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Abstract

Background: The canonical and non-canonical nuclear factor-kappaB (NF-kB) signaling pathways have key roles in
cancer, but studies have previously evaluated only the association of canonical transcription factors and ovarian
cancer survival. Although a number of in vitro and in vivo studies have demonstrated mechanisms by which non-
canonical NF-kB signaling potentially contributes to ovarian cancer progression, a prognostic association has yet to
be shown in the clinical context.

Methods: We assayed p65 and p52 (major components of the canonical and non-canonical NF-kB pathways) by
immunohistochemistry in epithelial ovarian tumor samples; nuclear and cytoplasmic staining were semi-quantified
by H-scores and dichotomized at median values. Associations of p65 and p52 with progression-free survival (PFS)
and overall survival (OS) were quantified by Hazard Ratios (HR) from proportional-hazards regression.

Results: Among 196 cases, median p52 and p65 H-scores were higher in high-grade serous cancers. Multivariable
regression models indicated that higher p52 was associated with higher hazards of disease progression
(cytoplasmic HR: 1.54; nuclear HR: 1.67) and death (cytoplasmic HR: 1.53; nuclear HR: 1.49), while higher nuclear p65
was associated with only a higher hazard of disease progression (HR: 1.40) in unadjusted models. When cytoplasmic
and nuclear staining were combined, p52 remained significantly associated with increased hazards of disease
progression (HR: 1.91, p=0.004) and death (HR: 1.70, p=0.021), even after adjustment for p65 and in analyses
among only high-grade serous tumors.

Conclusions: This is the first study to demonstrate that p52, a major component of non-canonical NF-«kB signaling,
may be an independent prognostic factor for epithelial ovarian cancer, particularly high-grade serous ovarian
cancer. Approaches to inhibit non-canonical NF-kB signaling should be explored as novel ovarian cancer therapies
are needed.
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Background

Ovarian cancer is the 5th leading cause of cancer deaths
among women in the United States and has the highest
mortality among gynecologic cancers, with an overall 5-
year survival rate lower than 50% [1]. While overall rates
of death from cancer have dramatically declined over the
past few decades, mortality from ovarian cancer has hov-
ered around 10 women per 100,000 for the last 50 years
[2, 3]. Long-term survival is poor as patients are most
often diagnosed at advanced stage, largely due to non-
specific symptoms and lack of early detection methods
[4, 5]. Furthermore, while most patients have a dramatic
initial response to first-line platinum and taxane-based
chemotherapies, the majority will ultimately develop re-
current and treatment-resistant disease [1, 6]. This is
particularly relevant to high-grade serous ovarian cancer,
the most common and deadliest of the five main sub-
types when classified by grade and histology: high-grade
serous, low-grade serous, endometrioid, clear cell, and
mucinous tumors [7-10]. Targeted treatments aimed at
specific pro-tumorigenic gene products, such as vascular
endothelial growth factor (VEGF) inhibitors and poly
ADP ribose polymerase inhibitors (PARPi), are now be-
ing incorporated into the clinic as first-line maintenance
therapies and treatment for recurrence [11-14]. The de-
velopment of additional treatment modalities to improve
ovarian cancer survival requires further understanding of
the pathogenesis of this disease.

Activation of nuclear factor-kappaB (NF-kB) signaling
has been identified as an important molecular link between
inflammation and cancer, and modulates tumor growth,
chemotherapy resistance, and immune escape in a variety
of malignancies, including ovarian cancer [15-17]. NF-«B
signaling is mediated by dimerization of a family of five
transcription factors that share N-terminal DNA binding
Rel homology domains: p50 (and its precursor pl105), p52
(and its precursor pl00), p65/RelA, RelB, and c-Rel. RelA,
RelB, and c-Rel additionally contain C-terminal nuclear
localization signals that facilitate nuclear translocation [18].
In homeostatic conditions, homo- and heterodimers of NF-
KB members are bound to inhibitor of kappaB proteins
(IkB) and sequestered in the cytoplasm. Following upstream
NE-kB pathway signaling, inhibitor of kappaB kinase (IKK)
proteins phosphorylate IkB, causing its proteasomal degrad-
ation and release of the dimer from inhibition, thereby
allowing for nuclear translocation and transcriptional acti-
vation of anti-apoptotic and pro-proliferative gene targets
[18].

NE-«B signaling can be divided into two broad path-
ways, termed canonical and non-canonical. Activation of
canonical NF-kB signaling occurs when pro-
inflammatory ligands bind to cell surface receptors such
as tumor necrosis factor receptors or Toll-like receptors,
most often resulting in nuclear localization of p65/p50
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dimers to initiate transcription of acute phase reactants,
inflammatory cytokines, and regulators of apoptosis [18].
Non-canonical NF-kB signaling typically occurs follow-
ing binding of a ligand to the CD40 receptor, lympho-
toxin beta receptor, or B-cell activating factor receptor.
Activation of this cell surface receptor results in phos-
phorylation of NF-«kB-inducing kinase (NIK), which then
activates IKK to induce processing of cytoplasmic p100
to active p52 with resultant nuclear localization of p52/
RelB dimers [19].

