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Abstract

Background: Identifying the temporal trends of kidney cancer (KC) incidence in both the past and the future at
the global and national levels is critical for KC prevention.

Methods: We retrieved annual KC case data between 1990 and 2017 from the Global Burden of Disease (GBD)
online database. The average annual percentage change (AAPC) was used to quantify the temporal trends of KC
age-standardized incidence rates (ASRs) from 1990 to 2017. Bayesian age-period-cohort models were used to
predict KC incidence through 2030.

Results: Worldwide, the number of newly diagnosed KC cases increased from 207.3 thousand in 1990 to 393.0
thousand in 2017. The KC ASR increased from 4.72 per 100,000 to 4.94 per 100,000 during the same period.
Between 2018 and 2030, the number of KC cases is projected to increase further to 475.4 thousand (95% highest
density interval [HDI] 423.9, 526.9). The KC ASR is predicted to decrease slightly to 4.46 per 100,000 (95% HDI 4.06,
4.86). A total of 90, 2, and 80 countries or territories are projected to experience increases, remain stable, and
experience decreases in KC ASR between 2018 and 2030, respectively. In most developed countries, the KC
incidence is forecasted to decrease irrespective of past trends. In most developing countries, the KC incidence is
predicted to increase persistently through 2030.

Conclusions: KC incidence is predicted to decrease in the next decade, and this predicted decrease is mainly
driven by the decreases in developed countries. More attention should be placed on developing countries.
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Introduction
Kidney cancer (KC) develops from the renal paren-
chyma, and approximately 70% of KC cases are clear
renal cell carcinomas [1]. According to the latest statis-
tics, there were more than 400 thousand newly

diagnosed KC cases and nearly 180 thousand KC-related
deaths in 2018 [2]. The KC incidence is highly heteroge-
neous worldwide, with North America having the high-
est incidence, followed by Western Europe and Australia
[3]. In South America, Africa, and Asia, the KC inci-
dences are relatively low [4, 5]. Within continents, KC
incidence rates also differ by country. Across Europe,
the incidence ranged more than fourfold: from 4.5 per
100,000 in Albania to approximately 16.8 per 100,000 in
the Belarus [6]. Additionally, the temporal trends of KC
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incidence vary worldwide [7]. For example, in the USA,
the rate was 8.0/100,000 in males in 1975 and increased
steadily to 13.4/100,000 in 2012. In contrast, Austria and
Poland have reported significantly decreasing rates since
the early 2000s [7].
Many factors, including lifestyle changes, exposure to

risk factors, and expanding coverage of tumor detection
and reporting, have contributed to the temporal trends of
KC incidence. Incidence trends can serve as a good indica-
tor of shifting disease patterns and changing risk factors
within a population [8] and are of importance for KC pre-
vention. More importantly, since the marked alterations
in risk factors over the last decades [9, 10], KC incidence
might be subsequently changed in the near future. Further
knowledge of the future trends of KC incidence is there-
fore critical for understanding and planning in regard to
this disease burden and permits the modification of the
national health system to respond to future challenges.
Previous studies have described KC incidence, but these
studies were retrospective in nature and consequently
lacked insight into the future KC burden [5, 11–13]. Add-
itionally, the number of cancer cases or deaths is the total
number of people within a population who have either
been diagnosed with or die from cancer, and this is greatly
influenced by the size and age composition of the popula-
tion. This information is critical to understanding and
planning for the disease burden. To address this limita-
tion, we used a Bayesian age-period-cohort (APC) model
on KC incidence at the global and nation levels between
1990 and 2017 to project both the future number of can-
cer cases and incidence through 2030. Our predictions are
of importance for the re-allocation of limited medical re-
sources and to update the prevention strategies for KC.

Materials and methods
Study data
We collected annual KC case data between 1990 and
2017 by sex, region (195 countries or territories), age
(from under 5 to ≥80 years in 5-year intervals) from the
Global Burden of Disease (GBD) online query tool [14].
The general procedures for data collection and process-
ing in the GBD study have been detailed and validated
elsewhere [15, 16]. In brief, the annual number of newly
diagnosed KC cases was sought from individual cancer
registries or aggregated databases of cancer registry data
such as “Cancer Incidence in Five Continents (CI5)”,
EUREG, SEER, or NORDCAN. The ICD-10 codes (C62-
C62.92, Z80.43, and Z85.47-Z85.48) and ICD-9 codes
(186–186.9, V10.47-V10.48, and V16.43) were used to
identify KC cases [15]. The national sociodemographic
index (SDI), a composite index measuring average
achievement in several basic dimensions of country de-
velopment, was collected from the GBD database. We
also retrieved the corresponding population data for

each country or territory by year (1990–2030), sex, and
age (from under 5 to ≥80 years in 5-year intervals) from
the United Nations Department of Economics and Social
Affairs (DESA) Population Division. Only 185 countries
or territories were available at population data.

