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Abstract

therapies for patients with AML.

Acute myeloid leukemia (AML) is a clonal malignancy characterized by genetic heterogeneity due to recurrent gene
mutations. Treatment with cytotoxic chemotherapy has been the standard of care for more than half of a century.
Although much progress has been made toward improving treatment related mortality rate in the past few
decades, long term overall survival has stagnated. Exciting developments of gene mutation-targeted therapeutic
agents are now changing the landscape in AML treatment. New agents offer more clinical options for patients and
also confer a more promising outcome. Since Midostaurin, a FLT3 inhibitor, was first approved by US FDA in 2017
as the first gene mutation-targeted therapeutic agent, an array of new gene mutation-targeted agents are now
available for AML treatment. In this review, we will summarize the recent advances in gene mutation-targeted
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Introduction

Acute myeloid leukemia (AML) is a clonal malignancy ori-
ginating from hematopoietic stem cells, characterized by
heterogeneous chromosomal abnormalities, recurrent gene
mutations, epigenetic modifications affecting chromatin
structure, and microRNAs deregulations. Genomic hetero-
geneity, patients’ individual variability, and gene mutations
are few major obstacles among the many factors that im-
pact treatment efficacy for AML patients [1, 2].

Different strategies have been used to treat various
types of cancer in preclinical models [3, 4]. Traditional
chemotherapy using cytotoxic agents in AML treatment
had been the main modality for decades. New molecular
techniques, however, such as next-generation sequen-
cing (NGS) identifying important genetic alterations,
have paved the path for new drug development targeting
those specific gene mutations. Since the past few years,
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the state-of-the-art treatment for AML has evolved rap-
idly: cytogenetic and molecular interactions being more
individualized, the state of minimal residual disease
(MRD) detected by flow cytometry and NGS, and in-
corporation of gene mutation-targeted novel therapies.
In combination with precise clinical diagnosis and de-
tailed risk stratification, gene mutation-targeted new
drug therapies have made breakthrough and promising
progresses for patients with AML [5, 6].

In April 2017, the US Food and Drug Administration
(FDA) approved Midostaurin, a FMS-like tyrosine kinase
3 (FLT3) inhibitor, for AML patients with FLT3 muta-
tions. Midostaurin is the first tyrosine kinase inhibitor
(TKI) approved for AML; and it is also the first drug ap-
proved in a mutation-specific and non—acute promyelo-
cytic leukemia (APL) subtype. Since then, many gene
mutation-targeted therapies for AML have emerged,
such as Enasidenib, an isocitrate dehydrogenase (IDH)2
inhibitor, for relapsed/refractory (R/R) AML with IDH2
mutations [7-9]. The “one-size-fits-all” cytotoxic chemo-
therapy regimen will soon be enhanced or replaced by
more specific targeted treatment in AML.
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Targeted therapy in AML can be divided into 3
groups: Group 1: agents that act on oncogenic effectors
of recurrent AML associated mutations, which include
FLT3 and IDH inhibitors. Group 2: agents that act on
disrupting key cell metabolic or maintenance pathways
without directly damaging DNA or its repair. These in-
clude epigenetic modifiers and agents that directly target
apoptosis. Group 3: agents that act by targeted delivery
of cytotoxic agents, such as ADCs [10]. In this review
article, we will focus on the advances in the gene
mutation-targeted agents, including FLT3 inhibitors,
IDH inhibitors and Smoothened (SMO) inhibitors.

FLT3 inhibitors

FLT3 is a transmembrane ligand-activated receptor tyro-
sine kinase (RTK) which plays an important role in the
early stages of both myeloid and lymphoid lineage devel-
opment. FLT3 ligand binds and activates FLT3 through
various signaling pathways, such as PI3K, RAS, and
STATS5 [11]. FLT3 mutations are found in approximately
30-35% of newly diagnosed AML cases with either in-
ternal tandem duplications (FLT3-ITD) within the juxta-
membrane domain coding region (exons 14 and 15,
[12]) or missense mutations in the tyrosine kinase do-
main (FLT3-TKD) in the activation loop (exon20) [13].
FLT3-ITD and FLT3-TKD type mutations occur in
about 25% and 7-10% of AML patients, respectively
[14-17]. Data have suggested that there are racial and
ethnic disparities in genetic alteration between
Caucasian and Eastern Asian population. Lower propor-
tion of FLT3-ITD mutation and more AML patients
with core binding factor leukemia have been found in
Eastern Asian cohorts [18]. FLT3-ITD mutation had
been considered as a negative prognostic marker, used
for AML risk stratification and disease monitoring via
MRD, with the clinical importance of early detection at
diagnosis and again at relapse [2].