A few studies have evaluated the expression of p65
and other canonical NF-kB pathway members in ovar-
ian cancer, but findings for associations with patient
outcomes have been inconsistent [20—25]. Associations
between high p65 expression and poor ovarian cancer
survival have been reported [20, 24]; however, the lar-
gest study of human tissue found better overall survival
for high nuclear p65 expression among 324 high-grade
serous cases [21]. Non-canonical NF-kB signaling re-
mains relatively understudied compared to canonical
signaling and comparatively little is known about the
non-canonical NF-xB pathway and cancer survival.
Prior studies have demonstrated increased activation of
p52 in breast, lung, prostate, pancreatic, and ovarian
cancers [26-32], and increased expression has been
linked to worse prognosis in lung cancer [33]. While
pre-clinical in vitro and in vivo studies have demon-
strated a variety of mechanisms by which non-
canonical NF-kB signaling may contribute to ovarian
cancer carcinogenesis and progression, no studies to
date have reported associations between non-canonical
NF-kB transcription factors and ovarian cancer clinical
prognosis [31, 32, 34, 35]. Thus, we undertook this
study to evaluate if variation in expression of NF-«xB
transcription factors, specifically tumor expression of
p65 (a major contributor to canonical signaling) and
p52 (a major contributor to non-canonical signaling),
was associated with survival outcomes among a retro-
spective cohort of ovarian cancer cases.

Materials and methods

Institutional approval

Approval was previously obtained from the Vanderbilt
University Medical Center (VUMC) Institutional Review
Board for construction of a tissue microarray (TMA)
and collection of clinical data for Gynecologic Oncology
patients at VUMC from 1994 to 2004; as all patient data
was de-identified and discarded tissue from routine clin-
ical care was evaluated, we obtained a waiver of consent
from the VUMC Institutional Review Board committee.
Data collection and processing were performed in ac-
cordance with standard guidelines, including US Federal
Policy for the Protection of Human Subjects and the
Declaration of Helsinki.
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Ovarian cancer tissue microarray

We evaluated a validated TMA constructed from pri-
mary ovarian tumor samples from the VUMC Tissue
Repository for Ovarian Cancer (TROC) [36, 37]. Briefly,
tissue samples were collected from patients seeking care
at VUMC at the time of primary staging and/or cytore-
ductive surgical procedures by the Division of Gyneco-
logic Oncology between 1994 and 2004. Inclusion
criteria included age > 18 years and a primary epithelial
tumor of the ovary. Patient samples were excluded if
they were non-epithelial ovarian tumors or were non-
primary (i.e. metastatic or recurrent) tumor of the ovary
(Additional File 1). Hematoxylin and eosin stained sec-
tions from identified cases were reviewed and a repre-
sentative formalin-fixed paraffin-embedded tissue block
containing >80% tumor cells was identified for each
case. For each specimen, four 1 mm cores from the rep-
resentative tumor block were included in the tissue
microarray. Tumor cores with <100 tumor cell nuclei
were excluded from analysis. Because ovarian cancer
classification has been updated over time, our samples
underwent additional pathology review to re-classify
cases according to the contemporary 2014 WHO guide-
lines [8, 38]. Among the 196 epithelial samples included
the current analysis, there were 177 invasive tumors of
serous (N = 131), endometrioid (N = 24), mucinous (N =
8), clear cell (N=11), and other tumor histotypes (N = 3:
a carcinosarcoma, a primary squamous cell carcinoma,
and a small cell carcinoma); a total of 19 samples were
from non-invasive borderline tumors of either serous
(N =12) or mucinous (N =7) histology.

Clinical database

Demographic and clinical information, including stage,
grade, treatment history, and patient outcomes were ob-
tained by manual data abstraction from the VUMC elec-
tronic medical record (EMR) and collected using a
REDCap database built for the VUMC TROC [39].
Tumor stage was classified based on the International
Federation of Gynecology and Obstetrics (FIGO) system,
with early stage including stages I and II and late stage
including III and IV [40]. Low-grade tumors included
low-grade serous tumors and grade 1 and 2 endome-
trioid and mucinous tumors; high-grade tumors in-
cluded high-grade serous carcinomas, grade 3
endometrioid and mucinous tumors, clear cell carcin-
omas, and carcinosarcomas. Date of diagnosis was
defined as the earliest date of pathologic confirmation,
either by cytologic evidence of adenocarcinoma from as-
cites or from pathologic evaluation of tissue specimen.
Date of disease progression or recurrence after staging
and/or debulking surgery in the first-line treatment set-
ting was defined by earliest evidence of increasing meas-
urable disease, as determined by RECIST imaging
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criteria, development of new or enlarged lesions on
physical exam, confirmed ovarian cancer on biopsy of
new lesions, or disease progression explicitly stated
within the EMR [41]. Date of death was ascertained from
VUMC EMR, Tumor Registry, OnCore Clinical Trial Re-
search Databases, and the National Technical Informa-
tion Services Death Master File of deaths reported to the
Social Security Administration. Outcomes were captured
through 11/29/2018. Patients without visible pelvic ex-
tension of disease at the time of primary surgery were
categorized as “not applicable” for debulking. Among pa-
tients with advanced pelvic disease, 5 had unresectable
disease and were not debulked, and 24 had unknown re-
sidual disease. For those who underwent debulking with
outcomes known, debulking was characterized in ac-
cordance with current guidelines based on manual re-
view of operative reports as optimal (not otherwise
specified, no residual disease, residual disease < 1cm
maximum), or sub-optimal (>1cm) [42]. Six samples
were obtained during interval debulking after neoadju-
vant chemotherapy, while 190 samples were obtained
during primary tumor reductive surgery prior to any ad-
juvant chemotherapy and were classified as “chemother-
apy naive.” All chemotherapy data was collected from
first-line treatment. Among patients who had dates of
first-line platinum chemotherapy available, platinum
sensitivity was defined as a progression-free interval of
greater than 6 months after completion of first-line
chemotherapy, while platinum resistance was defined by
a progression-free interval of less than 6 months follow-
ing completion of first-line chemotherapy. Accordingly,
patients with resistant or refractory disease (demon-
strated progression at the time of first-line therapy) were
grouped together for this study. Patients for whom the
date of completion of first-line platinum chemotherapy
was unknown were categorized as unknown for response
to platinum treatment.