Statistical analysis
Model selection
Several models, including the Joinpoint model, age-
period-cohort (APC) model, Nordpred model, and
Bayesian APC model, have been previously used to pre-
dict cancer incidence based on population data [17–20].
We first conducted a model selection in terms of model
prediction performance. KC case data from the USA,
France, Brazil, Indonesia, and Vietnam, in which the KC
incidence ranged from 2.5 per 100,000 to 13.0 per 100,
000, were retrieved. These case data were then split into
two intervals (1990–2012 and 2013–2017). We used the
data between 1990 and 2012 to train the five prediction
models (i.e., APC, Bayesian APC, Nordpred, nature-
spline, and Joinpoint). KC incidence data between 2013
and 2017 were predicted and compared with the obser-
vational values in the same period. The prediction error
rate was applied to assess the model performance. The
error rate was calculated as ðŷ−yÞ=y, where ŷ and y de-
note the prediction values and the observational values,
respectively. The results of model selection are shown in
S-Figure 1. Because of the relatively lower error rate of
the Bayesian APC model, we used it to predict the KC
cases and incidence rates through 2030.
The rationalities of the Bayesian APC model have been

previously described [21]. Briefly, since the expectation
that effects adjacent in time might be similar, the
second-order random walk (RW2) model with inverse-
gamma prior distribution was used for age, period and
cohort effects. RW2 assumes an independent mean-zero
normal distribution of the second differences of all time
effects. This is a natural target for smoothing since the
second differences in APC models are identifiable. Con-
sider the age effects, for which the RW2 prior is identi-
fied as follows:

f a κajð Þ∞κa I−22 exp −
κa
2

XI

i¼3

ai−2ai−1 þ ai−2ð Þ2
 !

¼ κa
I−2
2

exp −
1
2
aTQa

� �

Q ¼ κa

1 2 1
−2 5 −4 1
1 −4 6 −4 1

O O O O O
1 −4 6 −4 1

1 −4 5 −2
1 −2 1

2
666666664

3
777777775

Du et al. Biomarker Research            (2020) 8:16 Page 2 of 10



where i denotes the age index that ranges from 1 to I =
17 in this study, because we projected the cancer inci-
dence of people aged 0 to 84, and age was divided into
17 groups. Moreover, κα

− 1 denotes the variance param-
eter. Note that Q is rank deficient. To complete the
RW2 model specification, we use the usual conjugate
hyperprior for precision, κα ~ Gamma(α, λ). This leads
to the full conditional κα|α ~ Gamma(α + 0.5 rank(Q),
λ + 0.5α’Qα), which may be directly simulated [20]. In
this study, we used the parameter values α = 0.5, 1, and
1 and λ = 0.0005, 0.00005, and 0.00005 for age, period,
and cohort effects, respectively. The World-2000 popula-
tion was used to standardize the KC incidence rates. To
ensure the smoothness of predictions, countries or terri-
tories that experienced a striking fluctuation in KC case
numbers within a small time interval were excluded. A
total of 172 countries or territories were finally included.

Quantifying the KC incidence trends
The average annual percentage change (AAPC) was used
to quantify the temporal trends of KC age-standardized
incidence rates (ASRs) in 1990–2017 and 2018–2030,
which indicate the past trends and future trends, re-
spectively. A regression line was fitted to the natural
logarithm of the rates, i.e., y = α + βx + ɛ, where y = ln
(ASR) and x = calendar year, and the AAPC was calcu-
lated as 100 × (exp(β)-1) [22]. To overcome over disper-
sion, the AAPC of 2018–2030 was calculated with the
inverse of the standardized error (i.e., 1/se) of the esti-
mated incidence rate as the weights in the regression
models [20].

Sensitivity analysis
Because the KC case data in the GBD database were es-
timates from surveillance data instead of the surveillance
data itself [23], we conducted a sensitivity analysis to
verify the robustness of the prediction results derived
from our models. Herein, we collected the KC case data
from the Cancer Incidence in Five Continents plus
(CI5p) database. Bayesian APC model was used to pre-
dict the KC cases and incidence rates based on the
surveillance data from CI5p database [24]. Cancer sur-
veillance data that covering more population and having
a longer time span were preferable. Finally, data from
Australia (from 1993 to 2012 and covering 7 cancer
registries), Spain (from 1993 to 2010 and covering9 can-
cer registries), France (from 1998 to 2010 and covering 9
cancer registries), Italy (from 1998 to 2010 and covering
8 cancer registries), and the USA (from 1990 to 2012
and covering 9 cancer registries) were used. All statis-
tical analyses were conducted in the R program (R core
team, V3.5.1). A P value less than 0.05 was deemed sta-
tistically significant.

