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Background: Esophageal cancer (ECa) is the 7th most incident cancer and the 6th leading cause of cancer-related
death. Most patients are diagnosed with locally advanced or metastatic disease, enduring poor survival. Biomarkers
enabling early cancer detection may improve patient management, treatment effectiveness, and survival, are
urgently needed. In this context, epigenetic-based biomarkers such as DNA methylation are potential candidates.

Methods: Herein, we sought to identify and validate DNA methylation-based biomarkers for early detection and
prediction of response to therapy in ECa patients. Promoter methylation levels were assessed in a series of treatment-
naive ECa, post-neoadjuvant treatment ECa, and normal esophagus tissues, using quantitative methylation-specific PCR

Results: Z/NF569 methylation (ZNF569me) levels significantly differed between ECa and normal samples (p < 0.001).
Moreover, COLT4AT methylation (COLT4ATme) and GPX3 methylation (GPX3me) levels discriminated adenocarcinomas
and squamous cell carcinomas, respectively, from normal samples (p =0.002 and p = 0.009, respectively). COL14ATme &
ZNF569me accurately identified adenocarcinomas (82.29%) whereas GPX3me & ZNF569me identified squamous cell
carcinomas with 81.73% accuracy. Furthermore, ZNF569me and GPX3me levels significantly differed between normal

Conclusion: The biomarker potential of a specific panel of methylated genes for ECa was confirmed. These might
prove useful for early detection and might allow for the identification of minimal residual disease after adjuvant
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Background

Esophageal cancer (ECa) is the 7th most common malig-
nancy and the 6th cause of cancer-related mortality
worldwide [1]. ECa comprises two main histological sub-
types: adenocarcinoma and squamous cell carcinoma,
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the most prevalent type [2]. Although therapeutic im-
provements have increased ECa survival rates [3],
curative-intent treatment options remain limited to sur-
gery, chemotherapy (ChT), and radiotherapy (RT), either
alone or in trimodal therapy [4]. Furthermore, most tu-
mors are diagnosed at an advanced stage, entailing very
low 5-year survival rates, ranging from 5 to 20% [5, 6].
Intensive research was, thus, carried out to find alterna-
tive treatment strategies to prolong life expectancy and
quality of life (QoL) for ECa patients. Currently, neoad-
juvant treatment with ChT and/or RT is the standard of
care for patients with locally advanced disease [2].
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Nevertheless, surgery is often associated with decreased
QoL due to complications and comorbidities [7, 8].

Epigenetic alterations, including their key players, have
emerged as promising biomarkers for ECa. Among
those, gene methylation is the most extensively studied
epigenetic modification. Although esophageal adenocar-
cinomas (EA) and esophageal squamous cell carcinomas
(ESCC) display different morphological and molecular
features, several studies have shown that methylation is
an early event in both histotypes, already present in pre-
malignant lesions [9-12]. Thus, promoter methylation of
specific genes might be used to discriminate normal
from cancerous esophageal cells, enabling the detection
of disease at early stages, increasing the likelihood of
curative treatment. Except for CDKN2A and APC, which
are commonly aberrant methylated genes in both EA
and ESCC, a specific methylome has been reported for
each histotype [13]. The importance of these alterations
is further highlighted by the numerous reports correlat-
ing aberrant DNA methylation with ECa patient progno-
sis [14, 15].

Methods

Based on the literature evidence, we aimed to identify
and validate methylome alterations that might constitute
biomarkers for early detection, as well as identification
of minimal residual disease after neoadjuvant treatment,
eventually precluding the need for esophagectomy.
Hence, the studies selected from the literature clearly re-
ported sensitivity and specificity for the detection of ECa
or Barrett’s Esophagus using DNA methylation-based
biomarkers (Additional Table 1). Studies with a small
cohort of patients [n <40 for each group (cases and con-
trols)] were also excluded. Furthermore, only genes with
a specificity higher than 98% were selected for testing.
Of the remaining 5 genes, no specific primers were ob-
tained to test ZNF345 and EPB41L3. Hence, promoter
methylation levels of three genes selected [16, 17] -
GPX3 (glutathione peroxidase 3), COL14A1 (collagen
type X1V alpha 1 chain), and ZNF569 (zinc finger protein
569) - were tested in a series of ECa and normal esopha-
geal tissues.

