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LncRNA profile study reveals a seven-

lncRNA signature predicts the prognosis of
patients with colorectal cancer
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Abstract

Background: The prognosis of colorectal cancer (CRC) is still challenging to evaluate or predict. Recently, long non-
coding RNAs (lncRNAs) have been found to play an important role in tumorigenesis and prognosis, however, few
lncRNAs have been identified in CRC progression. We aimed to establish a lncRNA signature to improve prognosis
prediction of CRC.

Methods: In the present study, we profiled lncRNA expression with a lncRNA-mining approach in two CRC data
sets from Gene Expression Ominus (GEO) (GSE39582, N = 557 and GSE17538, N = 200). LncRNAs were analyzed to
determine a prognostic signature by Cox regression and Robust likelihood-based survival model. We identified
seven lncRNAs that significantly associated with the disease free survival (DFS) in the training group. A risk score
formula was constructed to evaluate the performance of this lncRNA panel.

Results: A seven-lncRNA signature was established to predict prognosis of CRC patients. The prognostic value of
this signature was verified in the training group, internal validation group and external validation cohort,
respectively. Receiver operating characteristic (ROC) analysis suggested a powerful discrimination ability of the
seven-gene signature. Finally, Cox regression analyzed this signature as an independent influencing factor and
subsequent pathway or network analysis implicated a potential mechanism of these lncRNAs.

Conclusions: In summary, the seven-lncRNA signature we identified can effectively classify patients. This risk score
model could serve as an independent biomarker to predict prognosis of CRC patients.
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Background
Colorectal cancer (CRC) is one of the leading causes of
cancer death. CRC alone accounts for more than 10% of
all cancer cases worldwide, and is a heavy burden on hu-
man life and economy [1, 2]. It has been estimated that
in total 1,800,977 cases occurred and 861,663 people
died in 2018 [2]. The current standard treatment of
CRC, which has significantly improved overall survival
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(OS), includes surgery followed by adjuvant chemother-
apy and in some cases in combination with targeted bio-
logics. However, treatment outcome still remains
undesirable. Histological diagnosis has shown valuable
but insufficient prediction for prognosis of CRC patients.
An increasing evidence proposes that the discovery and
development of molecular biomarkers will accelerate the
identification of potential high risk CRC patients and
their prognostic evaluation.
In the last ten years, genomic approaches were used to

facilitate the systematic analysis of changes in RNA and
protein expression associated with disease diagnosis and
le is licensed under a Creative Commons Attribution 4.0 International License,
ution and reproduction in any medium or format, as long as you give
the source, provide a link to the Creative Commons licence, and indicate if

d party material in this article are included in the article's Creative Commons
line to the material. If material is not included in the article's Creative Commons
d by statutory regulation or exceeds the permitted use, you will need to obtain
. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
tion waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
rwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40364-020-00187-3&domain=pdf
http://orcid.org/0000-0002-7995-5664
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:shil@cqu.edu.cn


Huang et al. Biomarker Research             (2020) 8:8 Page 2 of 16
outcome [3]. Long non-coding RNAs (lncRNAs) are newly
discovered non-coding RNAs, which have received con-
siderable attention recently in human cancers [4–6].
LncRNAs are defined by no less than 200 nucleotides in
length that lack significant protein-coding capability [7].
Despite of this, lncRNAs are believed to play an important
role in regulating gene expression, contribute to multiple
biological processes [8, 9]. A growing number of lncRNAs
are found to be intimately associated with prognosis of pa-
tients such as HOTAIR in lung cancer [10], DANCR in
hepatocellular carcinoma [11] and MALAT1 in different
cancer types [12]. A growing number of evidence suggests
that the aberrant expressions of lncRNAs have been asso-
ciated with CRC [13]. According to a recent study on
lncRNA RP11, upregulated expression of RP11 was associ-
ated with increased CRC risk and high possibility of me-
tastasis [14]. However, the research of prognosis-related
lncRNA in CRC has not been extensively investigated.
Therefore, establishing a prognostic lncRNA signature
might be a promising strategy for the prognosis prediction
of CRC patients.
One vital challenge in searching prognostic lncRNAs

is the availability of publicly available data sets, which
should contain both lncRNA profiles and clinical prog-
nostic information. RNA-seq is an extensive way to pro-
file lncRNA expression. However, since the small sample
size and the restricted access of raw data, applicable
RNA-seq data sets of CRC are relatively limited. In con-
trast, there are a larger number of microarray profiles,
including hundreds of CRC samples with clinical infor-
mation. For example, 585 samples were included in the
GSE39582 data set and 557 of them have disease free
survival (DFS) time and status. In addition, MMR (mis-
match repair), adjuvant chemotherapy, KRAS mutation
and seven more clinical variables were included in this
data set [15]. Moreover, microarray based expression
profiling may have better sensitivity for low-abundance
transcripts [16], which could benefit relative low
expressed lncRNA screening [17]. Although these ori-
ginal arrays are not designed for lncRNA profiling, previ-
ous studies have indicated that lncRNAs can be
interrogated by mining the microarray raw data [18–20].
In the present study, we applied this method to re-

