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Abstract

Immunomodulatory drugs (IMiDs) include thalidomide, lenalidomide, and pomalidomide, which have shown significant
efficacy in the treatment of multiple myeloma (MM), myelodysplastic syndrome (MDS) with deletion of chromosome 5q
(del(5q)) and other hematological malignancies. IMiDs hijack the CRL4CRBN ubiquitin ligase to target cellular proteins for
ubiquitination and degradation, which is responsible for their clinical activity in MM and MDS with del(5q). However, intrinsic
and acquired resistance frequently limit the efficacy of IMiDs. Recently, many efforts have been made to explore key
regulators of IMiD sensitivity, resulting in great advances in the understanding of the regulatory networks related to this class
of drugs. In this review, we describe the mechanism of IMiDs in cancer treatment and summarize the key regulators of IMiD
sensitivity. Furthermore, we introduce genome-wide CRISPR-Cas9 screenings, through which the regulatory networks of IMiD
sensitivity could be identified.
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Background
Thalidomide and its derivatives lenalidomide and poma-
lidomide are often called immunomodulatory drugs
(IMiDs) due to their modulatory effects on immune cells
[1–4]. IMiDs have shown remarkable therapeutic
efficacy in several hematological malignancies. In
combination with steroids, proteasome inhibitors and
monoclonal antibodies, IMiDs are widely used to treat
multiple myeloma (MM) [5–9]. Lenalidomide also has
therapeutic activity in myelodysplastic syndrome (MDS)
with deletion of chromosome 5q (del(5q)) [10, 11],
mantle cell lymphoma (MCL) [12–15] and chronic
lymphocytic leukemia (CLL) [16–18]. New generations
of IMiDs, including CC-122 (avadomide) [19–22], CC-

220 (iberdomide) [23, 24], CC-885 [25, 26], CC-92480
[27] and CC-90009 [28] (Fig. 1), are being evaluated for
their potential to treat diffuse large B-cell lymphoma
(DLBCL), follicular lymphoma (FL), MM and acute
myeloid leukemia (AML) [29, 30].
Although IMiDs have shown significant efficacy in a

range of hematological malignancies, primary and ac-
quired drug resistance limit their clinical application.
Thus, it is necessary to delineate the regulatory networks
related to IMiD sensitivity. Recently, emerging evidence
has shown that sensitivity to IMiDs is regulated by
several factors, including CRBN, the Cullin-RING ligase
4 (CRL4) E3 ubiquitin ligase [31–34], RUNX proteins
[35], and Wnt/β-Catenin pathway members [36]. More-
over, genome-scale CRISPR screenings have identified a
series of key regulators of sensitivity to IMiDs [37–41].
In this review, we highlight the underlying mecha-

nisms of IMiDs in cancer treatment and summarize the
key regulators of IMiD sensitivity. Furthermore, we
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introduce genome-wide CRISPR screenings as a tool that
can identify regulatory networks of IMiD sensitivity.

Mechanism of IMiD activity
CRBN, the primary cellular target of IMiDs [42], is a
substrate receptor of CRL4, an E3 ubiquitin ligase com-
plex consisting of Cullin 4 A/4B, DNA damage-binding
protein 1 (DDB1) and a small RING protein (RBX) [43].
IMiDs hijack the CRL4CRBN E3 ligase to ubiquitinate
and degrade two essential lymphoid transcription fac-
tors, IKZF1 (Ikaros) and IKZF3 (Aiolos), which leads to
the downregulation of IRF4 and MYC, resulting in the
toxicity of MM cells [44, 45]. Lenalidomide can bind the
CRL4CRBN E3 ligase to induce ubiquitination and deg-
radation of CK1α, accounting for its efficacy in del(5q)
MDS [46]. A number of other neosubstrates of IMiDs
have been identified using proteomics analysis [47, 48].
Furthermore, the degradation of SALL4, PLZF and P63
proteins was reported to be correlated with thalidomide-
induced malformations [48–51]. Thus, this class of com-
pounds are also called CRBN E3 ligase modulators
(CELMoDs). IMiDs represent the first class of drugs that
function by inducing the degradation of cellular proteins
(Fig. 2), which has important implications for the design
of novel therapeutic compounds.

