibitor used in these preclinical studies, demonstrated
a rapid, durable and impressive (89%) complete
hematologic response rate in 18 patients with ET refrac-
tory to prior therapy [40] (Table 2).

The iron metabolism pathway has been the subject of
recent and unique targeting for the management of PV,
which is essentially treated by either inducing or exacer-
bating iron deficiency with serial therapeutic phlebotomies
targeting a hematocrit goal of < 45% based on the CYTO-
PV study results [62]; however, iron deficiency can pro-
duce significant symptomatology. Both iron deficiency
and expanded erythropoiesis in patients with PV may lead
to suppression of hepcidin, the chief regulator of iron
homeostasis [63]. Lack of hepcidin enhances the availabil-
ity of iron for erythropoiesis in patients with PV [37, 64].
PTG-300, a first-in-class, subcutaneous hepcidin mimetic,
is in phase 2 testing for patients with low- and high-risk
PV requiring therapeutic phlebotomies (NCT04057040).
Interim data on 13 patients showed that the drug is well-
tolerated and led to phlebotomy independence in all
treated patients [37]. Additionally, PTG-300 normalized
iron stores in as short as 4 weeks of therapy and improved
patient’s symptom burden [37] (Table 1).

Conclusion
Although most patients with PV or ET will enjoy a nor-
mal life expectancy, some higher-risk patients suffer

Page 5 of 7

complications and are at increased risk of disease trans-
formation and early mortality. Endeavors aimed at im-
proving the quality of life and outcomes of patients with
PV and ET are focused on hematologic control and
thrombotic risk reduction. Hydroxyurea or interferon
therapy is the current standard of care for higher-risk
patients with ruxolitinib or anagrelide being reserved for
second-line management. Longer-acting interferons with
more convenient administration schedules such as
ropeginterferon alfa-2b, which appears to be disease-
modifying and superior to hydroxyurea, offer more op-
tions for the patient with PV. Alternatively, combining
current standard-of-care therapies may offer synergy and
better patient outcomes, as demonstrated with the com-
bination of ruxolitinib and PEG-IFN alfa-2a.

If available, clinical trials should be offered to patients
who are failed by these therapies, which may soon be
supplanted by agents with optimized JAK-STAT path-
way inhibition. The novel agents exploiting mechanisms
critical to MPN HSC proliferation, such as inhibitors of
histone deacetylase, MDM2 and telomerase, are cur-
rently being studied. Hepcidin mimetics offer an oppor-
tunity to normalize the disrupted iron homeostasis
observed in PV, while alleviating the need for thera-
peutic phlebotomies. Randomized trials of new agents in
comparison to reference standards are necessary to con-
firm their value for patients with PV and ET. Correlative
studies exploring molecular and metabolic changes may
help to understand treatment potential to modify the
course of disease. Continued high-impact research may
soon foster the development of disease-modifying ther-
apies for PV and ET and satisfy this need for the optimal
management of patients with these MPNss.
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