Patients and samples collection

A total of 124 formalin-fixed paraffin-embedded (FFPE)
tissues samples from patients diagnosed with ECa be-
tween 2007 and 2017 at the Portuguese Oncology Insti-
tute of Porto (IPO-Porto) were included in this study
(Table 1). Among the tumor samples, 88 were collected
before any treatment previous surgery, and 36 were col-
lected after neoadjuvant treatment (ChT and/or RT).
Additionally, 56 FFPE tissues samples of normal esopha-
gus from patients diagnosed with gastric carcinoma and
without evidence of esophageal cancer were used as
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control. All samples were archived at the Department of
Pathology of IPO-Porto. All the cases were revised by an
experienced pathologist and classified according to the
World Health Organization (WHO) classification of Tu-
mors of the Digestive System (4th edition) and staged
according to the 7th edition American Joint Committee
on Cancer (AJCC) system [18, 19]. Relevant clinical data
were collected from medical charts. For DNA extraction,
a 4 um section was cut from a representative tissue block
and stained with hematoxylin-eosin. Tumor areas were
delimited, enabling macrodissection in eight consecutive
8 um sections. This study was approved by the institu-
tional ethics committee of IPO Porto (CES 202/017).

Promoter methylation evaluation

DNA extraction from FFPE sections was performed
using FFPE RNA/DNA Purification Plus Kit (Norgen
Biotek, Thorold, Canada) following the manufacturer’s
instructions. DNA concentrations and purity ratios were
determined using the NanoDrop Lite spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA) and
modified with sodium bisulfite, using the EZ DNA
Methylation-Gold™ Kit (Zymo Research, Orange, CA,
USA) according to manufacturer’s instructions. For
quantitative methylation-specific PCR (QMSP), modified
DNA was used as template. Primers to specifically amp-
lify methylated bisulfite converted complementary se-
quences were used and are listed in Additional Table 2.
QMSP reactions were carried out in LightCyler 480 II
(Roche, Germany) using 2 uL. of modified DNA and 5 pL
Xpert Fast SYBR (2X) (GRiSP, Porto, Portugal). All sam-
ples were run in triplicate and melting curves were
obtained for each case by gene. B-actin (ACTJ) was used
to normalize for DNA input in each sample [20]. To as-
certain PCR efficiency, and samples’ quantification,
modified CpGenome™ Universal Methylated DNA
(Merck Millipore, France) was used in each plate to gen-
erate a standard curve. The relative methylation for each
gene was calculated by the ratio of mean quantity for
the target gene and the mean quantity of ACTJ5, multi-
plied by 1000 for easier tabulation.

Statistical analysis

All the comparisons were performed using non-
parametric tests. Specifically, the Kruskal-Wallis test was
used for comparisons among three or more groups,
whereas the Mann-Whitney U test was used in compari-
sons between two groups.

To assess biomarker performance, Receiver Operator
Characteristic (ROC) curves were constructed for each
gene and the Area Under the Curve (AUC) was calculated.
The highest value obtained by the ROC curve analysis
[sensitivity + (1-specificity)] was established as cut-off to
categorize samples as methylated or unmethylated,
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Table 1 Clinicopathological data of Normal Esophagus and Esophageal Tumor patient's

Clinicopathological Esophageal Tumor Samples Normal
Features Naive Tumors Post ChT/RT® Treatment Tumors Esophagus
Patients (no.) 88 36 56
Age median (range) 63 (37-83) 60 (44-73) 66 (36-84)
Sex (no.)
Man 74 31 37
Woman 14 5 19
Histological subtype (no.) na.
Adenocarcinoma 40 16
Squamous Cell Carcinoma 48 20
Localization (no.) na.
Upper 3 -
Middle 27 5
Lower 30 18
GEF 28 13
pT Stage/ypT Stage na.
pT1/ypT1 16 5
pT2/ypT2 14 7
pT3/ypT3 56 23
pT4/ypT4 2 1
pN Stage/ ypN Stage na.
pNO/ypNO 39 17
pN1/ypN1 17 7
pN2/ypN2 21 6
pN3/ypN3 11 6
Stage na.
I 13 4
Il 32 6
Il 28 19
v 15 7

2ChT/RT Chemotherapy and/or Radiotherapy, ® GEJ Gastroesophageal Junction, n.a non- applicable

according to Youden’s J index method [21, 22]. Further-
more, specificity, sensitivity, accuracy, positive likelihood
ratio (+LH), and negative likelihood ratio (-LH) were de-
termined. For combination of biomarkers, cases were con-
sidered positive if at least one of the individual biomarkers
was positive.