Overview of emerging regulators of sensitivity to
immunomodulatory drugs
Since IMiDs bind the CRL4CRBN E3 ligase to ubiquiti-
nate and degrade disease-related proteins, the compo-
nents of the CRL4CRBN E3 ligase and its activity are
hypothesized to be essential for the antitumor activity of
IMiDs. Recently, emerging evidence has shown the sig-
nificance of CRL4CRBN components for IMiD sensitivity,
together with other cellular molecules and pathways.

Fig. 1 Chemical structures of thalidomide, lenalidomide, pomalidomide, CC-122, CC-220, CC-885, CC-92480 and CC-90009

Fig. 2 Molecular mechanism of IMiD activity. IMiDs bind CRL4CRBN to
recruit multiple neosubstrates for ubiquitination and proteasomal
degradation, resulting in pleiotropic effects. CUL4, Cullin 4; Ub, ubiquitin
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CRBN
As the primary target of IMiDs, CRBN was reported to
be essential for the activity of IMiDs. CRBN knockdown
leads to resistance to lenalidomide and pomalidomide in
MM cell lines [31]. In addition, lenalidomide- or
pomalidomide-resistant MM cells generated by incuba-
tion with gradually increasing concentrations of lenali-
domide/pomalidomide show a significant decrease in
CRBN protein levels [31, 52], suggesting an important
role of CRBN in acquired IMiD resistance.
According to several clinical observations, high expres-

sion of CRBN has been reported to correlate with im-
proved clinical response to IMiDs in MM patients [32,
33]. In addition, targeted sequencing data have shown
that MM patients resistant to IMiDs frequently harbor
CRBN mutations [53]. CRBN alterations, including point
mutations, copy loss/structural variations and an exon
10 splice variant transcript, have been found in lenalido-
mide- or pomalidomide-resistant MM patients [54].
Moreover, approximately one-third of MM patients who
are refractory to pomalidomide are reported to carry
genetic alterations in CRBN [54].
High expression of CRBN is associated with increased

clinical efficacy of lenalidomide in del(5q) MDS, while a
decrease in CRBN expression correlates with loss of re-
sponse and disease progression [55]. CRBN expression
can also predict clinical response in CLL patients treated
with IMiD-based therapy [56].
The above evidence indicates that CRBN expression is

required for the antitumor activity of IMiDs. However, a
lack of CRBN mutations or downregulation of CRBN ex-
pression levels has been reported in three MM cell lines
intrinsically resistant to IMiDs [57]. In addition, a study
reported that only one out of five MM patients refractory
to lenalidomide showed significantly low expression of
CRBN before treatment [58], indicating that factors other
than CRBN might regulate intrinsic resistance to IMiDs.

CRL4 and IKZF1/3
As IMiDs function through hijacking CRL4CRBN E3 ligase
to target neosubstrates like IKZF1/3 for ubiquitination
and degradation, the expression of these components is
supposed to be a necessity. Cullin 4 proteins consist of
two homogenous members, Cullin 4 A and Cullin 4B,
which serve as scaffolds for the CRL4 E3 ligase [43].
Mounting evidence has shown that Cullin 4 A and Cullin
4B proteins can promote tumorigenesis in a number of
malignancies [59–62]. Overexpression of Cullin 4 A in
thalidomide-resistant prostate cancer cells can restore
sensitivity to thalidomide, while knockdown of this gene
in thalidomide-sensitive 22RV1 cells leads to drug resist-
ance [34]. In addition, mutations in Cullin 4B have been
found in MM cases with acquired IMiD resistance, as have
mutations in CRBN, DDB1 and IKZF1/3 [63].

IKZF1 (Q146H) and IKZF3 (Q147H) mutants are re-
sistant to lenalidomide-induced degradation, and overex-
pression of either mutant protein can cause resistance to
lenalidomide in MM1S cells [44, 45]. IKZF1 expression
is decreased in IMiD-resistant MM cell lines, while MM
patients with low expression of IKZF1 show a lack of re-
sponse to IMiD treatment with shorter overall survival
than patients with high expression of IKZF1 [64, 65].
IKZF3 expression predicts favorable response to lenali-
domide and high expression of IKZF1/3 is correlated
with longer median progression free survival in MM
[66]. Moreover, alterations in IKZF3 at diagnosis have
been reported, suggesting that IKZF3 mutations may
contribute to the pathogenesis of MM [63].