annotate gene expression of lncRNAs on a data set of 557
patients from GSE39582, as well as another independent
GSE17538 cohort. By using the sample-splitting method,
Cox regression analysis and Robust likelihood-based sur-
vival modeling, we identified a prognostic, seven-lncRNA
signature to evaluate the risk score from the GSE39582
training group patients, and validated it in the internal
GSE39582 validation group and another independent ex-
ternal GSE17538 cohort. Patients with high risk score
have relatively poor prognoses than those with low risk
score, in both training and validation datasets.
Materials and methods
CRC data sets
The purpose of this study was to identify a signature of
lncRNAs that can be served as an effective prognostic
marker for CRC patients. Data sets and corresponding
clinical data were downloaded from the publicly avail-
able Gene expression Omnibus (GEO, NCBI, http://
www.ncbi.nlm.nih.gov/geo/) [21]. Two large cohorts of
CRC microarray data from the Affymetrix Human Gen-
ome U133 plus 2.0 platform were included in this study:
GSE39582 [15] and GSE17538 [22]. There were 585 and
244 CRC patients, respectively. The CRC samples in
GSE39582 were randomly split into a training group
(N = 279) and an internal validation group (N = 278).
Moreover, the CRC samples in GSE17538 were analyzed
as an external validation cohort.

Data analysis of microarrays
Raw microarray data were downloaded as CEL files from
GEO and analyzed using “Oligo” package from R software.
All analyses were performed as standard instructions and
summarized briefly. Firstly, raw data were checked for
quality to exclude any experimental artifacts. Then each
microarray data set was normalized individually using
Guanine Cytosine Robust Multi-Array Average method
(GCRMA) [23]. After background correction and
normalization, expression values represented by multiple
probes (or probe sets) were collapsed by taking the mean
value of the set of probes. All the expression data and
sample phenotypes were prepared for subsequent analysis.

LncRNA profile annotation
LncRNA profiling on the Affymetrix-based GEO data sets
was achieved by a well-established mining method [20].
Briefly, the information for each lncRNA, incluing
Ensembl ID, Ensembl transcript ID and symbol, was
downloaded from the GENCODE database (release 19).
Meanwhile, the Ensembl transcript ID and the RefSeq ID
for lncRNAs were downloaded from the HGNC database.
Finally, the symbols and RNA types for each probe were
obtained by matching the two datasets. Probes matched
more than one lncRNAs were discarded. For multiple
probes matching one lncRNA, gene expression was sum-
marized by computing the mean value of the probes to
represent the expression level of single lncRNA.

Conduction of the risk formula for prognostic prediction
The risk score formula was constructed using the
GSE39582 training group (N = 279). Firstly, by perform-
ing univariate Cox proportional hazards regression ana-
lysis with R package “survival”, the association between
the lncRNA expression and patient’s DFS was assessed.
LncRNA with a parametric P value of less than 0.01 was
included in the subsequent analysis. Secondly, these
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significant lncRNAs were further evaluated with a per-
mutation test using Biometric Research Branch-Array
(BRB-Array) Tools, which calculated a permutation P
value for each lncRNA based on 10,000 random permu-
tations [24]. LncRNA with a permutation p values of less
than 0.01 was considered statistically significant. Next,
lncRNAs that passed the above criteria were employed
for subsequent analysis with robust likelihood-based sur-
vival modeling, by using “rbsurv” R package [25]. The
parameters involved were set as default except for the
maximum number of gene, which was set as 20. To con-
struct a predictive model, the selected lncRNAs were fit-
ted into a multivariable Cox regression model in the
training group as described [26, 27]. Then a risk formula
was established based on a linear combination of the ex-
pression level of these lncRNAs, weighted by their re-
gression coefficients derived from the multivariate Cox
regression model [26, 27]. Finally, risk score was com-
puted for each patient with this formula and patients
were classified into high risk or low risk group, by taking
the median risk score as a cutoff point. By using R pack-
age “survminer”, Kaplan-Meier estimate was assessed to
compare the survival difference between the high risk
and low risk groups in each data set. The significance
was calculated with the log-rank test and set at 0.05. To
test whether the risk score was independent of clinical
variables, multivariable Cox regression and stratification
analysis were performed. All statistical analyses were
carried out with the Bioconductor [28] and R Version
3.5.1 (R Development Core Team 2018). Significance
levels for P values were set at 0.05 unless indicated.

ROC curve
Receiver operating characteristic (ROC) curves were
employed to compare the sensitivity and specificity of the
survival prediction based on the risk score model. Time-
dependent ROC of the risk score were analyzed by
“tdROC” R package and visualized with “ggplot2” package.

Gene set enrichment analysis (GSEA)
GSEA is a powerful computational algorithm that deter-
mines whether a pre-defined set of genes shows differ-
ences between two groups [29]. GSEA was performed
with the JAVA program (http://software.broadinstitute.
org/gsea/index.jsp) against MSigDB C2 Reactome gene
sets as described previously [30]. Genes were ranked
with the metric of absolute “signal to noise” value and
1000 random sample permutations were carried out.