Immunohistochemistry (IHC)

We conducted immunostaining for p52 with anti-p52
(C-5, Santa Cruz; sc-7386) on TMA slides utilizing a
previously published protocol [33]. Staining of p65 was
performed under automated conditions by the Vander-
bilt Translational Pathology Shared Resource with
mouse monoclonal anti-p65 (F-6, Santa Cruz; sc-8008).
Human tonsil, lung parenchyma, and lung adenocarcin-
oma, were used as positive controls. True negative con-
trols were not feasible as NF-«B signaling is ubiquitous
in human tissue. However, we selected commercially
available antibodies that have been well-studied and vali-
dated in prior IHC studies of NF-kB transcription fac-
tors in a variety of human tissues [33, 43]. Whole-slide
imaging and semi-quantitative measurement of the per-
centage of epithelial tumor cells with positive
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cytoplasmic and nuclear expression was performed using
the automated Ariol SL-50 Platform in the Digital Hist-
ology Shared Resource of the VUMC. Cytoplasmic and
nuclear H-scores were calculated for each sample by
multiplying the percentage of cells staining positive (0—
100) by staining intensity (weak: 1, moderate: 2, or
strong: 3), to yield an H-score ranging from 0 to 300.
Low and high expression of all markers was dichoto-
mized a priori by median values so that our exposure of
interest, expression of p52 or p65, was not defined by
our outcome of interest, disease prognosis.

Statistical analysis

Normality of continuous variables, including H-scores
for IHC quantification, was visually assessed using histo-
grams; based on this and our sample sizes, we generally
used non-parametric statistical approaches. Monotonic
correlations between continuous variables were calcu-
lated using Spearman’s rank correlation coefficient, and
the Kruskal-Wallis test was used to compare two or
more groups of non-normal data, such as differences in
NE-kB expression in relation to clinical covariates. The
chi-squared test was used to assess relationships be-
tween categorical variables. In line with prior studies of
NE-kB pathway effectors in ovarian cancer tissue, we
also performed analyses where nuclear and cytoplasmic
staining were combined [23]; if either was higher than
the median, then expression was considered to be high.
Overall survival (OS) was defined as the interval between
date of diagnosis to either date of death or censored at
the date of last contact. Progression-free survival (PFS)
was defined as the interval from date of diagnosis to date
of first disease progression after initial staging and/or
cytoreductive surgery in the first-line treatment setting,
death, or censored at the date of last contact. To
minimize potential bias from loss to follow-up, all events
after were censored and time was truncated at 15-years
post-diagnosis. Survival functions were visualized using
Kaplan-Meier plots and differences were assessed by
Log-Rank tests. Associations with survival outcomes
were quantified using hazard ratios (HR) and 95% confi-
dence intervals (CI) calculated from Cox proportional-
hazards regression with calendar time as the time-scale.
Adjustment for clinical covariates included known prog-
nostic factors as well as significant associations from our
bivariate analysis: age at diagnosis, stage, histologic sub-
type, grade, and platinum and/or taxane chemotherapy
treatment. Maximal adjustment additionally included
race, residual disease after debulking, and response to
platinum therapy. Combined staining indices enabled us
to employ mutually adjusted regression models to disen-
tangle the effects of canonical and non-canonical NF-kB
expression. To evaluate the robustness of our findings
among all cases (N=196), we conducted sensitivity
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analyses among chemotherapy naive cases (N =190), in-
vasive cases (N =177), serous cases (N =143), late stage
cases (N=137), invasive serous cases (N=131), late
stage serous cases (N =119) and high-grade serous cases
(N'=118). Analyses were conducted in R version 3.4.4
using the ggplot2 and survminer packages, and with the
SAS System for Windows (SAS version 9.4) [44-47]. A
p-value < 0.05 was interpreted as statistically significant,
with a Bonferroni corrected significance threshold used
when considering multiple comparisons.

Results

Baseline characteristics

Among 196 cases from the Vanderbilt TROC TMA,
clinical characteristics followed expected distributions
(Table 1). Cases had a median age of diagnosis of 58.3
years, median progression-free survival of 1.6 years, and
median overall survival of 3.6years. The majority of
cases evaluated were White (91.8%) with advanced stage
(70.3%), high-grade (73.5%), serous histology (72.9%),
and most were treated with chemotherapy (77.6%).
Among 152 patients who received first-line chemother-
apy, 150 patients (98.6%) had documentation of receiv-
ing platinum agents, and 147 patients (96.7%) had
documentation of receiving both platinum and taxane
agents. Two patients were noted to have completed
first-line chemotherapy, but did not have specific thera-
peutic agent information available and were assumed to
have had at least platinum therapy. A total of 44 patients
either declined chemotherapy or did not have any infor-
mation regarding possible first-line chemotherapy avail-
able, the majority of which (66%) had stage I disease.