As progresses have been made in understanding the
mechanism of FLT3 gene mutation, TKI agents have
been developed by targeting different points of the ATP
binding site in the intracellular domain of the FLT3
RTK: Type 1 inhibitors, which include Sunitinib, Les-
taurtinib, Midostaurin, Crenolanib, and Gilteritinib [19],
bind to the RTK ATP-binding site in the active con-
formation and the inactive state; Type 2 inhibitors,
which include Sorafenib, Quizartinib and Ponatinib [19,
20], bind to the hydrophobic region in juxtaposition to
ATP-binding domain when RTK is in the inactive state
and prevent receptor activation.

Midostaurin

Midostaurin was approved by the US FDA for AML in-
duction and consolidation based on the RATIFY trial,
which took 13 years to complete [7]. The RATIFY trial
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was the first large multicenter study investigating the
addition of Midostaurin to induction and consolidation
and continued as maintenance therapy for 1 year in pa-
tients not proceeding to allogeneic transplant [9, 21, 22].
Patients with FLT3 mutations, either ITD or TKD, had a
4-year survival of 51.4% on Midostaurin versus 44.2% on
placebo (P=.0074), and the benefit was most pro-
nounced in Nucleophosmin 1 (NPM1) wt and FLT3hieh
patients [9]. In another study, Midostaurin was added to
intensive induction chemotherapy, consolidation and
continued as maintenance in FLT3-ITD AML patients
complete remission (CR) plus complete remission with
incomplete hematologic recovery (CRi) after induction
therapy was observed in 76.4% patients. Event free sur-
vival (EFS) and overall survival (OS) at 2 years were 39
and 34% in younger and 53 and 46% in older patients,
respectively. Propensity score-weighted analysis revealed
a significant improvement of EFS by Midostaurin overall
and in older patients [23].

In a new retrospective exploratory study, multivariate
Cox model for OS using allogeneic hematopoietic stem
cell transplantation (allo-HSCT) in first complete remis-
sion (CR1) as a time-dependent variable revealed treat-
ment with Midostaurin, allo-HSCT, European Leukemia
Net (ELN) favorable-risk group, and lower WBC counts
as significant favorable factors. There was a consistent
beneficial effect of Midostaurin across ELN risk groups
[24]. Midostaurin has been recommended as frontline
therapy for the FLT3 gene mutated AML patients with
either FLT3-ITD or FLT3-TKD [19, 25]. It’s also been
proved cost-effectiveness when Midostaurin was com-
bined with standard chemotherapy in the treatment of
newly diagnosed FLT3-mutated AML patients [26].

Midostaurin is among the least potent FLT3 inhibi-
tors. More potent FLT3 inhibitors are Gilteritinib,
Quizartinib, and Crenolanib [20]. Early phase trials
combining these newer generation FLT3 TKIs with
7 + 3 induction chemotherapy in the frontline setting
have been reported recently with meaningfully higher
response rate [25].

Gilteritinib
Gilteritinib is an orally available small molecule re-
ceptor TKI for the treatment of AML harboring FLT3
mutations. Gilteritinib inhibits FLT3 signaling in cells
expressing FLT3-ITD, TKD mutation FLT3-D835Y
and the double mutant FLT3-ITD-D835Y, thereby in-
ducing apoptosis. Gilteritinib also binds to and in-
hibits the wild-type and mutated forms of anaplastic
lymphoma kinase (ALK), resulting in reduced tumor
cell proliferation in cancer cell types that overexpress
the mutation [27, 28].

In a phase 3 trial with R/R FLT3-mutated AML, the
median OS for the group with single agent Gilteritinib
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was significantly longer than that of the group with
chemotherapy (9.3 months vs. 5.6 months). The median
EFS was 2.8 months in the Gilteritinib group and 0.7
months in the chemotherapy group. The percentage of
patients who achieved complete remission with full or
partial hematologic recovery was 34.0% in the Gilteriti-
nib group and 15.3% in the chemotherapy group. Gilteri-
tinib resulted in significantly longer survival and higher
percentages of CR than salvage chemotherapy among
patients with R/R FLT3-mutated AML [29]. These find-
ings confirm the superior efficacy of Gilteritinib over
chemotherapy for patients with FLT3-mutant AML.
Currently, multiple clinical trials are ongoing to evaluate
the combination of Gilteritinib with other agents and
regimens [25, 30]. These clinical studies supported
Gilteritinib’s approval by US FDA in 2018 as the new
standard therapy for R/R FLT3-mutated AML [31].