LncRNAs interaction networks
Proteins and miRNAs interacted with these seven
lncRNAs were searched in ENCORI, previously starBase
v3.0 (The Encyclopedia of RNA Interactomes, http://
starbase.sysu.edu.cn/index.php) with default parameters
[31]. Total 55 proteins were identified associated with 6
lncRNAs and 87 miRNAs were interacted with 3
lncRNAs. The networks were visualized with Cytoscape
software (v3.7.2) [32].

Results
Data sets characteristics
The following two large cohorts of CRC microarray data
obtained from GEO were included in this study:
GSE39582 [15] and GSE17538 [22]. There were 585 and
244 CRC patients, respectively. After removal of samples
without DFS data, each of 557 and 200 patients were in-
cluded in our analysis. For Kaplan-Meier analysis, sam-
ples were filtered according to the corresponding clinical
data, as shown in each figure. Samples in GSE39582
were randomly split into a training group (N = 279) and
an internal validation group (N = 278). In addition, the
CRC samples in GSE17538 served as an external valid-
ation data set. Additional file 1: Figure S1 summarizes
the work flow of the entire experiment.

Identification of seven lncRNAs for prognosis prediction
in the training group
After re-annotation, we got 3783 affymetrix probes for
HGU133 plus 2.0 microarray. For each data set, 3005
unique lncRNAs were included in our study after standard
data processing procedure. The training data set was used
for the identification of prognostic lncRNA genes. Univari-
able Cox regression analysis was performed and a total of
104 lncRNAs correlated with DFS, whose parameter P-
values were less than 0.01, were chosen for next analysis.
By subjecting the 104 lncRNAs to permutation test using
BRB-Array tools, we narrowed down this panel to 93
lncRNAs with permutation P-value < 0.01. Those 93
lncRNAs were further analyzed by Robust likelihood-based
survival modeling [25]. This algorithm selects survival-
associated genes based on the partial likelihood of the Cox
model and discover multiple sets of genes by iterative for-
ward selection [25]. Using this method, seven lncRNAs
were screened out as the predictor signature and their de-
tailed information were shown in Table 1. Of these, positive
coefficients for the six genes (CTD-2354A18.1, NR2F1-
AS1, AC073283.1, MIR31HG, AL132709.8, RP11-
834C11.4) indicated that their upregulated levels of expres-
sion were associated with shorter survival. The negative co-
efficient indicated that upregulated level of expression of
AC069278.4 was associated with longer survival, suggesting
that it may be a tumor suppressor gene.

The seven lncRNA-based risk score model and the
survival in the training group
To integrate all these seven lncRNAs identified in our
previous step, we performed a Cox multivariable re-
gression analysis on the training group. A prognostic
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Table 1 Seven lncRNAs significantly associated with the disease free survival in the training group patients (N = 279)

Ensembl ID Gene symbol Permutation P valuea,b Hazard ratioa Coefficienta Diseasesc

ENSG00000261780 CTD-2354A18.1 1.00E-07 5.743 1.75 Pathogenesis
of gastric cancer,
Overall survival
of colorectal cancer

ENSG00000237187 NR2F1-AS1 1.00E-07 4.451 1.49 Multiple cancer

ENSG00000225187 AC073283.1 4.00E-04 3.269 1.18 NA

ENSG00000171889 MIR31HG 1.00E-07 2.064 0.72 Senescence,
Osteogenesis of
adipose stem cells,
Progression of
multiple cancer

ENSG00000288302 AL132709.8 1.00E-07 1.951 0.67 Ovarian cancer

ENSG00000250742 RP11-834C11.4 2.00E-04 1.769 0.57 NA

ENSG00000267242 AC069278.4 1.00E-07 0.174 −1.75 NA

Abbreviations: NA Not Available
a Derived from the univariable Cox proportional hazards regression analysis in the 279 training group patients
b Obtained from permutation test repeated 10,000 times
c Detailed in discussion section

Huang et al. Biomarker Research             (2020) 8:8 Page 4 of 16
model based on the coefficients was developed and
the risk score formula was constructed as the follow-
ing: risk score = (0.852 × the expression level of CTD-
2354A18.1) + (0.674 × the expression level of NR2F1-
AS1) + (0.848 × the expression level of AC073283.1) +
(0.193 × the expression level of MIR31HG) + (0.034 ×
the expression level of AL132709.8) + (0.264× the ex-
pression level of RP11-834C11.4) + (− 1.226× the ex-
pression level of AC069278.4). We then calculated the
seven-lncRNA signature risk score of each patient in
training group using the above formula. The median
risk score (5.760) was used as the cutoff point to div-
ide the training set into two groups, high risk (N =
139) and low risk groups (N = 140). We evaluated the
DFS, showing the survival time of high risk group is
significantly shorter than the low risk group (log-rank
test P < 0.0001) (Fig. 1a). The association of the
seven-lncRNA risk score with DFS was also signifi-
cant when it was evaluated as a continuous factor in
both univariable and multivariable Cox regression
model (P = 6.03E-14 and P = 1.82E-12, respectively)
(Table 2).