RUNX proteins
The RUNX family of transcription factors, composed of
RUNX1, RUNX2 and RUNX3, are highly conserved and
form heterodimers with CBFβ to regulate target gene ex-
pression during development and hematopoiesis [67–
70]. Aberrations in RUNX have been frequently identi-
fied in leukemia and solid tumors [71–74]. Recently,
RUNX proteins have been found to interact and protect
IKZF1 and IKZF3 proteins from lenalidomide-induced
ubiquitination and degradation, resulting in the
desensitization of MM cells to lenalidomide. Inhibition
of RUNX proteins by the small molecule AI-10-104
leads to sensitization to lenalidomide in MM cell lines
and primary MM cells [35], providing a reference for the
combined use of RUNX inhibitors and IMiDs in MM
treatment.
In contrast, loss of function of RUNX1 causes lenalido-

mide resistance in del(5q) MDS cells, suggesting that
RUNX1 function is required for lenalidomide sensitivity
[75, 76]. Recurrent variants of RUNX1 have been discov-
ered in del(5q) MDS patients who become resistant to
lenalidomide. Furthermore, RUNX1 forms a complex
with GATA2 to drive megakaryocytic differentiation,
which is required for lenalidomide efficacy [75]. Thus,
RUNX proteins seem to have contrasting impacts on
lenalidomide sensitivity in MM and del(5q) MDS cells.

MEK/ERK
Ras/RAF/MEK/ERK (mitogen-activated protein kinase,
MAPK) signaling regulates cellular proliferation, differ-
entiation and survival. Aberrant activation of the MAPK
pathway is frequently observed in human cancers, and
small molecules targeting this pathway have been ap-
proved to treat cancers, including melanoma, colorectal
cancer and non-small-cell lung cancer [77, 78]. In a
xenograft MM mouse model, acquired resistance to
lenalidomide and pomalidomide is developed by con-
tinuous administration of pomalidomide-dexamethasone
(PD), lenalidomide-dexamethasone (LD) or vehicle [79].
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Upregulation of the MEK/ERK pathway has been found
in IMiD-resistant cells, whose sensitivity to lenalidomide
or pomalidomide can be restored by selumetinib, a small
molecule MEK inhibitor [79].

Wnt/β-catenin signaling
The conserved Wnt/β-catenin signaling pathway is a key
regulator of development, the dysregulation of which is in-
volved in tumorigenesis [80, 81]. Targeting Wnt/β-catenin
signaling has been proposed to improve the efficacy of
cancer immunotherapy [82]. Dysregulation of Wnt/β-ca-
tenin signaling was identified in a lenalidomide-resistant
MM cell line [36]. Stimulation of the Wnt/β-catenin path-
way can reduce the antimyeloma activity of lenalidomide,
while inhibition of β-catenin can restore sensitivity to
lenalidomide [36]. This evidence suggests the possibility of
targeting Wnt/β-catenin signaling with inhibitors to
alleviate IMiD resistance.

Other factors
Sensitivity to IMiDs has been reported to be affected by
factors other than those discussed above. In IMiD-
resistant MM cells, dysregulation of a number of signal-
ing mediators has been identified, including upregulation
of IL-6/activation of STAT3 [83], increased genome-
wide DNA methylation [84], dysregulation of HIF-1α
[85, 86], dysregulation of CD44 [87], and decreased
CD138 levels [88]. In addition, cellular antioxidative cap-
acity can also affect sensitivity to lenalidomide in MM
cells [89]. Activation of c-Abl kinase can potentiate the
antimyeloma activity of lenalidomide [90]. RNAi and
shRNA screenings have revealed that ribosomal protein
S6 kinase (RSK2) and karyopherin beta 1 (KPNB1) are
required for lenalidomide and pomalidomide sensitivity
in MM cells, respectively [40, 41], while G protein-
coupled receptor 68 (GPR68) is essential for lenalido-
mide sensitivity in del(5q) MDS cells [91].
IMiDs can target the CRL4CRBN E3 ligase to induce

the degradation of specific proteins, and each of these
compounds has a different spectrum of neosubstrates
[29, 47, 48], most of which share a common structural
motif containing a key glycine [47, 92–95]. Distinct pat-
terns of substrate specificity may explain the diversity in
clinical activity and toxicity of these drugs. For example,
degradation of CK1α is a key event for lenalidomide effi-
cacy in del(5q) MDS [46], while GSPT1 degradation is
deemed to account for anti-AML activity of CC-885 and
CC-90009 [25, 28]. A recent study showed that different
neosubstrates compete for CRBN E3 ligase binding in
the presence of IMiDs [96]. In this way, IMiD sensitivity
is determined by the interplay between the CRBN E3 lig-
ase and a number of potential neosubstrates [96], sup-
porting the key role of CRBN expression in IMiD
sensitivity.