Sunitinib

Sunitinib (SU11248) is a small-molecule FLT3 inhibitor
with selectivity for FLT3 and others, such as platelet-
derived growth factor receptors (PDGFR), vascular endo-
thelial growth factor receptor (VEGFR1) 1, VEGFR2, and
KIT [32]. It has both direct anti-tumor and anti-
angiogenic properties [33]. One study found that the sig-
nal transducer and activator of transcription 5 (STAT5)
phosphorylation in patients with FLT3-ITD was also re-
duced [34]. Furthermore, Sunitinib induces G1 phase ar-
rest, increases pro-apoptotic molecule expression, and
decreases anti-apoptotic molecule expression in AML
cells [35].

Intriguingly, Sunitinib shows synergistic effects with
Cytarabine or Daunorubicin in inhibiting proliferation
and survival of primary AML myeloblasts expressing
mutant FLT3-ITD, FLT3-D835V, or FLT3-WT [36].
Several early clinical trials evaluating Sunitinib in com-
bination with chemotherapy had shown some promising
results in phase I/II clinical trials [37, 38], however, due
to high incidence of adverse effects such as blood and
lymphatic system disorders, cardiac disorders, gastro-
intestinal disorders and others, no clinical trials in the
realm of hematological malignancy are actively going on.
Sunitinib has been approved and widely used for treat-
ment of several solid tumors, such as renal cell cancer,
gastrointestinal stromal cell tumor, and neuroendocrine
tumors.

Lestaurtinib

Lestaurtinib (CEP-701) is a multi-targeted TKI that po-
tently inhibits FLT3 tyrosine kinase and induces
hematological remission in AML patients harboring
FLT3-ITD. However, the majority of patients in clinical
trials developed resistance to CEP-701. Although restor-
ation of SHP-1 expression induces sensitivity towards
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CEP-701 and could serve as a target in the treatment of
AML [39], Lestaurtinib failed to demonstrate any overall
clinical benefit in a phase III trial when combined with
intensive chemotherapy in patients with newly diagnosed
FLT3-ITD-mutated AML [25, 40, 41].

Crenolanib

Crenolanib, a potent type I pan-FLT3 inhibitor, is effect-
ive against both ITD and resistance-conferring TKD mu-
tations. ~ While  Crenolanib ~ monotherapy  has
demonstrated clinical benefit in heavily pretreated R/R
AML patients, responses are transient and relapse
eventually occurs [42]. Study on the mechanisms of
Crenolanib resistance has been done by performing
whole exome sequencing of AML patient samples before
and after Crenolanib treatment. Unlike other FLT3 inhibi-
tors, Crenolanib does not induce FLT3 secondary muta-
tions, and mutations of the FLT3 gatekeeper residue are
infrequent. Instead, mutations of NRAS and IDH2 arise
mostly as FLT3-independent subclones. Meanwhile TET2
and IDH1 predominantly co-occur with FLT3-mutant
clones and are enriched in Crenolanib poor-responders.
The other patients have exhibited post-Crenolanib expan-
sion of mutations associated with epigenetic regulators,
transcription factors, and cohesion factors, suggesting di-
verse genetic/epigenetic mechanisms of Crenolanib resist-
ance. Drug combinations in experimental models can
restore Crenolanib sensitivity [42].

Crenolanib was well tolerated in a phase II trial in
combination with 7 + 3 induction therapy in newly diag-
nosed FLT3-mutated AM patients. Addition of Crenola-
nib to induction chemotherapy in patients with
concurrent FLT3 and other mutations, such as NPM1,
DNA methyltransferase 3A (DNMT3A), Runt-related
transcription factor 1 (RUNX1), or Wilms’ tumour 1
(WT1), can overcome the poor prognostic implication of
adverse mutations co-occurring with mutated FLT3 [12].