Expression in epithelial ovarian tumors

Expression of p52 and p65 was detected by immunohis-
tochemistry (Fig. 1). Expression was predominantly cyto-
plasmic, with a relatively smaller proportion of tumor
cells showing nuclear staining for both p52 (median H-
scores: 135.9 vs. 1.0) and p65 (median H-scores: 154.3
vs. 2.7). To assess relationships between cytoplasmic and
nuclear expression, we evaluated Spearman’s correlation
coefficients. There was a strong positive monotonic cor-
relation between cytoplasmic and nuclear staining for
both p52 (rho =0.69, p <0.001) and p65 (rho =0.78, p <
0.001). Correlations between canonical and non-
canonical pathway members were much lower (cytoplas-
mic p65 and cytoplasmic p52, rho =0.23; nuclear p65
and nuclear p52, rho = 0.25; both p < 0.001).

Associations with clinical characteristics

Regardless of whether cytoplasmic or nuclear staining
was assessed, median p52 H-scores were significantly
higher among high-grade, advanced stage, and serous tu-
mors, and among patients who were treated with
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Table 1 Patient and clinical characteristics among 196 ovarian
tumors from the VUMC TROC

Characteristic N or median % * or std dev
Age at diagnosis, years 583 (13.9)
Progression-free survival, years 16 (3.8)
Overall survival, years 36 6.1)
Race
White 180 (91.8)
Black 12 6.1)
Other 3 (1.5)
Unknown 1 (0.51)
Stage
| 50 (25.6)
Il 8 @.1)
I 116 (59.5)
[\ 21 (10.8)
Unknown 1 0.5
Histologic subtype
Serous 143 (72.9)
Endometrioid 24 (12.2)
Mucinous 15 (7.7)
Clear cell 11 (5.6)
Other ® 3 (1.5)
Grade - among all types ?
Borderline 19 9.7)
Low-grade 33 (16.8)
High-grade 144 (73.5)
Grade - among invasive serous
Low-grade 13 (9.9)
High-grade 118 (90.1)
Debulking status
Debulked - optimal debulking 60 (30.6)
Debulked - suboptimal debulking 53 (27.0)
Not debulked or residual unknown 29 (14.8)
Not applicable 54 (27.6)
Chemotherapy treatment
Platinum and/or taxane agent(s) 152 (77.6)
None or unknown 44 (22.4)
Response to platinum treatment ©
Platinum sensitive 105 (70.0)
Platinum resistant or refractory 30 (20.0)
Unknown 15 (10.0)

* Percentages may not sum to 100 due to rounding error

@ Includes one case each: carcinosarcoma, primary squamous cell
carcinoma, and a small cell carcinoma

P High-grade includes high-grade serous, grade 3 endometrioid and
mucinous, and all clear cell and carcinosarcomas. Low-grade includes
low-grade serous, and grade 1-2 endometrioid and mucinous cancers
€ Among patients who had documentation of receiving platinum
chemotherapy (N =150)
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chemotherapy (Table 2, p < 0.05). Similarly, regardless of
whether cytoplasmic or nuclear staining was assessed,
median p65 H-scores were significantly higher among
high-grade, serous, and high-grade serous tumors (p <
0.05). Following Bonferroni correction for multiple com-
parisons, expression of p52 and p65 remained signifi-
cantly higher among high-grade and serous cases (P-
value < 0.003571). When combined indices were
assessed, the same associations with p52 remained sig-
nificant as in compartmentalized analyses; combined
high p52 expression was significantly associated with
high grade, advanced stage, serous tumors, and receipt
of platinum and/or taxane chemotherapy (all p < 0.002,
data not shown). As in compartmentalized analyses,
combined high p65 expression was significantly associ-
ated with serous tumors (p <0.001); associations with
high-grade and high-grade serous tumors approached
significance (p =0.057, p =0.076, respectively, data not
shown). In all analyses, expression of p52 and p65 was
not significantly associated with race, residual disease
following surgical debulking, or platinum sensitivity.

Analysis with survival outcomes

Kaplan-Meier analysis indicated that higher than median
nuclear p52 expression was associated with significantly
worse PFS and OS (Log-Rank p < 0.001) and that higher
than median cytoplasmic p52 expression was similarly
associated with significantly worse PFS and OS (Log-
Rank p <0.001) (Fig. 2a-b). In contrast, neither cytoplas-
mic nor nuclear expression of p65 were significantly
associated with worse PFS or OS by Kaplan-Meier
analysis.

In unadjusted proportional-hazards regression models,
cases with high cytoplasmic p52 expression had approxi-
mately two-fold higher risks of disease progression (HR
2.15, 95% CI 1.55-2.98, p <0.001) and death (HR 1.98,
95% CI 1.42-2.75, p < 0.001) (Table 3). Cases with high
nuclear p52 expression similarly had approximately two-
fold higher risk of disease progression (HR 2.05, 95% CI
1.46-2.86, p < 0.001) and death (HR 1.82, 95% CI 1.30-
2.55, p<0.001). Higher nuclear p65 was also associated
with a 40% higher risk of disease progression (HR 1.40,
95% CI 1.02-1.92, p =0.037) when covariates were not
considered. In multivariable models adjusted for age at
diagnosis, stage, histologic subtype, grade, and platinum
and/or taxane chemotherapy treatment, all p52 associa-
tions remained significant; cases with higher than me-
dian cytoplasmic or nuclear p52 expression had
approximately 60% higher risks of disease progression
(cytoplasmic: HR 1.54, 95% CI 1.09-2.18, p = 0.015; nu-
clear: HR 1.67, 95% CI 1.15-2.42, p=0.006) and ap-
proximately 50% higher risks of death (cytoplasmic: HR
1.53, 95% CI 1.07-2.18, p = 0.019; nuclear: HR 1.49, 95%
CI 1.02-2.17, p=0.041). In contrast, the association
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Fig. 1 Representative IHC staining for p52 and p65 expression, the VUMC TROC. Representative immunohistochemical (IHC) staining for p52 and
p65 in a variety of ovarian tumor histologic subtypes. Staining was predominantly cytoplasmic, with a smaller proportion of tumor cells showing