Results
KC case numbers and incidence, 1990–2017
Worldwide, the number of newly diagnosed KC cases in-
creased from 207.3 thousand in 1990 to 393.0 thousand
in 2017, and the KC ASR increased from 4.72 per 100,
000 to 4.94 per 100,000 during the same period
(AAPC = 0.14, 95% confidence interval [CI] 0.08, 0.20)
(Table 1; Figs. 1 and 2). The case numbers increased in
both sexes (Table 1; Fig. 1). The ASR increased signifi-
cantly among males (AAPC = 0.38, 95% CI, 0.30, 0.46).
In contrast, a significant decrease in ASR was detected
among females (AAPC = − 0.26, 95% CI -0.30, − 0.23).
The KC case numbers increased in all age groups, with
the exception of people aged 0–19 years (Table 1; Fig. 3).
The most pronounced increase was found in older
people (≥ 65 years), among whom the case number in-
creased by more than 100 thousand between 1990 and
2017. At the national level, the highest KC ASR was
found in Uruguay (16.15 per 100,000), followed by
Slovakia, Iceland, and the Czech Republic in 2017
(Fig. 4a). During the study period, a total of 134, 8, and
30 countries or territories experienced increases,
remained stable, and experienced decreases in KC ASR,
respectively (Fig. 4c; S-Table 1). The greatest increase
was detected in Armenia (AAPC = 6.24, 95% CI 5.12,
7.36), followed by Bulgaria and Belarus (Fig. 4c; S-Table
1). The most pronounced decrease was found in Sri
Lanka (AAPC = − 2.71, 95% CI -3.85, − 1.56), followed
by Trinidad and Tobago and Qatar (Fig. 4c; S-Table 1).

KC case numbers and incidence, 2018–2030
Between 2018 and 2030, the KC case number will fur-
ther increase to 475.4 thousand (95% highest density
interval [HDI] 423.9, 526.9) (Table 1; Fig. 1). The KC
ASR will decrease slightly to 4.46 per 100,000 (95% HDI
4.06, 4.86) during the same period (AAPC = − 0.97, 95%
CI -0.99, − 0.95) (Table 1; Fig. 2). A decreasing trend is
expected for both sexes, although the case numbers will
still increase (Table 1; Fig. 2). The case numbers are pre-
dicted to decrease for people aged 0–19 years and 20–
39 years between 2018 and 2030. However, a persistent
increase is expected for people aged 40–64 years and ≥
65 years (Table 1; Fig. 3). S-Tables 2 and 3 show the pre-
dicted KC case numbers and ASRs at the national level.
Briefly, the case numbers will increase in all 172 coun-
tries or territories from 2018 to 2030. The temporal
trends of KC ASR varied from country to country. In
2030, the highest KC ASR will be found in Uruguay
(17.71 per 100,000), followed by the USA and Iceland
(Fig. 4b; S-Table 3). A total of 90, 2, and 80 countries or
territories will experience increases, remain stable, and
experience decreases in KC ASR between 2018 and 2030
(Fig. 4d; S-Table 1). The greatest increase is expected in
the United Arab Emirates (AAPC = 3.68, 95% 3.63, 3.73),
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followed by Burkina Faso and Ghana. The most pro-
nounced decrease is expected in Ukraine (AAPC = −
6.62, 95% CI -6.65, − 6.58), followed by Croatia and
Slovakia (Fig. 4d; S-Table 1).

Correlations between past trends and future trends of KC
incidence
Between 1990 and 2030, 18 and 72 countries or territor-
ies experienced a continuous decrease and increase in
KC ASR, respectively. Ten countries or territories expe-
rienced a decrease in the past but will experience an un-
favorable increase in the future. For example, we found
that the decreasing trend of KC ASR will be reversed in
the USA after 2017. In contrast, a total of 61 countries
or territories will experience a significant decrease in KC
ASR in the future despite the past increases in these re-
gions. Figure 5 displays the correlations between past
trends and future trends of KC ASR. No significant asso-
ciation was found when taking all countries into consid-
eration as a whole (ρ = 0.044, P = 0.566). However, a
significant negative association was detected for coun-
tries with a high SDI (ρ = − 0.320, P = 0.009), which
means that most developed countries will undergo a fa-
vorable decrease in KC ASR between 2018 and 2030. In
contrast, for countries with low SDI, a significant posi-
tive association was found (ρ = 0.665, P = 0.005), which
means that past trends will remain in the future in most
countries.
The results of the sensitivity analysis are shown in S-

Figure 2. Generally, the predictions based on the GBD
data and CI5plus data were comparable in all five coun-
tries. The predicted trends of KC ASR based on GBD
data were similar to these based on CI5plus data, al-
though the ASR values differed to some extent. These
disparities were mainly ascribed to the differences in
population coverage rate between these two databases.