Ongoing clinical trials are assessing the efficacy of
Crenolanib in combination with intensive salvage
chemotherapy for patients with R/R FLT3 mutant AML
(NCT2626338). Incorporation of Crenolanib into front-
line intensive chemotherapy regimens have resulted in
higher response rates and may eventually replace Midos-
taurin in the upfront setting [43]. Currently, there are 6
registered on-going clinical studies of Crenolanib for
AML patients as of February 2020 (Table 1).

Quizartinib

Quizartinib is a potent and selective type 2 FLT3 inhibi-
tor and has been used as an effective therapy for patients
with FLT3-ITD AML. Quizartinib inhibits FLT3 thereby
dampen oncogenic drive, leading to apoptosis of tumor
cells. Phase 1 study demonstrated efficacy when com-
bined with induction chemotherapy, and when used as
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Table 1 Current clinical trials of Crenolanib for leukemia patients
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Status Lead Institution/Location

ClinicalTrials. gov Identifier  Phase  Enrollment Number Disease Conditons
NCT02298166 3 276 AML

NCT02400255 2 48 AML

NCT02400281 1.2 88 AML

NCT02283177 2 48 AML with FLT3 Mutations
NCT03250338 2 322 R/R AML with FLT3 mutations
NCT03258931 3 510 FLT3 mutated AML

Active, not recruiting  Ulm University Hospital, Germany
MD Anderson Cancer Center, USA
MD Anderson Cancer Center, USA
City of Hope, USA
City of Hope, USA

City of Hope, USA

Active, recruiting
Active, not recruiting
Active, not recruiting
Active, recruiting

Active, recruiting

monotherapy for maintenance therapy in AML patients
after allo-HSCT [44, 45]. Another phase 1 multicenter
dose-escalation study assessing the safety/tolerability of
Quizartinib maintenance post-HSCT in FLT3" AML
demonstrated the safety, with promising results in the
first 13 patients treated and no increase in graft versus
host disease (GVHD) [46]. A phase 2 study demonstrated
the potency and efficacy of Quizartinib amongst FLT3"
R/R AML patients within 1 year of induction therapy, or
who had undergone salvage chemotherapy, or allo-
HSCT [47, 48].

A phase III QUANTUM-R study further substanti-
ated Quizartinib’s efficacy. Quizartinib could be con-
sidered a new standard of care for patients with
rapidly proliferative disease and very poor prognosis
[49]. Multiple clinical trials have proved its efficacy in
R/R AML with FLT3-ITD mutation. Quizartinib re-
sistance has been observed in clinical treatment. Fur-
ther clinical studies are ongoing aiming to reduce
toxicity, increase efficacy by combining with a tar-
geted drug for RUNXI, and identify a predictive re-
sponse biomarker in patients [47, 48, 50].

Strategies on combining Quizartinib with other TKI
agents like Crenolinib, PIM kinase, and MEK inhibitors
should be further explored [51]. When managing pa-
tients on Quizartinib, some special situations need to be
considered for adequate scheduling and tolerability,
bridging to allo-HSCT, and durable remission on main-
tenance therapy [52]. Currently, there are 15 registered
on-going clinical studies of Quizartinib for leukemia pa-
tients as of February 2020 (Table 2).

Sorafenib

The multi-kinase inhibitor Sorafenib has demonstrated
modest efficacy in FLT3" AML as monotherapy. Sorafe-
nib’s effect against AML is similar to that of Sunitinib
[33]. However, resistance limited its use as a single agent
[20, 53]. In combination with standard chemotherapy in
patients under the age of 60, Sorafenib prolongs survival
with modestly increased toxicity [54]. The survival bene-
fit is less clear in patients over the age of 60 when added
to standard induction chemotherapy [55, 56]. Sorafenib
maintenance following allo-HSCT resulted in improved

OS and EFS [57-59]. Sorafenib before transplantation,
Sorafenib maintenance after transplantation, and their
combined application all could improve the outcomes
for patients with FLT3-ITD AML. Sorafenib’s effect on
induction therapy and maintenance following allo-
HSCT lead to superior 3-year EFS and 3-year OS as
induction, re-induction therapy, or post-transplant as
maintenance therapy when compared to no Sorafenib
use. There was superior LFS with any use of Sorafe-
nib with most benefit seeing in the group receiving
both pre-transplant and post-transplant [60]. A phase
2 clinical trial showed Sorafenib and Omacetaxine
Mepesuccinate as a safe and effective treatment for
AML with FLT3-ITD mutation [61].