The prognostic values of seven-lncRNA signature in
validation groups
In order to confirm our findings, we used two valid-
ation groups to test the above signature. The corre-
sponding risk scores were calculated according to the
risk formula. Patients in GSE39582 internal validation
set were classified into a high risk (N = 139) and a
low risk group (N = 139) using the median score
(5.721) of the validation set as the cutoff point. Con-
sistent with the findings described above, patients in
high risk group showed significantly shorter DFS than
patients in low risk group (log-rank test P < 0.0001)
(Fig. 1b). Similar results were also observed for the
entire GSE39582 data set (cut point 5.742) (Fig. 1c).
For further verification, external validation set
GSE17538 was employed and patients in high risk
group (N = 100) showed shorter DFS than patients in
low risk group (cut point 10.04, log-rank test P <
0.0001) (Fig. 1d). In the Cox regression model, in
which the seven-lncRNA risk score was evaluated as a
continuous variable, similar correlation could be
achieved (Table 2).
Risk score distribution and ROC analysis
We also visualized risk score distribution in these data sets.
The samples were ranked according to their risk scores
(Fig. 2a) and survival status of patients were showed as in
Fig. 2b. A heatmap was visualized to demonstrate the ex-
pression profiles of these seven-lncRNAs (Fig. 2c). We found
that patients with low risk scores tended to express high
levels of protective lncRNAs (AC069278.4), whereas patients
with high risk scores show a preference for high levels of the
other six lncRNAs. Similar results can be observed for in-
ternal validation group, entire GSE39582 data set, and exter-
nal GSE17538 cohort (Additional file 1: Figure S2-S4).
To further investigate the discrimination power of the

signature, ROC curves based on the calculated risk score
were created within each inspected data set. The area
under the curve (AUC) of GSE39582 training group was
0.75 (95% CI, 0.68–0.82), showing a strong separation
ability (Fig. 3). In addition, the AUCs were 0.69 (95% CI,
0.6–0.76), 0.72 (95% CI, 0.66–0.77), 0.74 (95% CI, 0.64–
0.84) for internal validation, entire GSE39582 and exter-
nal GSE17538 validation data sets, respectively (Fig. 3).



Fig. 1 Kaplan-Meier analysis (estimates) of the disease free survival (DFS) of GEO datasets using the seven-lncRNA signature. The Kaplan-Meier
plots were used to visualize the DFS probabilities for the patients based on the risk score evaluation. a Kaplan–Meier curves for GSE39582
training-group patients (N = 279); b Kaplan–Meier curves for GSE39582 internal validation-group patients (N = 278); c Kaplan–Meier curves for the
entire GSE39582 patients (combined training and validation group patients, N = 557). d Kaplan–Meier curves for the external validation GSE19538
patients (N = 200). The tick marks on the curves represent the censored events. The differences between the two curves were determined by the
two-sided log-rank test

Huang et al. Biomarker Research             (2020) 8:8 Page 5 of 16
We can learn from this analysis, take in whole, that our
seven-lncRNA signature had a strong prognostic value.

The prognostic values of seven-lncRNA signature is
independent of TNM stage
To further investigate the prognostic values of the
seven-lncRNA signature, Cox regression analyses were
performed based on the clinical characteristics, in-
cluding age, gender, TNM stage in all cohorts (Table
2). Our analysis demonstrated that the seven-lncRNA
risk score remained to be significantly associated with
DFS when adjusted by other variables in every group.
According to TNM stage system for CRC, patients
were divided into four subgroups (I, II, III and IV).
Data stratification analysis was then conducted and
showed that the seven-lncRNA signature had the abil-
ity of predicting prognosis in stage IV only. Kaplan–
Meier curves for the high and low risk groups in
stage IV patients were drawn. The results suggested
that patients with high risk scores exhibited poorer
DFS than those with low risk scores. Above observa-
tions were conducted in the training group (Fig. 4a,
log-rank test P = 0.0058), the internal validation group
(Fig. 4b, log-rank test P = 0.037), entire GSE39582



Table 2 Univariable and multivariable Cox regression analyses in each data set

Variables Univariable modela Multivariable modela

HR 95% CI of HR P valueb HR 95% CI of HR P valueb

GSE39582 training (N = 278)

Seven-lncRNA risk score 2.71 2.087–3.519 < 0.001 2.749 2.111–3.579 < 0.001

Age 0.999 0.983–1.014 0.877 1.01 0.993–1.027 0.261

Gender 1.457 0.951–2.233 0.084 1.428 0.925–2.205 0.108

TNM stage I 1.00(referent) 1.00(referent)

TNM stage II 10,245,861 0.000- 0.994 5,864,621 0.000- 0.995

TNM stage III 16,355,014 0.000- 0.993 7,823,016 0.000- 0.994

TNM stage IV 52,014,059 0.000- 0.993 42,817,026 0.000- 0.994

GSE39582 validation (N = 274)

Seven-lncRNA risk score 1.978 1.558–2.511 < 0.001 1.875 1.435–2.449 < 0.001

Age 1 0.984–1.016 0.977 0.998 0.982–1.015 0.839

Gender 1.117 0.73–1.709 0.609 1.559 0.996–2.442 0.052

TNM stage I 1.00(referent) 1.00(referent)