Genome-wide CRISPR screenings as a tool to
identify genes required for IMiD sensitivity
CRISPR genome editing and application
The CRISPR-Cas system, derived from the prokaryotic
adaptive immune system, has been modified to be a
powerful tool in targeted genome editing [97–99]. CRIS
PR-Cas9 genome editing is now widely used to generate
gene-engineered cell lines and animals in laboratories
worldwide [97, 98, 100]. Furthermore, CRISPR-mediated
knockout of TCR and HLA class I molecules contributes
to the generation of universal CAR-T cells [101–104]. Re-
cent attempts have been made to use the CRISPR-Cas sys-
tem therapeutically, especially in genetic disorders related
to single gene mutations, including sickle cell anemia, cys-
tic fibrosis and Huntington’s chorea [105, 106].
In addition to its utility for research on single gene

modifications, the CRISPR-Cas system has been applied
for large-scale functional screening in genomic, tran-
scriptomic or epigenetic research [107–110]. Genome-
wide CRISPR-Cas9 screening has been established to
search for critical genes involved in drug resistance
(Fig. 3a) [107]. Recently, genome-scale CRISPR screen-
ings have been carried out to identify essential genes re-
quired for IMiD sensitivity in MM, primary effusion
lymphoma (PEL) and AML [37–39].

CRISPR-Cas9 screenings to identify genes required for
IMiD sensitivity
In one CRISPR-Cas9 screen, a library of sgRNAs target-
ing 19,050 genes and 1,000 control sgRNAs were intro-
duced into MM1S cells, which were then incubated with
lenalidomide or DMSO. Then, these cells were collected
and analyzed using next-generation sequencing to iden-
tify genes required for lenalidomide activity in MM cells
[37]. Among the top 30 genes, 17 were related to CRL4
E3 ligases, including CRBN, DDB1, subunits of the
COP9 signalosome (CSN), CAND1, UBE2G1 and
UBE2D3 [37]. In another CRISPR-Cas9 screen to iden-
tify genes required for pomalidomide activity in MM1S
cells, a similar subset of targets was discovered [38]. The
genes essential for IMiD activity in MM cells are
summarized in Fig. 3b.
IMiDs have shown significant efficacy in PEL, a non-

Hodgkin B cell lymphoma [111, 112]. A CRISPR-Cas9
screen was conducted in PEL cells to search for genes
essential for the activities of lenalidomide, pomalidomide
and CC-122 [39]. According to the results, components
of the CRL4 machinery were again identified, including
CRBN, Cullin 4 A/4B, UBE2G1 and SENP8, together
with other targets [39].
CC-90009, a new CRBN modulator, has shown notable

efficacy in AML by selectively inducing degradation of
GSPT1. CC-90009 promotes apoptosis of leukemia stem
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cells in xenografting of 35 primary AML samples, re-
gardless of the adverse risk features [28]. Based on the
promising efficacy, CC-90009 has entered clinical trials
for AML and MDS (Table 1). A CRISPR-Cas9 screen in
U937 cells has revealed essential genes for the efficacy of
CC-90009, including subunits of CRL4CRBN E3 ligase,
CSN, CAND1, ILF2/ILF3 [28].
In summary, components of the CRL4 E3 ligase are re-

quired for IMiD sensitivity, which is consistent with the
mechanism of these compounds. Furthermore, regulators
of CRL4 E3 ligase activity for example, CSN, also affect
IMiD activity. Deletion of CSN causes a significant de-
crease in CRBN protein levels in MM cells, which can ex-
plain the IMiD resistance in CSN-deleted cells [38]. AT-
rich interactive domain 2 (ARID2), a component of the
polybromo-BRG1-associated factors (PBAF) chromatin-
remodeling complex, was also identified to be required for
pomalidomide activity in MM cells [38], which was re-
cently verified by the discovery of ARID2 as a

pomalidomide-induced neosubstrate [113]. Degradation
of ARID2 causes downregulation of MYC, leading to the
death of MM cells [113]. These data demonstrate the
powerful function of CRISPR screens in the discovery of
regulatory networks of drug sensitivity.