between higher nuclear p65 and worse PFS was attenu-
ated after multivariable adjustment (nuclear: HR 1.20,
95% CI 0.85-1.69, p =0.300). In models with maximal
adjustment including age at diagnosis, stage, histologic
subtype, grade, chemotherapy treatment, race, residual
disease after debulking, and response to platinum ther-
apy, our results were not substantially changed.

To evaluate if effects of the canonical and non-
canonical NF-kB pathways were independent, we first
combined cytoplasmic or nuclear staining for each factor
and then included both p52 and p65 in mutually ad-
justed regression models (Table 3). Similar to analyses of
separate cytoplasmic and nuclear staining, adjustment
for age, stage, histologic subtype, grade, and chemother-
apy treatment did not attenuate significance of associa-
tions for cytoplasmic or nuclear p52 with PFS (HR 1.53,
95% CI 1.08-2.19, p=0.018) or OS (HR 1.61, 95% CI
1.12-2.33, p=0.011). In contrast, higher cytoplasmic or
nuclear p65 was not significantly associated with PFS or

OS after the same statistical adjustment. When both p52
and p65 were included in mutually adjusted regression
models, survival associations with p52 retained signifi-
cance (PFS: HR 1.70, 95% CI 1.21-2.38, p = 0.002; OS:
HR 1.64, 95% CI 1.16-2.32, p = 0.005) while associations
with p65 remained non-significant.

Given that ovarian cancer is a highly heterogenous dis-
ease with five main subtypes with distinct prognoses, we
additionally conducted analyses among the most clinic-
ally common subtype, high-grade serous cases (Table 3)
[7]. In univariate analyses, high cytoplasmic or nuclear
p52 was associated with significantly higher risks of dis-
ease progression (HR 1.79, 95% CI 1.17-2.75, p = 0.007)
and death (HR 1.65, 95% CI 1.07-2.56, p = 0.024), while
high p65 expression was not significantly associated with
survival outcomes. Adjustment for age, stage, and
chemotherapy treatment did not attenuate significance
of associations for cytoplasmic or nuclear p52 with PFS
(HR 1.68, 95% CI 1.08-2.62, p = 0.020) or OS (HR 1.61,



Hufnagel et al. Biomarker Research (2020) 8:45

Page 7 of 13

Table 2 NF-kB staining by patient and tumor characteristics, the VUMC TROC

Characteristic N % * p52 (Non-canonical NF-kB transcription factor) p65 (Canonical NF-kB transcription factor)
Cytoplasmic Nuclear Cytoplasmic Nuclear
Median P-value ** Median P-value ** Median  P-value ** Median P-value **
Race
White 180 (91.8) 1359 0.698 1.0 0.815 156.1 0.956 27 0.831
Black, other, & unknown 16 (8.2) 122.8 1.0 144.0 24
Stage of disease °
Early (/1) 58 (296) 810 <0.001 0.0 <0.001 135.0 0.065 1.8 0.133
Late (llI/IV) 137 (699) 1648 18 158.6 30
Histologic subtype
Serous 143 (729 1520 <0.001 2.2 <0.001 1654 <0.001 39 <0.001
Endometrioid & clear cell 35  (179) 97.7 0.0 1188 04
Mucinous & others 18 (92 121 0.0 122.8 14
Grade - all cases
Borderline 19 (9.7) 383 <0.001 0.0 0.005 1234 0.017 1.6 0.002
Low-grade 33 (168) 1036 04 1274 0.0
High-grade 144 (735 1578 16 160.0 39
Grade - invasive serous
Low-grade serous 13 (75 172 0.057 1.0 0.237 146.0 0.027 14 0.034
High-grade serous 118 (67.8) 1658 32 168.1 42
Residual disease °
Optimal 60 (53.1) 1214 0.102 16 0.723 157.3 0.970 26 0.191
Suboptimal 53 (469) 1687 1.7 158.6 38
Chemotherapy
Platinum and/or taxane 152 (776) 1520 0.002 16 0.010 156.5 0.090 28 0.145
None or unknown 44 (224) 914 0.0 144.7 18
Response to platinum ©
Platinum sensitive 105 (77.7) 1520 0538 16 0.558 1614 0.771 238 0.808
Resistant or refractory 30 (222) 1428 1.0 146.5 38

* Column percentages may not sum to 100% due to rounding error

** Bold values denote significant differences by the Kruskal-Wallis test; those in italics denote that significance surpasses a Bonferroni corrected threshold for

multiple comparisons (P-value < 0.003571)

2 Excluding one case with unstaged disease

® Among cases who had debulking surgery and outcomes ascertained

€ Among patients who had dates of first-line platinum chemotherapy available

95% CI 1.03-2.53, p=0.038), while associations with
p65 remained non-significant. When both p52 and p65
were included in mutually adjusted regression models
among high-grade serous cases, survival associations
with p52 retained significance (PFS: HR 1.91, 95% CI
1.23-2.96, p=0.004; OS: HR 1.70, 95% CI 1.09-2.66,
p=0.021). Further, in mutually adjusted regression
models including adjustment for age, stage, and treat-
ment, these associations with p52 and worse survival
remained significant.