TNM stage II 4.42 0.598–32.673 0.145 3.223 0.434–23.944 0.253

TNM stage III 10.644 1.465–77.354 0.02 5.997 0.808–44.512 0.08

TNM stage IV 48.847 6.533–365.212 < 0.001 40.881 5.415–308.664 < 0.001

Entire GSE39582 (N = 552)

Seven-lncRNA risk score 2.263 1.907–2.685 < 0.001 2.248 1.879–2.69 < 0.001

Age 0.999 0.988–1.011 0.927 1.004 0.992–1.015 0.538

Gender 1.278 0.946–1.726 0.110 1.536 1.132–2.084 0.006

TNM stage I 1.00(referent) 1.00(referent)

TNM stage II 7.479 1.036–53.984 0.046 4.652 0.642–33.689 0.128

TNM stage III 14.37 1.999–103.274 0.008 6.9 0.95–50.115 0.056

TNM stage IV 55.189 7.558–402.996 < 0.001 42.134 5.746–308.933 < 0.001

GSE17538 validation (N = 200)

Seven-lncRNA risk score 1.945 1.317–2.873 < 0.001 1.905 1.206–3.008 0.0057

Age 0.98 0.962–0.999 0.043 0.989 0.968–1.01 0.312

Gender 0.75 0.441–1.276 0.289 0.848 0.481–1.493 0.567

TNM stage I 1.00(referent) 1.00(referent)

TNM stage II 5.177 0.668–40.132 0.116 4.313 0.552–33.69 0.163

TNM stage III 10.278 1.387–76.172 0.023 8.064 1.076–60.457 0.0423

TNM stage IV 49.435 6.615–369.41 < 0.001 40.052 5.299–302.762 < 0.001

Abbreviations: HR hazard ratio, CI confidence interval
a In both univariable and multivariable Cox regression analyses, risk score and age were evaluated as continuous variables, and gender and TNM stage were
evaluated as category variables
b P < 0.05 was considered statistically significant in all analyses
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(Fig. 4c, log-rank test P < 0.001) and the GSE17538
validation group (Fig. 4d, log-rank test P = 0.003).
We also performed ROC analysis to identify the sensi-

tivity and specificity of survival prediction of the seven-
lncRNA risk score, age, gender and stage on these pa-
tients. As shown in Fig. 4e, the AUC for age and gender
are comparatively low (0.54 and 0.5, respectively) in
GSE39582 data set. When compared with TNM stage,
the AUC of the seven-lncRNA risk score was much the
same (0.72 versus 0.73). Similarly, the AUC results had
almost a same pattern like GSE39582 (Fig. 4f). The AUC
for age and gender were low (0.6 and 0.58), and com-
paratively high for risk score and stage (0.74 versus
0.86). These analyses indicated that seven-lncRNA signa-
ture may have a better predictive ability than age and
gender, and have an equivalent predictive power with
TNM stage IV. Taking together, the seven-lncRNA sig-
nature was more favorable in our analysis.



Fig. 2 LncRNA risk score performance in the GSE39582 training dataset. The distribution of signature risk score, patients’ survival status and
seven-lncRNA expression were analyzed in the GSE39582 training patients (N = 279). a The distribution of lncRNA signature risk score distribution;
b The survival status and time of corresponding patient; c The heatmap of the lncRNA expression value. Rows represent lncRNAs and columns
for patients. The black line means the median risk score cutoff dividing patients into low-risk and high-risk groups
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The prognostic values of seven-lncRNA signature is
independent of adjuvant chemotherapy
Furthermore, we wanted to know whether the prognostic
value of the seven-lncRNA signature was independent of
all other clinical characteristics. There was adjuvant
chemotherapy, KRAS mutation, mismatch repair (MMR)
status and 5 more clinicopathological factors in GSE39582
data set. The corresponding sample number and univari-
able Cox analysis for each factor were shown in Add-
itional file 2: Table S1. Unfortunately, of the 244 patients
from GSE17538, no additional such clinical information
was available for the patients, so the following results were
only evaluated in GSE39582 data set.
Since adjuvant chemotherapy was significant in uni-

variable Cox analysis (Additional file 2: Table S1), we
then conducted multivariable Cox regression model on
those 541 patients. Using risk score, adjuvant
chemotherapy, age and gender as covariates, we found
that the seven-lncRNA risk score (P < 0.001) and chemo-
therapy (P = 0.013) were both independent prognostic
factors (Table 3). In addition, data stratification was per-
formed, which stratified these patients into with chemo-
therapy or without chemotherapy subgroups. This
analysis indicated that within each stratum, the seven-
gene risk score could further identify patients with dif-
ferent prognoses (Fig. 5). For patients with chemother-
apy (N = 232), the risk score could subdivide them into
those likely to have longer DFS and those likely to have
shorter DFS (log-rank test P = 0.012) (Fig. 5b). Patients
without chemotherapy (N = 309) acted in a similar fash-
ion (log-rank test P < 0.001) (Fig. 5c). The ROC analysis
was performed and curves were visualized for the two
factors. The AUC for the seven-lncRNA signature and
chemotherapy on DFS was 0.72 and 0.59, respectively,



Fig. 3 ROC curves of seven-lncRNA risk score in different datasets. The receiving operating characteristic curve (ROC) of risk score were calculated
for GSE39582 training group (green), GSE39582 validation-group (red) entire GSE39582 (purple) and entire GSE39582 (blue)
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indicating a favorable prognostic value in predict pa-
tients’ survival (Fig. 5d).