Spearman non-parametric correlation was used to
assed the correlation methylation levels and age.
Disease-specific and disease-free survival curves
(Kaplan-Meier with log-rank test) were built for stand-
ard clinicopathological variables and categorized methy-
lation status. Disease-specific survival curves and
disease-free survival curves (Kaplan—Meier with log-rank
test) were computed for standard clinicopathological
variables and categorized methylation status.

Two-tailed P-values were derived from statistical tests,
using a computer-assisted program (SPSS Version 25.0,
Chicago, IL), and results were considered statistically signifi-
cant at p <0.05, with Bonferroni’s correction for multiple
tests, when applicable (* p <0.05; ** p <0.01; *** p <0.001;
**** p <0.0001; ns — non significant). Graphics were assem-
bled using GraphPad 6 Prism (GraphPad Software, USA).

Results

Clinical and pathological data

The most relevant clinical and pathological data are
depicted in Table 1. In addition to normal esophageal
tissues, ECa cases were segregated into treatment-naive
(samples collected before any treatment) and post-
neoadjuvant treatment groups. No significant differences
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were disclosed concerning age among the three groups
of samples (p = 0.06).

Gene promoter methylation levels in naive ECa tumors vs.
normal esophagus samples

To assess performance for ECa detection, COLI4AI
methylation (COL14A1me), GPX3 methylation (GPX3me),
and ZNF569 methylation (ZNF569me) levels in naive tu-
mors (n = 88) were compared to normal esophagus sam-
ples (n =56). ZNF569me levels significantly differed
between cancerous and normal samples (p < 0.001, Fig. 1c),
whereas no significant differences were found for
COLI14A1me and GPX3me levels (p = 0.382 and p = 0.094,
respectively, Fig. 1a, b).

Using ROC curve analysis (Fig. 2), a cut-off of 55.17 was
set for ZNF569me to assess biomarker performance. Thus,
over 90% specificity and 69.3% sensitivity (Table 2) was
disclosed, corresponding to an AUC of 0.8467 (Fig. 2).

Association between promoter methylation levels and
standard clinicopathologic features

COL14AIme, GPX3me, and ZNF569me levels were
tested for associations with standard clinicopathological
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Fig. 2 Receiver Operating Characteristic Curve of the ZNF569 in
Esophageal naive tumors tissues

features in naive ECa patients. All genes disclosed sig-
nificant differences in promoter methylation levels ac-
cording to histological subtype (Fig. 3). ESCC displayed
higher COL14A1me and GPX3me levels than EA (p =
0.001 and p =0.024, respectively), whereas EA displayed
higher ZNF569me levels (p =0.020). Additionally,
COL14AIme levels were significantly higher in pT1 tu-
mors compared to pT3 (p =0.006) (Additional Fig. 1).
However, no significant differences on methylation levels
were found among different N stages (Additional Fig. 2).

Biomarker performance according to histological subtype
Because methylation levels differed between histological
subtypes, samples were stratified according to this param-
eter for assessing histotype-specific biomarker perform-
ance. Concerning EA, COL14A1me and ZNF569me levels
significantly differed from normal samples (p = 0.002 and
p <0.001, respectively). COLI4AIme and ZNF569me
levels identified EA with an AUC of 0.68 and 0.91, re-
spectively (Fig. 4a), whereas the combination of both
genes disclosed a sensitivity above 97% and 82.29 accuracy
(Table 3). Furthermore, GPX3me and ZNF569me levels
differed significantly between ESCC and normal samples
(p= 0.009 and p <0.001, respectively), individually dis-
criminating this tumor type from controls with AUC of
0.65 and 0.79 (Fig. 4b), respectively. Accuracy of detection
improved to 81.73 when the two genes were combined in
a single panel (Table 3).