Discussion
Kidney cancer (KC) is a malignancy whose incidence
varies widely worldwide. Although KC incidence is rela-
tively low compared to bladder and prostate cancer inci-
dence rates, KC is of particular relevance in certain
regions, such as Europe and North America, because of
locally high incidence rates and significantly increasing
rates in most countries in recent decades [5, 13, 15]. In
the current study, we used GBD data to both describe
the temporal trends of KC incidence over the last three
decades and predicted its future trends in the next dec-
ade at the global and national levels. Globally, the num-
ber of KC cases is expected to increase consistently from
1990 through 2030, whereas the KC ASR is expected to
decrease after 2017. The future decreasing trend was
consistent in both sexes and in approximately half of all
countries or territories. Of note, more than half of coun-
tries or territories, particularly developing regions, are
expected to experience a significant increase in KC ASR
between 2018 and 2030. These unfavorable trends might
constitute a major obstacle for KC management and pre-
vention in the near future.
The established risk factors, both environmental and

genetic, for KC have been widely investigated and well
documented [4, 25]. The impact of smoking on KC risk
is modest, with an approximate 30% increased risk in
current smokers and a 15% increased risk in former
smokers compared with the risk among never smokers
[26]. In developed countries, it is estimated that 6 and
24% of kidney cancer deaths are a result of tobacco
smoking among females and males, respectively [13].
Fortunately, these proportions were shown to have de-
creased in the last decade, which was mainly ascribed to
the “smoke-free” campaign in these countries [27, 28].
In contrast, overweight or obesity, another established
risk factor for KC, has increased strikingly over the past

Table 1 The case numbers and incidence rates of kidney cancer between 1990 and 2030 at the global level

1990 2017 2030 AAPC (95% CI) of ASR

No. of cases
(× 1000)

ASR
(/100,000)

No. of cases
(×1000)

ASR
(/100,000)

No. of cases (×1000)
(95% HDI)

ASR (/100,000)
(95% HDI)

1990–2017 2018–2030

Overall 207.3 4.72 393.0 4.94 475.4 (423.9, 526.9) 4.46 (4.06, 4.86) 0.14 (0.08, 0.20)* −0.97 (−0.99, −0.95) *

Sex

Male 114.6 5.65 240.8 6.38 298.1 (270.7, 325.6) 5.81 (5.29, 6.32) 0.38 (0.30, 0.46)* −0.82 (−0.84, − 0.80)*

Female 92.7 3.96 152.3 3.68 187.4 (171.3, 203.4) 3.39 (3.11, 3.67) −0.26 (− 0.30, − 0.23)* −0.73 (− 0.75, − 0.72)*

Age yearsa

0–19 27.0 – 24.4 – 18.4 (15.5, 21.4) – – –

20–39 17.0 – 23.3 – 21.7 (19.7, 23.7) – – –

40–64 90.3 – 171.5 – 189.6 (172.5, 206.7) – – –

65+ 73.0 – 173.8 – 248.8 (226.4, 271.3) – – –

ASR Age-standardized incidence rate, AAPC Average annual percentage change, CI Confidence interval, HDI Highest density interval
a, for each age group, only the number of cancer cases is shown because the ASR was not available when the age was grouped
*, P < 0.001
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Fig. 1 The increasing trends in the numbers of kidney cancer cases between 1990 and 2030 at the global level by sex (a, both sexes; b, male; c,
female). The error bar denotes the 95% highest density interval (HDI) of the prediction values
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four decades [29, 30]. Moreover, the global adult per-
capita alcohol consumption increased from 5.9 L to 6.5 L
and is forecasted to reach 7.6 L by 2030 [31]. These
alarming increases might drive an unexpected increase
in KC incidence rates worldwide. For example, the KC
incidence experienced an unfavorable reversal in the
USA after 2017, despite the prior decrease. Additionally,
the KC incidence trend was also predicted to be increas-
ing in both the UK and Germany, whereas the incidence
trend in the surrounding countries was decreasing. We
speculated that this increase might be attributed to the