The prognostic values of seven-lncRNA signature is
independent of KRAS mutation
KRAS mutation occurs in 30 to 50% of colorectal can-
cers (CRCs) and has been suggested to be associated
with proliferation and decreased apoptosis [31]. Thus,
we tested whether the predictive power of the seven-
lncRNA signature was independent of KRAS mutation
status in GSE39582 (N = 536). In the multivariable Cox
regression analysis, we found that the seven-lncRNA risk
score (P < 0.0001) and KRAS mutation status (P = 0.018)
were both independent prognostic factors (Table 3). In
the stratification analysis, the seven-gene risk score
could further identify patients with different prognoses
(Fig. 6). For patients with WT KRAS (N = 322), the risk
score could subdivide them into those likely to have lon-
ger DFS and those likely to have shorter DFS (log-rank
test P < 0.0001) (Fig. 6b). Patients with KRAS mutation
(N = 214) acted in a similar fashion when analyzed with
this risk score (log-rank test P = 0.00045) (Fig. 6c). The
ROC AUC for the seven-lncRNA signature was 0.72,
which is much higher than that of KRAS mutation
(0.55), indicating a better predictive ability (Fig. 6d).
We further tested the whether the predictive power of
the seven-lncRNA signature was independent of MMR
status in GSE39582 (N = 511). In the multivariable Cox
regression analysis, the seven-lncRNA risk score (P <
0.0001) and MMR status (P = 0.003) were both inde-
pendent prognostic factors (Table 3). In the stratification
analysis, however, the risk score could identify subgroup
patients with proficiency MMR but fail to divide defi-
ciency MMR patients significantly (P = 0.092, Additional
file 1: Figure S5). This may be because the sample size is
too small (72 patients) to draw any firm conclusions.
Concerning the chemotherapy, KRAS mutation and
MMT status together, we further performed multivari-
able Cox analysis with the three factors (Additional file
2: Table S2). This analysis verified seven-lncRNA signa-
ture as an independent factor when putting KRAS muta-
tion, chemotherapy and MMR status together (P <
0.001).
Although other clinical variables, such as TP53 muta-

tion, were not significant in univariable Cox regression
analysis (P > 0.05, Additional file 2: Table S1), we still per-
formed multivariable Cox analysis to identify their pos-
sible associations with seven-lncRNA signature. As shown
in Additional file 2: Table S3, the results demonstrated
that the seven-lncRNA signature was independent of these



Fig. 4 (See legend on next page.)
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Fig. 4 The seven-lncRNA signature was associated with prognosis in TNM stage 4 patients. Kaplan-Meier analysis of the disease free survival (DFS)
of patients with stage 4 in training group (a), internal validation group (b), entire GSE39582 dataset (c) and GSE19538 validation dataset (d). The
ROC curves of seven-lncRNA risk score (green), age (red), gender (blue) and stage (purple) were shown in entire GSE39582 (e) and GSE17538
(f), respectively
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clinical variables. Furthermore, we examined all clinical
variables in one analysis of multivariable Cox regression
and proved that the seven-lncRNA signature was an inde-
pendent influencing factor of all the variables (Additional
file 2: Table S4).
In addition, we further performed ROC analysis to

compare the discrimination power between seven-
lncRNA signature and all other available clinical features
in GSE39582 data set. As shown in Additional file 1: Fig-
ure S6, The AUC for the seven-lncRNA signature was
comparatively higher than all other factors. These above
results indicated that the seven-lncRNA could be used
as an effective prognostic signature for CRC patients.
Identification of seven-lncRNA signature altered pathways
To identify potentially altered signaling pathways, we
performed GSEA using the seven-lncRNA signature
based risk score classification. Samples from GSE39582
(N = 557) were classified into high risk (N = 278) or low
risk group (N = 279) using the median risk score. Ac-
cording to the results, we found that some Reactome
pathways were significantly enriched (normalized P
value < 0.05, Fig. 7a, Additional file 3: Table S5). Of
these, several pathways were noticed for their roles in
tumorigenesis and tumor progression, including “Integ-
rin cell surface interactions” and “Activation of matrix
Table 3 Multivariable Cox regression analysis of the seven-
lncRNA risk score and other variables in GSE39582 data set