Assessment of promoter methylation in post-treatment
samples

GPX3me and ZNF569me levels were significantly higher
in residual EA samples after neoadjuvant treatment com-
pared to normal samples (p <0.001, for both). Nonethe-
less, COLI4AIme levels in tumors after neoadjuvant

Table 2 Performance of promoter gene methylation as
biomarkers for detection of Esophageal Cancer

LH+ LH-
19.06 032

Gene
ZNF569 69.3 96.4 79.7

Sensitivity %  Specificity %  Accuracy %
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treatment did not differ significantly from normal samples
(p= 0.493) (Fig. 5). Concerning ESCC, only GPX3me
levels remained significantly different between post-
treatment tumor and normal samples (p = 0.001).

Survival analysis

Survival analysis was carried out in the treatment-naive
ECa cohort. For analysis, a maximum of 5 years follow-
up was considered. During this period, 39 patients died
from the disease (44.3%), three patients died with the
disease (3.4%) and six patients died without evidence of
cancer (6.8%). Among the remainder patients, 39 were
alive without evidence of disease (44.3%) and one patient
was alive with disease (1.2%).

No associations were depicted between COLI4AIme,
GPX3me, and ZNF569me levels and disease-specific or
disease-free survival, whereas the pT stage, pN stage,
and stage associated with both disease-specific and
disease-free survival (p =0.010, p =0.002, p =0.002 for
disease-specific survival and p =0.012, p =0.001, p =
0.025 for disease-free survival).

Discussion
ECa remains a leading cause of cancer-related mortality
globally [1] and in Portugal [23]. Most patients are

diagnosed with locally advanced or metastatic disease,
entailing poor 5-years survival rate (about 25 and 5%, re-
spectively) [24]. Thus, new strategies for early detection
of this malignancy are urgently needed. In this context,
epigenetic alterations such as DNA methylation have
emerged as promising biomarkers in several cancers, in-
cluding ECa [15, 25].

Herein, we tested three gene promoters’ methylation
as ECa DNA methylation-based biomarkers, following a
literature review. We selected the genes ZNF569, GPX3,
and COLI14A1I, all previously reported to harbor pro-
moter methylation and suggested to have an oncossup-
pressive function. ZNF569 protein has been reported as
a potential transcriptional repressor implicated in MAPK
signaling pathway [26]. COLI14AI encodes for the alpha
chain of type XIV collagen which interacts with decorin
associated with cell growth and survival [27]. GPX3 is a
glutathione peroxidase found to catalyze glutathione’s
reduction of organic hydroperoxides and hydrogen per-
oxide and thereby protecting cells against oxidative dam-
age [28, 29].

COL14A1 aberrant methylation has been reported in
ESCC [16], as well as in renal cell carcinoma, sarcomas,
and endometrial carcinoma [27, 30, 31], whereas hypo-
methylation has been shown in coronary artery disease
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Table 3 Performance of promoter gene methylation as biomarkers for detection of Esophageal Cancer according histological

subtype
Gene Sensitivity % Specificity % Accuracy % LH + LH-
EA® COLT4A1 80.00 7143 75.00 2.80 0.28
ZNF569 82.5 96.4 90.5 22.69 0.18
Panel-EA 97.50 7143 82.29 341 0.04
Escc® GPX3 52.1 91.132 731 583 0.53
ZNF569 583 96.4 786 16.04 043
Panel-ESCC 75.00 87.50 81.73 6.00 029

2FA Esophageal Adenocarcinoma, ® ESCC Esophageal Squamous Cell Carcinoma

[32]. GPX3 promoter methylation has been shown in
ESCC and esophageal glandular lesions, including Bar-
rett’s esophagus and EA [29, 33, 34]. In the same vein,
ZNF569 promoter hypermethylation has been associated
with glandular lesions, like Barrett’s esophagus [17] in
comparison with the normal esophagus.

Interestingly, we showed that ZNF569me levels could
discriminate between ECa and normal esophagus with
high specificity, regardless of the histotype, extending
those previous reports. Furthermore, ZNF569me was
shown to play a tumor-suppressive role in head and neck
squamous cell carcinoma [35] and a DNA-methylation
based panel, which included ZNF569me, discriminated
gastric adenocarcinoma from normal mucosa [36].

ESCC and EA displayed different cancer-specific
methylation patterns. Accordingly, differential methyla-
tion patterns have been previously reported between
ESCC and EA [37, 38]. Indeed, in treatment-naive tu-
mors, the three selected genes disclosed different methy-
lation levels among ESCC and EA, variably comparing to
normal esophageal tissue samples. In particular, available
data support the value of identification specific ESCC
methylation panels to enable early detection [16, 39, 40].