Sensitivity analysis
Moreover, because ovarian cancer is a diverse clinical
entity, we examined the robustness of our findings

from analyses conducted after excluding specific sub-
sets of cases (Table 4). Regardless of which cases
were retained, results were materially unaltered with
significant associations with PFS and OS for p52, in-
cluding among chemotherapy naive cases (N =190,
PFS and OS p<0.001), invasive cases (N=177, PFS
p=0.002, OS p=0.007), serous cases (N=143, PFS
p<0.001, OS p=0.002), late stage cases (N =137, PFS
p=0.009, OS p=0.014), invasive serous cases (N =
131, PFS and OS p<0.005), late stage serous cases
(N =119, PFS p=0.005, OS p=0.008) and high-grade
serous cases (N=118, PFS p=0.005 OS p=0.018).
No associations reached statistical significance in sen-
sitivity analyses for p65.
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Discussion

This retrospective cohort study was conducted to test
our hypothesis that both canonical and non-canonical
NF-kB transcription factors influence epithelial ovarian
cancer survival outcomes. We measured cytoplasmic
and nuclear expression of p52 and p65 in tissue samples
from 196 primary ovarian tumors from the Vanderbilt
TROC, and tested associations with patient outcomes.
We found that high cytoplasmic and nuclear expression
of p52 was associated with worse PFS and OS in both
crude and multivariable adjusted models. Nuclear p65
was only associated with worse PFS in unadjusted
models. High cytoplasmic and nuclear p52 was inde-
pendently associated with higher risk of disease

progression and death, even in regression models that
included adjustment for clinical covariates and p65 ex-
pression. Further, these associations remained significant
when analyses were limited to high-grade serous ovarian
cancer cases.

In line with our findings, prior studies have shown
constitutive activation and overexpression of p65, a
major marker of canonical NF-«B signaling, in many hu-
man epithelial cancers including ovarian, and have also
demonstrated increasing expression of p65 along the
continuum of borderline ovarian tumors to invasive car-
cinomas [43, 48-54]. However, evaluations of the rela-
tionship between p65 expression and ovarian cancer
prognosis have had inconsistent findings [20-25]. Three
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Table 3 NF-kB staining and ovarian tumor survival outcomes, the VUMC TROC
Progression-free survival (PFS) Overall survival (OS)
Unadjusted Adjusted ? Unadjusted Adjusted ?
Compartmentalized staining HR (95% Cl) P-value HR (95% CI) P-value HR (95% Cl) P-value HR (95% Cl) P-value
p52: Non-canonical NF-kB transcription factor
Cytoplasmic staining 2.15(1.55-2.98) <0.001 1.54(1.09-2.18) 0.015 1.98 (1.42-2.75) <0.001 1.53(1.07-2.18) 0.019
Nuclear staining 2.05 (1.46-2.86) <0.001 1.67 (1.15-2.42) 0.006 1.82 (1.30-2.55) <0.001 1.49 (1.02-2.17) 0.041
p65: Canonical NF-kB transcription factor
Cytoplasmic staining 1.02 (0.75-1.40)  0.885 1.05 (0.75-147) 0776 1.08 (0.79-148) 0636 113 (0.81-157) 0472
Nuclear staining 1.40 (1.02-1.92) 0.037 1.20 (0.85-1.69) 0300 137 (1.00-1.89)  0.052 1.31(093-184) 0.124
Total staining
Independent models
p52: Cytoplasmic or Nuclear 1.78 (1.28-2.47) <0.001 1.53 (1.08-2.19) 0.018 1.73 (1.24-2.41) 0.001 1.61 (1.12-2.33) 0.011
p65: Cytoplasmic or Nuclear 138 (0.99-1.92)  0.054 1.27 (089-1.81)  0.186 138 (0.99-1.92)  0.059 131(092-1.88) 0.138
Mutually adjusted models ®
p52: Cytoplasmic or Nuclear 1.70 (1.21-2.38) 0.002 1.49 (1.04-2.14) 0.030 1.64 (1.16-2.32) 0.005 1.57 (1.08-2.27) 0.018
p65: Cytoplasmic or Nuclear 1.24 (0.88-1.73) 0217 1.18 (0.82-1.71) 0348 122 (086-1.72) 0260 1.23 (0.85-1.77) 0265
Among high-grade serous cases ©
Independent models
p52: Cytoplasmic or Nuclear 1.79 (1.17-2.75) 0.007  1.68 (1.08-2.62) 0.020  1.65 (1.07-2.56) 0.024  1.61 (1.03-2.53) 0.038
p65: Cytoplasmic or Nuclear 0.90 (0.58-1.36)  0.606 1.14 (0.74-1.76)  0.551 1.02 (067-157) 0921 1.16 (0.75-1.81) 0499
Mutually adjusted models ®
p52: Cytoplasmic or Nuclear 1.91 (1.23-2.96) 0.004  1.68 (1.07-2.62) 0.024  1.70 (1.09-2.66) 0.021 1.59 (1.01-2.52) 0.045
p65: Cytoplasmic or Nuclear 0.76 (049-1.18)  0.223 1.03 (066-161)  0.899 0.89 (0.57-139) 0612 1.09 (069-1.69)  0.719