Variables HR 95% CI of HR P valuea

Seven-lncRNA risk score (N = 541) 2.14 1.783–2.568 < 0.001

Age 1.008 0.995–1.021 0.223

Gender 1.391 1.013–1.91 0.041

Adjuvant chemotherapy 1.522 1.091–2.124 0.013

Seven-lncRNA risk score (N = 536) 2.345 1.967–2.797 < 0.001

Age 0.996 0.984–1.008 0.469

Gender 1.35 0.99–1.842 0.058

KRAS mutation 0.691 0.509–0.938 0.018

Seven-lncRNA risk score (N = 511) 2.195 1.853–2.6 < 0.001

Age 0.999 0.987–1.012 0.911

Gender 1.184 0.869–1.613 0.285

MMR status 2.617 1.378–4.97 0.003

Abbreviations: HR hazard ratio, CI confidence interval, MMR mismatch repair
In Cox regression analyses, risk score was evaluated as continuous variables, all
other variables were evaluated as category variables
a P < 0.05 was considered statistically significant in all analyses
metalloproteinases”. The enrichment plots of “PD 1
pathway” and “ECM proteoglycans” were shown as ex-
amples (Fig. 7b, c). These results suggested that the
seven lncRNA based risk score may reflect the status of
these signaling pathways.
Additionally, it should be useful to investigate the po-

tential molecular networks that seven lncRNAs were
commonly associated with. We searched interacted pro-
teins and miRNAs in ENCORI database (starBase v3.0)
[31] and identified networks of the seven lncRNAs may
interacted with (Additional file 4: Table S6). As shown
in Additional file 1: Figure S7, totally 55 proteins were
found to be associated with six lncRNAs and 87 micro-
RNAs were associated with three lncRNAs. Although
these findings needed to be further verified, they impli-
cated possible networks for future biological studies of
these lncRNAs.

Discussion
LncRNAs were proved to be indispensable in com-
prehensive biological processes through different
mechanisms. In recent years increasing evidence has
demonstrated that lncRNAs may play important roles in
tumorigenesis and tumor progression [5, 6]. More re-
cently, lncRNAs have been implicated in the pathogen-
esis and prognosis of CRC [25, 26]. The investigating of
prognostic potential of lncRNAs in CRC is of great
value. In the present study, we identified a potential
seven-lncRNA signature that was significantly associated
with the DFS of CRC patients. Two GEO datasets were
employed in this study. After a comprehensive analysis,
a seven-lncRNA signature was identified for predicting
prognosis of CRC patients. Furthermore, Cox regression,
stratification and ROC analysis suggested that the seven-
lncRNA signature had a high predictive accuracy in our
analyses.
For these seven lncRNAs, six of them (CTD-2354A18.1,

NR2F1-AS1, AC073283.1, MIR31HG, AL132709.8, RP11-
834C11.4) acted as risk factors for CRC, while
AC069278.4 was protective factor (Table 1). We searched
the literature to characterize these lncRNAs, finding three
of them have been reported to correlated with cancer.
CTD-2354A18.1 has been reported to be differentially
expressed and may play a key role in the pathogenesis of
gastric cancer [33]. In addition, it was regarded to be re-
lated to overall survival in CRC patients [34]. NR2F1-AS1
was shown to be upregulated in multiple cancer, including
hepatocellular carcinoma, endometrial cancer, thyroid



Fig. 5 Kaplan-Meier estimates of the disease free survival (DFS) of patients using the seven-lncRNA signature, stratified by adjuvant
chemotherapy. Entire GSE39582 dataset were first stratified by chemotherapy (with or without) and Kaplan-Meier plots were then used to
visualize the survival probabilities for patients within each stratum. a Kaplan-Meier curves for the entire GSE39582 dataset patients (N = 541); b
Kaplan-Meier curves for patients with adjuvant chemotherapy (N = 232); c Kaplan-Meier curves for patients without adjuvant chemotherapy (N =
309). The tick marks on the curves represent the censored events. The differences between the two curves were determined by the two-sided
log-rank test. d The ROC curves of seven-lncRNA risk score (blue) and chemotherapy (red) were shown in entire GSE39582
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cancer and esophageal squamous cell carcinoma [35–38].
These different studies have revealed that NR2F1-AS1 can
promote cancer progression via interacting with several
miRNA and through different signaling pathways, includ-
ing Hedgehog signaling pathway and PI3K/AKT pathway.
Another candidate, MIR31HG gene was thoroughly in-

vestigated according to the literature. Montes et al. sug-
gested that MIR31HG could regulate INK4A expression
to modulate senescence [39]. And Jin et al. indicated
that Inhibition of MIR31HG promotes osteogenesis of
human adipose-derived stem cells [40]. MIR31HG was
also reported to be involved in the progression of
multiple cancer, including bladder cancer, pancreatic
ductal adenocarcinoma, esophageal squamous cell car-
cinoma, lung cancer, and et al. [41–43]. In addition,
MIR31HG was strongly correlated with miR-31 expres-
sion, associating with poor outcome in CRC [43]. Thus,
we infer that MIR31HG may act as an oncogene in CRC
tumorigenesis and further investigations are needed as
well. For the rest four lncRNAs, they were either poorly
investigated or have not been reported at all. For ex-
ample, although there were no experimental evidences
about its function or mechanism in cancer, AL132709.8
was identified as a potential biomarker associated with