following reasons: 1) the dramatic increases in over-
weight and obesity and alcohol use [32, 33]; 2) immi-
grants from Africa and Asia might contribute to some
extent [34]; and 3) the increase among blacks, especially
in the USA, might surpass the decrease among whites
[7]. The underlying causes need further investigation,
and the unexpected increase indicates that KC remains a
hard-to-ignore health concern in those highly developed
countries.
For most countries in Europe and Australia, we ob-

served a favorable decrease in KC incidence after 2017,

Fig. 2 The temporal trends of age-standardized incidence rates (ASRs, per 100,000) of kidney cancer between 1990 and 2030 at the global level
in both sexes (a), males (b), and females (c). The open dots represent the observational values from GBD dataset, and the brick red shadow
denotes the 95% highest density interval of prediction values. The predictive mean value is shown as a black solid line. The vertical dashed line
indicates where the prediction starts
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which might largely drive the global declining trend. The
rising incidence of KC over the last decades in Western
populations has been attributed to the increased use of
imaging techniques, which can result in incidental find-
ings of small renal masses and has been reported to con-
tribute as much as 50% to the overall incidence [7, 35].
The declining trends therefore might be ascribed to not
only the reduction in risk factors but also to the plateau
of imaging utilization. Although a relatively low
incidence rate was observed, a consistent increase was
observed in most countries in Latin America, Africa,
South Asia, and Southeast Asia from 1990 to 2017. This
increase was predicted to remain through 2030. We
speculated that this increase might be partly explained
by the following causes: 1) the increasing KC detection
rates and reporting rates [7]; 2) the growing population,
particularly the aging population [20]; 3) shifting trend
toward the adoption of Western diets, change in occupa-
tional patterns, increased high-risk behaviors (e.g., exces-
sive calorie intake and physical inactivity), and changes
in established cancer risk factors (e.g., smoking and
obesity) [20, 36]; and 4) the increasing prevalence of

chronic kidney diseases [37, 38]. Given the persistent in-
crease, KC might be one of the main public health con-
cerns in the near future in countries that previously had
a lighter disease burden.
Our study has limitations. First, the GBD data were es-

timates from mathematical models based on surveillance
data rather than surveillance data itself. However, the
GBD study provides global-scale data and offers us an
unprecedented opportunity to explore the global disease
burden. Additionally, to ensure the robustness of our
predictive results, we conducted sensitivity analyses
based on observations from the CI5plus database.
Whereas only five countries were included to validate
the prediction values because of the limited data avail-
ability. This incomplete validation might limit the clin-
ical value of our study. Second, the temporal trends of
KC incidence in both the past and the future might be
partly influenced by the detection and reporting rates,
which reflect the quality of cancer registry data for each
country. Cancer registry data can be biased in multiple
ways. For example, changes between coding systems can
lead to artificial differences in disease estimates;

Fig. 3 The changing trends in the number of kidney cancer cases between 1990 and 2030 by age (a, 0–19 years; b, 20–39 years; c, 40–64 years; d,
≥65 years). The vertical dashed line indicates where the prediction starts
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Fig. 4 The global distribution and the average annual percentage changes (AAPCs) in age-standardized incidence rates (ASRs, per 100,000) of
kidney cancer at the national level. (a ASR of kidney cancer in 2017; b ASR of kidney cancer in 2030; c AAPC of kidney cancer ASR between 1990
and 2017; d AAPC of kidney cancer ASR between 2018 and 2030)

Fig. 5 The correlations between the average annual percentage changes (AAPCs) in kidney cancer incidence in 1990–2017 and that in 2018–
2030 at the national level, by sociodemographic index (SDI). The ρ and P values were derived from Pearson correlation tests
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however, this bias has been adjusted by mapping the dif-
ferent coding systems to the GBD causes. Misclassifica-
tion of metastatic sites as primary cancer can lead to
overestimation of cancer sites that are common sites for
metastases such as the brain or liver. Third, the dearth
of histological information of KC in the GBD database
prevented us from pinpointing the KC incidence trends
by histological subtype. Despite these limitations, using
the most up-to-date data and advanced modeling strat-
egies, our study provides a comprehensive understand-
ing of KC incidence from the past to the future.

Conclusions
In summary, the KC incidence was predicted to decrease
in the next decade. However, both the past and the fu-
ture trends of KC incidence were highly heterogeneous
from country to country. In most developed countries,
the KC incidence is forecasted to decrease irrespective of
past trends. In most developing countries, the KC inci-
dence is expected to increase persistently through 2030.
The long-term best practice approach must include the
primary prevention of smoking and obesity, alongside
careful monitoring of trends using high-quality
population-based cancer registries and corresponding
national registration sources.
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