@ Adjusted for age at diagnosis (continuous), stage (early, late), histologic subtype (serous, endometrioid and clear cell, mucinous and other), grade (borderline,

low, high), and platinum and/or taxane chemotherapy (yes, no or unknown)

® Mutually adjusted models include both p52 and p65 (cytoplasmic or nuclear staining)
€ Model does not include adjustment for grade or histologic subtype because only high-grade serous cases (N = 118) were included in this analysis

small studies with 33, 68, and 85 epithelial cases found
that those with high cytoplasmic, nuclear, or total p65
expression, respectively, tended to have worse PFS and/
or OS [20, 22, 23]. In the largest of these three studies,
the unadjusted OS association was significant, but was
attenuated in multivariable adjusted models [23]. In a
larger study of 114 serous ovarian cancer cases, those
with high nuclear p65 expression had significantly worse
PES [24]. However, in another study among 324 high-
grade serous ovarian cancer cases, high nuclear expres-
sion was associated with significantly better OS [21].
Reasons for these discordant findings likely include dif-
ferences as to whether multivariable adjustment was
conducted, what clinical covariates were adjusted for,
and how p65 expression was categorized. For example,
the threshold for dichotomizing expression as positive or
high ranged from 21% of cells with moderate staining to
76% of cells with any staining, and was even selected to
optimize survival differences in one study [20-22, 24]. In
the current study, we dichotomized expression based on
median values, and found that higher cytoplasmic p65

was not significantly associated with PFS or OS, while
higher nuclear p65 was only significantly associated with
worse PFS in crude models. The association between
higher nuclear p65 and worse OS missed significance in
crude models (p = 0.052). Following multivariable adjust-
ment, neither cytoplasmic nor nuclear p65 were associ-
ated with survival outcomes. Critically, in models with
mutual adjustment for both p52 and p65 expression, as-
sociations with OS and PFS were attenuated for p65, in-
dicating that prior associations with the canonical
pathway may be mediated by p52 and the non-canonical
NF-«B pathway.

To our knowledge, this is the first study to assess the
relationship between expression of p52, a major compo-
nent of the non-canonical NF-kB pathway, and epithelial
ovarian cancer prognosis, particularly high-grade serous
ovarian cancer. We found that higher p52 was associated
with higher risk of disease progression and death, and
that these associations were robust to multivariable ad-
justment, including for expression of p65. While canon-
ical and non-canonical NF-kB signaling are known to
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Table 4 Sensitivity analysis: NF-kB staining and ovarian tumor survival outcomes, the VUMC TROC

Progression-free survival (PFS)

Overall survival (OS)

HR (95% Cl) @ P-value HR (95% Cl) ® P-value
Nuclear or cytoplasmic p52
Among all cases (N = 196) 1.94 (1.39-2.71) <0.001 1.73 (1.24-2.43) 0.001
Among chemotherapy naive cases (N = 190) 2.00 (1.42-2.81) <0.001 1.83 (1.30-2.58) <0.001
Among invasive cases (N=177) 1.71 (1.21-2.42) 0.002 1.61 (1.14-2.29) 0.007
Among serous cases (N =143) 1.98 (1.34-2.92) <0.001 1.90 (1.27-2.83) 0.002
Among late stage cases (N=137) 1.68 (1.14-2.47) 0.009 1.63 (1.10-2.41) 0.014
Among invasive serous cases (N=131) 1.89 (1.27-2.83) 0.002 1.91 (1.26-2.89) 0.003
Among late stage serous cases (N=119) 1.84 (1.21-2.81) 0.005 1.81 (1.17-2.80) 0.008
Among high-grade serous cases (N=118) 1.87 (1.21-2.87) 0.005 1.69 (1.09-2.62) 0.018
Nuclear or cytoplasmic p65
Among all cases (N = 196) 1.31 (0.94-1.82) 0113 1.30 (0.93-1.81) 0.127
Among chemotherapy naive cases (N = 190) 31 (0.93-1.83) 0.118 31 (0.93-1.85) 0.117
Among invasive cases (N=177) 33 (0.95-1.88) 0.100 33 (0.94-1.89) 0.108
Among serous cases (N =143) 1.04 (0.71-1.52) 0.860 1.20 (0.82-1.78) 0.352
Among late stage cases (N=137) 34 (0.93-1.93) 0.119 1.23 (0.85-1.77) 0.265
Among invasive serous cases (N=131) 1.15 (0.78-1.69) 0482 30 (0.88-1.94) 0.193
Among late stage serous cases (N=119) 1.33 (0.89-1.99) 0.160 1.29 (0.86-1.93) 0.214
Among high-grade serous cases (N=118) 0.96 (0.63-1.47) 0.841 09 (0.71-1.69) 0.168

@ Adjusted for age at diagnosis (continuous)

have some cross-talk, our mutually adjusted analysis in-
dicates that the effects of p52, a primary contributor to
the non-canonical pathway, on ovarian cancer outcomes
are independent of canonical NF-kB signaling through
p65 expression. We also found that correlations between
p52 and p65 expression levels were low, suggesting that
these two pathways are not highly inter-connected in
epithelial ovarian tumors. While there are common fac-
tors known to regulate both pathways in cancer cells to
support tumorigenesis, such as IKKa, in general there is
limited information about how the two pathways may
overlap in ovarian cancer or in other cancer cell types.
By contrast, there is stronger evidence showing that each
pathway can individually influence cancer cell behavior
and promote tumorigenesis across the spectrum from
borderline tumors to invasive carcinomas, dependent on
factors such as tumor type, localization, and microenvir-
onment [43, 55, 56].