Allo-HSCT plus Sorafenib maintenance was an effect-
ive strategy to improve recurrence free survival and de-
crease relapse probability in FLT3-ITD AML patients. It
had benefits to AML patients regardless of [TD mutant
ratio, and to those with long ITD length instead of the
short ITD length [62]. A prospective study of patients
with FLT3-ITD AML undergoing allo-HSCT was con-
ducted to evaluate the safety, tolerability, and outcome
of Sorafenib administered peritransplant. Sorafenib dos-
ing was individualized in the post-transplantation setting
according to patient tolerability. Results indicate that
Sorafenib is effective in vivo FLT3 inhibition and yields
encouraging survival results [63].

Another study showed Sorafenib plus intensive
chemotherapy improves survival in patients with newly
diagnosed FLT3-ITD mutated AML regardless of
whether they undergo allo-HSCT [64]. Addition of
Sorafenib to chemotherapy not only nullifies the nega-
tive prognostic impact of higher allele burden, but also
improves outcome of FLT3-ITD mutated AML patients
regardless of the allele burden [65]. Sorafenib therapy is
associated with improved outcomes for FLT3-ITD AML
relapsing after allo-HSCT. Sorafenib combined with
chemotherapy followed by donor lymphocyte infusion
reveals an optimal efficacy [66]. Combination of
Sorafenib with hypomethylating agents (azacitidine or
decitabine) has resulted in high response rates in pa-
tients with FLT3 mutant AML inappropriate for inten-
sive chemotherapy. FLT3 inhibitors are being explored
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Table 2 Current clinical trials of Quizartinib for leukemia patients
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ClinicalTrials. gov  Phase Enrollment  Disease Conditons Status Lead Institution/Location

Identifier Number

NCT04107727 2 281 AML Active, Complejo Hospitalario Universitario de A
recruiting Corufa, Spain

NCT03552029 1 156 AML Active, Ronald Reagan Medical Center, UCLA, USA
recruiting

NCT03735875 1.2 32 AML with FLT3/ITD mutation R/R AML Active, M D Anderson Cancer Center, USA
recruiting

NCT03661307 12 52 AML with TP53 gene mutation/deletion R/R  Active, M D Anderson Cancer Center, USA

AML High risk, R/R MDS recruiting

NCT02668653 3 539 AML Avtive, not University of Florida (UF) Health Shands
recuiting Hospital, USA

NCT04112589 1,2 80 AML Active, Centro Hospitalar e Universitario de
recruiting Coimbra, Portuga

NCT03793478 12 65 AML Active, Loma Linda University Cancer Center, USA
recruiting

NCT03723681 1 18 AML Active, Institute of Hematology and Blood Diseases
recruiting Hospital CAMS, China

NCT04128748 12 52 R/R AML High risk, R/R MDS Active, not M D Anderson Cancer Center, USA
recruiting

NCT01892371 12 200 R/R AML with FLT3 mutation High risk, R/R Active, not M D Anderson Cancer Center, USA

MDS R/R CML recruiting

NCT04047641 2 86 AML R/R AML High risk, R/R MDS Active, M D Anderson Cancer Center, USA
recruiting

NCT04209725 2 34 AML Active, not Colorado Blood Cancer Institute, USA
recruiting

NCT02039726 3 367 AML Active, not City of Hope, USA
recruiting

NCT03135054 2 40 AML with FLT3-ITD mutation Active, The University of Hong Kong, Hong Kong
recruiting

NCT03989713 2 80 AML R/R AML Active, not University Hospital Heidelberg, Germany
recruiting

in combination with other targeted agents [67]. Soraf-  IDH inhibitors

enib has been approved and widely used in solid tu-
mors, such as renal cell cancer, hepatocellular cancer,
etc. [68, 69].

Ponatinib

As the second generation TKI, Ponatinib has been
indicated for patients with TKI resistant chronic
myeloid leukemia (CML) [70]. Recent results showed
Ponatinib also comprises a high capability to inhibit
constitutively activated FLT3. Ponatinib is able to
overcome resistance to other TKI (e.g., Sorafenib) if
it is conferred by additional point mutations of
FLT3-ITD. It represents a promising compound in
FLT3-ITD positive AML as well [71]. No systematic
investigation of Ponatinib in AML patients has yet
presented [72]. As of February 2020, there are 10
on-going clinical studies for Ponatinib mainly in
CML patients from different research centers
(Table 3).