Conclusion and perspective
As the primary target of IMiDs, CRBN is required for
IMiD sensitivity. Due to the rapid development of bio-
technology tools such as CRISPR genome editing, many
other regulators of IMiD sensitivity have been identified.
CRL4 components such as Cullin 4 A/4B, DDB1 and E2
and regulators of E3 ligase are also required for IMiD
sensitivity. Degradation of IKZF1/3 are essential for anti-
myeloma activity of IMiDs in MM. RUNX1 and GATA2
are required for lenalidomide activity in del(5q) MDS.
Mutations in components of CRL4CRBN E3 ligase, mainly
CRBN itself, IKZF1/3 and RUNX have been identified in
IMiD-resistant cells, together with dysregulation of

Fig. 3 a Flowchart of IMiD resistance screenings. A CRISPR sgRNA library targeting different genes is introduced into MM cells via lentiviral vectors,
followed by IMiD treatment, and then the cells are collected at different timepoints to analyze enriched sgRNAs. b The top ranked genes required for
lenalidomide or pomalidomide sensitivity are summarized

Table 1 Clinical trials of CC-90009

Phase Conditions Interventions NCT ID

1 Healthy Volunteer CC-90009
Radiation: [14 C]

NCT04297124

1 AML, MDS CC-90009 NCT02848001

1, 2 AML CC-90009, Venetoclax, Azacitidine, Gilteritinib NCT04336982

Abbreviation: AML acute myeloid leukemia, MDS myelodysplastic syndrome
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MEK/ERK, Wnt/β-catenin and IL-6/STAT3 pathways
(Fig. 4). As IMiDs have also shown notable efficacy in
different hematological malignancies such as CLL,
DLBCL and AML, which have diverse genetic features,
disease-specific regulators of IMiD sensitivity might be
identified by future studies.
New generation of IMiDs are under clinical develop-

ment. CC-122 is now in phase 1/2 trials for
hematological malignancies, including DLBCL and MM
[29]. The most common treatment-emergent adverse
events (TEAEs) are neutropenia, thrombocytopenia and
anemia [21, 22, 114–116]. CC-220 has shown significant
efficacy in systemic lupus erythematosus (SLE) and re-
lapsed/refractory MM (RRMM) and now under phase 1/
2 studies [24, 117]. Neutropenia, infection and
thrombocytopenia have been reported following CC-220
administration [118–120]. CC-92480 can induce deeper
degradation of IKZF1/3, showing therapeutic advantage
in lenalidomide-resistant MM cells with little effect on
the viability of normal peripheral blood mononuclear
cells [27]. CC-92480 is now under phase 1/2 clinical tri-
als mainly for MM. CC-885 has anti-proliferation activ-
ity in a broad range of tumor cell lines and significant
anti-AML potency by the degradation of GSPT1 [25].
CC-90009 induces the degradation of GSPT1 with
higher selectivity and now in phase 1/2 clinical studies
for AML and MDS. As these CRBN modulators function
through a similar mechanism, the understanding of
regulatory networks of IMiD sensitivity may provide ref-
erence for the development of new IMiDs.
Proteolysis-targeting chimeras (PROTACs) are bifunc-

tional molecules that can target proteins for degradation
via the ubiquitin-proteasome pathway. A typical PRO-
TAC molecule contains a ligand for the protein of inter-
est covalently linked to a moiety of an E3 ubiquitin
ligase [121–124]. Since IMiDs repurpose the CRL4CRBN

E3 ligase to ubiquitinate and degrade a number of cellu-
lar proteins, these molecules have been frequently used
in the design of PROTACs. In this way, IMiDs have been

linked to ligands of BTK, BCR-Abl, BRD4 and other tar-
gets to generate PROTACs that can degrade these onco-
proteins [125–127]. Targeting protein for degradation by
PROTACs has emerged as a powerful therapeutic strat-
egy in cancer treatment. The discovery of mechanism of
IMiDs facilitates the development of PROTACs by pro-
viding more choices on E3 ligase utilization. Thus, the
delineation of key regulators of IMiD sensitivity may
promote the development of IMiD-based PROTACs.
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