While this is the first study to demonstrate an associ-
ation with clinical disease prognosis, several additional
lines of mechanistic evidence support a pro-tumorigenic
role for non-canonical NF-«B signaling independent of
the canonical pathway [35]. We previously found that
downregulation of cyclooxygenase-1 (COX-1) expres-
sion, an established pro-tumor mediator in ovarian can-
cer, resulted in reduced expression of multiple non-
canonical NF-kB signaling components, including RELB,
NFKB2 (p100/p52), CHUK (IKK«), and MAP3KI4 (NE-

kB-inducing kinase); in contrast, expression of canonical
NEF-kB pathway members was not changed by COX-1
knockdown [57]. Moreover, overexpression of p52 pro-
motes lung tumorigenesis in mice, and associations have
been demonstrated between non-canonical NF-kB sig-
naling, p52-gene targets, and worse prognosis in human
lung adenocarcinoma cases [33]. Further studies of
in vitro and in vivo models of ovarian cancer have
shown that non-canonical NF-«kB signaling promotes cell
growth and tumorigenicity as well as cancer stem cell
self-renewal [31, 32, 34, 35]. Aberrant expression of tis-
sue transglutaminase in ovarian tumors has been impli-
cated as an upstream regulator of p52 expression and
non-canonical signaling, ultimately contributing to dis-
ease progression and intraperitoneal metastasis [31].
Over-expression of NIK has also been demonstrated in
human ovarian cancer cell lines, leading to downstream
activation of non-canonical signaling and increased
tumorigenicity [32]. Known gene targets of non-
canonical NF-«B signaling include important mediators
of cell proliferation, such as cyclin D1; cell survival, such
as Bcl-x; and tumor invasion and vascular growth, such
as MMP-9 and VEGF, all of which are frequently
deregulated in cancer cells, contribute to epithelial-to-
mesenchymal transition, and have been associated with
poor prognosis [58—60].

Additionally, NF-kB pathway activation is known to con-
tribute to inflammation in the tumor microenvironment
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[18, 19, 61]. Studies in the breast cancer context have indeed
demonstrated associations between expression of NF-kB
and increased stromal tumor contribution [54]. Although
this study focused on epithelial expression of NF-«kB tran-
scription factors, future studies should utilize tissue micro-
arrays enriched for stromal compartments to analyze
associations of NF-«B signaling with immune infiltration, as
well as NF-«B signaling within immune or stromal cells.
Given increasing interest in immunotherapy for treatment
of cancer, these data may provide insights into mechanisms
of disease progression or potential treatment strategies com-
bining immunotherapy with NF-kB modulators. While the
canonical NF-kB pathway has been targeted in several solid
tumor types using various non-specific NF-kB inhibitors
such as bortezomib, thymoquinone, and curcumin, the clin-
ical potential of targeting non-canonical signaling in cancer
remains unknown [62—64].

Strengths of this study include assessment of both nu-
clear and cytoplasmic p52 and p65 staining in tumors,
multivariable adjusted regression models, and mutual
adjustment to parse out separate effects of canonical and
non-canonical NF-kB pathway member expression. We
additionally performed sensitivity analysis to assess the
robustness of our findings, which were materially un-
altered among chemotherapy naive, invasive, serous, late
stage, invasive serous, late stage serous, and high-grade
serous cases. Our primary limitation was sample size;
with only 196 tumor samples stained, we were unable to
evaluate associations among all five major subtypes,
which are known to have distinct etiologies and progno-
ses; we were able to conduct analyses among the most
clinically common subtype, high-grade serous ovarian
cancer, which demonstrated significant associations be-
tween p52 expression and disease prognosis [7]. Another
possible limitation is that nuclear expression was mark-
edly lower than cytoplasmic expression. However, we di-
chotomized based on median values, and created
combined indices for high nuclear or cytoplasmic stain-
ing as in prior studies of NF-kB elements to maximize
the generalizability of our results [23]. Further, while nu-
clear p52 is generally considered to represent non-
canonical NF-kB pathway activity, p52 may form hetero-
dimers with all other NF-kB pathway members [65].
While immunohistochemical detection of RelB could
also provide information on non-canonical NF-xB
pathway activity, a prior study of RelB in ovarian tis-
sue only demonstrated cytoplasmic staining [20].
Further, RelB is highly unstable and is known to
preferentially complex with p52 [66]. Therefore, this
study focused on evaluation of associations between
epithelial ovarian cancer survival and expression of
p52, a major component of the non-canonical path-
way about which there is limited information. Fi-
nally, we recognize that our study population was
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predominantly White and from a single center, po-
tentially further limiting the generalizability of our
study.

Conclusions

In conclusion, we have shown that expression of p52, a
major mediator of non-canonical NF-kB signaling, is an
important prognostic factor for high-grade serous ovar-
ian cancer, and that this association is independent of
canonical NF-«kB signaling through p65. While prior
work has demonstrated potential mechanisms by which
non-canonical NF-«B signaling may contribute to ovar-
ian cancer pathogenesis, this data provides a crucial clin-
ical link that expression of a non-canonical NF-kB
transcription factor is associated with ovarian cancer
prognosis, and interventions to inhibit non-canonical
NF-«B signaling should be explored as novel therapies
to limit ovarian cancer progression and optimize survival
outcomes.
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