Mutations in the IDH gene, specifically R132 in IDHI,
R140 and R172 in IDH2, are substrates for targeted ther-
apy [73]. IDH1 and IDH2 are commonly mutated in cy-
togenetically normal AML (IDH1 6-16%, IDH2 8-19%).
They impart a critical role in cellular metabolism by
catalyzing the conversion of alpha-ketoglutarate to the
oncometabolite R enantiomer of 2 hydroxyglutarate (R-
2HG) [7, 73-75]. R-2HG inhibits cellular differentiation
and promotes proliferation via TET2 inhibition and
downstream effects of demethylation in vitro. It has a
pivotal role of IDH mutations in leukemogenesis [76,
77]. Though currently not a component of the ELN
guidelines for prognostication, IDH1/2 assessment
should now be routinely done in AML patients, due to
the availability of targeted therapy with the IDH1 and
IDH2 inhibitors, Ivosidenib and Enasidenib [2].

IDH inhibitors (IDH-i) are used in patients with AML
who have mutations in either IDH1 or IDH2 genes,
causing abnormal maturation patterns in white blood
cells, thus leading to leukemia [78]. Two targeted IDH-i:
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Table 3 Current clinical trials of Ponatinib for leukemia patients
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ClinicalTrials. gov  Phase Enrollment  Disease Conditons Status Lead Institution/Location

Identifier Number

NCT02398825 2 78 CML Active, Azienda Ospedaliero Universitaria Ospedali
recruiting Riuniti Umberto, Italy

NCT04048564 Observational 150 CML Active, CHU SUD Reunion GHSR, France
recruiting

NCT03807479 2 54 CML Active, University Hospital RWTH Aachen,
recruiting Germany

NCT02627677 3 44 CML Active, not Clinigues Universitaire Saint Luc, Belgium
recruiting

NCT01641107 2 44 BCR-ABL+ ALL Active, not S.O.C. di Ematologia, Italy
recruiting

NCT03934372 1.2 60 AML, ALL All Phase CML Solid Tumors  Active, UZ Gent, Belgium
recruiting

NCT03933852 Observational 100 CML Active, University Hospital Jena, Germany
recruiting

NCT03678454 Observational 125 CML Ph +ALL Active, ZNA Stuyvenberg, Belgium
recruiting

NCT03147612 2 60 Accelerated Phase CML BCR-ABL1+ R/ Active, M D Anderson Cancer Center, USA

R ALL recruiting
NCT01746836 2 50 Chronic Phase CML BCRABL1+ Active, not M D Anderson Cancer Center, USA
Recurrent CML BCRABL1+ recruiting

Ivosidenib and Enasidenib, blocking the proteins IDH1
and IDH2, respectively. The inhibition leads the
leukemic cells to normal maturation and differentiation,
thereby reducing immature blast counts and increasing
the percentage of mature myoblasts [79, 80]. A safety
concern with IDH-i is the possible side effect known as
differentiation syndrome, the release of inflammatory
cytokines from cancerous promyelocytes, referred to
“cytokine storm”. Cytokine storm is serious and
potentially fatal but can be reversed by stopping the
offending agent [81].

Ivosidenib

IDH1 inhibitor Ivosidenib demonstrated overall safety
and efficacy amongst patients with IDH1-mutated R/R
AML leading to FDA approval [8]. In a phase 1 clinical
trial, Ivosidenib monotherapy was well tolerated and in-
duced durable remissions and transfusion independence
in patients with newly diagnosed AML. IDH1 mutation
clearance was seen in 9/14 patients achieving CR + CRh
(5/10 CR, 4/4 CRh) [82]. Ivosidenib benefits a group of
patients with poor prognosis and limited options. Al-
though reports have revealed acquired resistance for
these mutant IDH inhibitors, combination treatment can
overcome this problem [83, 84]. Interestingly, amongst
IDH1-mutated myelodysplastic syndrome (MDS) pa-
tients who were refractory to therapy with hypomethy-
lating agents, Ivosidenib appeared to have a substantial
efficacy, though the subgroup was small (n =12) [8]. Ac-
cumulating data has indicated that targeted therapy
using Ivosidenib may represent an encouraging

therapeutic option in patients with acute undifferenti-
ated leukemia and IDH1 mutations [85]. Currently, there
are 10 registered active clinical studies for Ivosidenib in
AML patients at different research centers (Table 4).