We found ZNF569 hypermethylated in both histological
subtypes and, thus, this gene constitutes a promising
biomarker for ECa detection, regardless of histological
subtype. Moreover, we found COLI4AI promoter
methylation levels slightly higher in ESCC when com-
pared with normal esophagus samples, although not sta-
tistically significant. This can be partially explained by
variations in the population (Asian vs. Caucasian), as
previously attested for some genes [41], and the different
nature of samples tested (plasma vs. FFPE). Notwith-
standing, COLI4A1 promoter methylation levels were
significantly lower in EA compared to normal. To our
knowledge, this is the first reported association between
COL14A1 methylation levels and EA. Conversely, GPX3
promoter methylation levels did not differ between EA
from normal tissues, although a few cases disclosed
higher methylation levels (data not shown). Notwith-
standing, different sample processing (fresh frozen tis-
sues vs. FFPE) [29, 34], different methodologies to assess
GPX3 methylation levels among studies (@QMSP vs. MSP
vs. methylation ligation-dependent macroarray vs. pyro-
sequencing), and the smaller size of some cohorts [29,
33] may explain some disparate results.
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Overall, we propose two different methylation-based
panels, both with high accuracy to early detect ECa ac-
cording to histological subtype. The ESCC-panel dis-
played higher specificity (87.5%), whereas the EA-panel
disclosed higher sensitivity (97.5%). In fact, the perform-
ance of both methylation-based panels compares well
with that of other studies [38, 42, 43]. For EA detection,
Moinova et al. reported a two-gene methylation panel,
comprising CCNAI and VIM, with higher specificity
(91.7%), similar to TACI hypermethylation reported by
Jin et al. [44, 45]. Additionally, for ESCC Li et al. and
Wang et al. reported panels with higher performance in
Asian populations [16, 46].

Currently, most ECa patients are treated with neoadju-
vant therapy followed by surgery, if diagnosed with lo-
cally advanced disease [2]. The randomized CROSS trial
showed that surgery has a major impact on ECa patients’
QoL. Features such as fatigue and physical performance
are decreased even in long-term survivors. Those effects
are similar in patients undergoing neoadjuvant treatment
or surgery only, emphasizing the impact of surgery in
QoL [7, 8]. Hence, biomarkers enabling the identifica-
tion of patients complete response to neoadjuvant treat-
ment (who might be spared surgery) and to early detect
disease recurrence are needed [47] to improve QoL
without risking the likelihood of cure. Thus, we evalu-
ated methylation levels of candidate genes in 36 samples
from non-complete responders after neoadjuvant treat-
ment. In our series, ZNF569me levels only significantly
differed in EA comparatively to the normal esophagus,
whereas GPX3 promoter methylation levels were signifi-
cantly higher both in ESCC and EA than in the normal
esophagus. Because GPX3me has been associated with
ChT resistance [28], GPX3me levels observed in EA after
neoadjuvant treatment might be explained by selective
pressure caused upon neoplastic cells, entailing adap-
tative alterations induced by treatment [48]. Several
studies have associated DNA methylation with ChT
or RT resistance [49-52]. However, most used sam-
ples before any treatment or in vitro studies with im-
mortalized cell lines [51]. Thus, a direct comparison
between our results and previously reported data
should be made with caution. Nonetheless, the lack of
information on methylation status before treatment,
the small size of the pre-treated patient cohort along
with the retrospective nature of our series, and the
limited access to normal esophagus samples are major
limitations of this study. Importantly, our series com-
prised ESCC and EA samples in similar proportions,
contrarily to most of the previous studies which eval-
uated methylation status. Moreover, this study re-
ported the potential of DNA methylation-based
biomarkers for patients’ monitoring after neoadjuvant
treatment.
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Conclusions

In conclusion, we identified two gene panels that might
detect ESCC and EA with good accuracy, which might
prove useful for early disease detection among high-risk
populations, as well as to detect residual disease after
neoadjuvant treatment. As future perspectives, we intend
to validate these panels in liquid biopsies, using plasma
samples as a minimally invasive approach, not only for
ECa early detection and diagnosis but also to identify pa-
tients with residual disease after neoadjuvant treatment,
which are the most likely to benefit from surgery.
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