Enasidenib

Enasidenib is a FDA approved agent in the treatment of
R/R AML. As the first-in-class mutant IDH2 inhibitor,
Enasidenib has demonstrated safety and efficacy in phase
1/2 dose escalation and dose-expansion study [7]. Enasi-
denib was well tolerated and induced molecular remis-
sions and hematologic responses in patients with AML
for whom prior treatments had failed [86]. In clinical tri-
als, Enasidenib has demonstrated remarkable activity in
patients with mutated IDH2 [87]. Enasidenib has shown
clinical activity in patients with R/R AML. Inducing dif-
ferentiation of myeloblasts, not cytotoxicity, seems to
drive the clinical efficacy of Enasidenib [8]. Recent re-
search results have demonstrated Enasidenib motivated
human erythroid differentiation independent of IDH2
and proved as a promising therapeutic agent for improv-
ing anemia. These results provided the basis for clinical
trials using Enasidenib to decrease transfusion depend-
ence in a wide array of clinical contexts [88]. Enasidenib
is currently approved for the treatment of R/R AML at a
dose of 100 mg oral daily. Study demonstrated that Ena-
sidenib induces durable remissions in older patients with
newly diagnosed AML. Oral, outpatient targeted treat-
ment with Enasidenib may benefit older adults with
newly diagnosed IDH2-mutant AML who are not candi-
dates for cytotoxic regimens [89].
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Table 4 Current clinical trials of Ivosidenib for leukemia patients
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ClinicalTrials. gov  Phase Enrollment  Disease Conditons Status Lead Institution/Location
Identifier Number
NCT04250051 1 25 R/R AML R/R MDS R/R MPN Not yet Northwestern University, USA
recruiting
NCT03839771 3 968 AML MDS EB-2 Active, Erasmus MC, Netherland
recruiting
NCT03173248 3 392 Newly Diagnosed AML AML Arising From MDS  Active, City of Hope, USA
recruiting
NCT02677922 1.2 131 AML Active, not City of Hope, USA
recruiting
NCT04176393 1 30 R/R AML Active, Institute of Hematology and Blood
recruiting Diseases Hospital, CAMS, China
NCT02632708 1 153 Newly Diagnosed AML AML Arising From MDS, Active, not City of Hope, USA
AHD AML Arising After Exposure to Genotoxic — recruiting
Injury
NCT04044209 2 45 MDS AML Active, not Yale Cancer Center, USA
recruiting
NCT03471260 12 48 High risk MDS MPN R/R AML Active, Northwestern Medicine Cancer Center
recruiting Delnor, USA
NCT03503409 2 68 MDS AML Active, CH Angers, France
recruiting
NCT02074839 1 291 R/R AML Other IDH1 mutated+ Hematologic Active, Birmingham, USA
Malignancies MDS recruiting

Older patients with AML are less likely to benefit from
intensive chemotherapy. Instead, they benefit more from
lower-intensity therapies and from newly available
targeted AML treatments including Enasidenib [90].
Furthermore, even in the absence of a conventional CR,
lower-intensity therapies may provide meaningful
clinical benefit, including improved survival and quality
of life, by inducing hematologic improvement and trans-
fusion independence [90]. Adverse effects including in-
direct hyperbilirubinemia and IDH inhibitor induced
cytokine storm which can be life threatening and should
be identified and treated promptly [80, 87].

. Given the fact that Enasidenib is highly specific in-
hibitor acting on an early stable mutation, it is conceiv-
able that this agent could be of more value if used in
combination with other targeted agents. The proper role
for single mutation targeting in AML therapy needs to
be carefully considered [91].

Olutasidenib

Another IHD inhibitor named Olutasidenib, originally
designed for glioma and glioblastoma, has been explored
for AML and MDS treatment recently. Preclinical data
showed Olutasidenib as a potent, orally bioavailable,
brain penetrant, and selective IDHI1 inhibitor. It has
excellent ADME/PK properties and reduces 2-
hydroxyglutarate levels in IDH1 mutation xenograft
tumor model [92]. The Phase 1 study (NCT02719574)
assessed the safety, PK/PD, and clinical activity of in
AML or MDS patients with IDH1 mutation. The

Olutasidenib study results have shown favorable safety
and clinical activity in IDH1 mutant R/R AML as single
agent with ORR of 41% and in a combination regimen
with ORR of 46%, and durable disease control. Olutasi-
denib induces deep responses with IDH1 mutation
clearance in a subset of treated patients [93]. Meanwhile,
Olutasidenib has shown favorable safety profile and clin-
ical activity in IDH1 mutant MDS, with an ORR rate of
59% and durable disease control. Phase 2 trial is ongoing
as single agent and in combination with Azacitidine [94].
This agent may have good potential for AML and MDS
treatment; however more clinical researches need to be
explored.

Hedgehog signalling pathway inhibitors
The Hedgehog (Hh) signalling pathway is activated in
many types of cancers including AML and naturally a
promising target for therapeutic development. SMO
plays very important role in the Hh signalling pathway
and has been shown to be critical for acute leukemia
disease progression. Approaches to inhibit Hh signalling
for therapeutic benefit have focused primarily on SMO
inhibitors. As a SMO antagonist, Glasdegib, an oral in-
hibitor of the Hedgehog signalling pathway, has been
developed in clinical trials [95] in combination with
standard chemotherapy for patients with AML or high-
risk MDS [96, 97].

Glasdegib was approved in USA in November 2018 for
use with low-dose cytarabine for treatment of patients
with newly-diagnosed AML over age of 75 years or with
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Table 5 Current clinical trials of SMO inhibitors for leukemia patients

Agents ClinicalTrials. gov Phase Enrollment Disease Status Lead Institution/Location
Identifier Number Conditons
Glasdegib ~ NCT03416179 3 720 AML Recruiting UCLA, USA
NCT04051996 2 46 AML Recruiting Yale Cancer Center, USA
NCT02367456 2 73 AML, MDS Active, not University of Alabama at Birmingham, USA
recruiting
NCT03390296 1/2 138 R/R AML Recruiting M D Anderson Cancer Center, USA
NCT02038777 1 49 AML Recruiting Japanese Red Cross Nagoya First Hospital,
Japan
NCT01546038 2 255 AML Completed University of Alabama at Birmingham, USA
Vismodegib NCT02593760 1 19 Myelofibrosis Completed Florida Cancer Specialists, USA
Sonidegib  NCT01826214 2 70 Acute Leukemia  Completed Duke University Medical Center, USA
NCT01456676 1 11 ML Completed Novartis Investigative Site, Canada
NCT02129101 1 63 CML de novo Completed Mayo Clinic, USA
MDS
comorbidities that precluding intensive induction engineered T cells, have been developed or under inves-

chemotherapy. It is currently undergoing clinical devel-
opment for use in other malignancies, including MDS,
in various countries worldwide [98]. More recently,
similar SMO inhibitors such as Vismodegib [99, 100],
Sonidegib [100, 101] and Erismodegib [99, 102] are
under-development in clinical trials for patients with
AML and MDS, in combination with chemotherapies
such as Azacytidine, a hypomethylating agent. Early re-
sults demonstrated promising responses in patients with
AML and MDS. As of March 2020, there are 10 regis-
tered recruiting/completed clinical trials with Glasdegib,
Vismodegib, Sonidegib and Erismodegib from the www.
ClinicalTrials.gov website (Table 5).

Conclusion and future perspectives

Advances in molecular characterization of AML have
provided important information for diagnosis, risk strati-
fication, disease monitoring, and optimization of thera-
peutic strategies. Novel therapies for AML, including
refinements of conventional cytotoxic chemotherapies,
genetic and epigenetic targeted drugs, as well as
immunotherapies, have significantly improved patient
outcomes in recent years [103—105]. Newer generation
of TKIs, such as Cabozantinib, Sel24-B489, G-749, AMG
925, TTT-3002, and FF-10101 may overcome disease
resistance, and likely will further improve patients’
outcomes [105]. While the genomic complexity and the
interplay of the many different molecular abnormalities
in AML poses a huge challenge to successful translation
into more accurate risk stratification and targeted
therapy [18, 104, 105], opportunities do arise; various
new agents, such as SMO inhibitors, immune checkpoint
inhibitors, metabolic and pro-apoptotic  agents,
monoclonal or bispecific T-cell engager antibodies,
antibody-drug conjugates and chimeric antigen receptor-

tigation as new therapies for AML [106, 107]. Molecu-
larly, targeted therapies have changed the landscape of
AML treatment and benefited patients with improved
survival and quality of life. Yet, more needs to be done
to make our patients live better and longer.
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