Fig. 6 Kaplan-Meier estimates of the disease free survival (DFS) of patients using the seven-lncRNA signature, stratified by KRAS mutation status.
Entire GSE39582 dataset were first stratified by KRAS mutation status (WT or Mutation) and Kaplan-Meier plots were then used to visualize the
survival probabilities for patients within each stratum. a Kaplan-Meier curves for the entire GSE39582 dataset patients (N = 536); b Kaplan-Meier
curves for patients with wide-type KRAS gene (WT, N = 322); c Kaplan-Meier curves for patients with mutated KRAS gene (Mutation, N = 214). The
tick marks on the curves represent the censored events. The differences between the two curves were determined by the two-sided log-rank
test. d The ROC curves of seven-lncRNA risk score (blue) and KRAS mutation (red) were shown in entire GSE39582
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recurrence of ovarian cancer [44]. All the above reports
provided us the opportunity to better understand the
roles that might be played by these lncRNAs.
The seven-lncRNA signature is an independent prog-

nostic factors in CRC. Pathological staging is widely used
to classify patients for adjuvant chemotherapy in clinical
[15]. Despite of this, appreciable efforts have been made
in the past decades to discover the molecular biomarkers
that may serve as a determinant to subclass CRC pa-
tients [45, 46]. These studies have determined a series of
biomarkers that are thought to be associated with the
prognosis of CRC, including MMR status, KRAS
mutation, BRAF mutation and et al. [45]. Among these
biomarkers, microsatellite instability, caused by dysfunc-
tion of the DNA repair system, is the only marker that
was found to be a significant prognostic factor in early
CRC [47]. Therefore, it will be highly desirable to evalu-
ate whether the prognostic value of the seven-lncRNA
signature is independent of these well-recognized fac-
tors. Here, we found the seven-lncRNA signature was in-
dependent of each TNM stage and had a similar ROC
AUC value as TNM stage (Table 2). Stratification ana-
lysis demonstrated this signature was significantly asso-
ciated with DFS in patients with stage IV. We assessed



Fig. 7 Gene set enrichment analysis identified altered signaling pathways related to risk score. a The scatter plot shown pathways enriched in
high risk score group patients of GSE39582. Of those, the enrichment plots of “PD 1 pathway” b and “ECM proteoglycans” c were shown. ES,
enrichment score; NES, normalized ES; NOM Pval, normalized p-value
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the association between all available clinical variables
and subsequent multivariate Cox regression and stratifi-
cation analysis indicated that the prognostic value of our
seven-lncRNA signature was independent of these
factors.
We also performed GSEA to identify the potential bio-
logical pathways altered between the high- and low-risk
patients. Enriched pathways were noticed for their roles
in tumorigenesis and tumor progression. The above
findings suggested a possible function role played by
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these seven lncRNAs. To reveal the potential molecular
mechanism of these lncRNAs, we established their inter-
action networks of proteins and miRNAs. However, only
six and three of them were identified in the ENCORI
database to be associated with proteins and miRNAs, re-
spectively. Although the roles of these lncRNAs in CRC
or other disease are currently unclear, our findings im-
plicated that their molecular mechanism deserve further
investigation.
However, there are several limitations in our study.

Firstly, lncRNAs profiled in this study were re-annotated
from Affymetrix Human Genome U133 platform, which
probably only represents part of the lncRNA popula-
tions. So the lncRNA signature identified here may not
represent the most significant one in CRC. Secondly, we
have no experimental data and shortage of information
on the mechanisms behind the prognostic values of
these seven lncRNAs. Although the function of some
lncRNAs has been reported, more efforts need to be
made to further understand their role in CRC. Finally,
we suggested that the lncRNA signature is independent
of other features, such as KRAS mutation and adjuvant
chemotherapy. Unfortunately, this conclusion can only
be tested in GSE39582 data set, because there is no such
clinical information in GSE17528 cohort.

Conclusions
In summary, by employing large independent patient co-
horts, we identified a seven-lncRNA signature to predict
the DFS of CRC patients. The seven-lncRNA signature
showed great potential of prognostic prediction and in-
dependent of several well acknowledged factors. Al-
though these findings needed to be further investigated,
they illustrated a promising perspective in the develop-
ment of prognostic biomarkers and showed useful impli-
cations for future biological studies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40364-020-00187-3.

Additional file 1 Figure S1. Schematic of the study. Figure S2.
LncRNA risk score performance in the GSE39582 validation dataset. The
distribution of signature risk score, patients’ survival status and
sevenlncRNA expression were analyzed in the GSE39582 validation
patients (N = 278). (A) The distribution of lncRNA signature risk score
distribution; (B) The survival status and time of corresponding patient; (C)
The heatmap of the lncRNA expression value. Rows represent lncRNAs
and columns for patients. The black line means the median risk score
cutoff dividing patients into low-risk and high-risk groups. Figure S3.
LncRNA risk score performance in the entire GSE39582 dataset. The distri-
bution of signature risk score, patients’ survival status and seven-lncRNA
expression were analyzed in the entire GSE39582 patients (N = 557). (A)
The distribution of lncRNA signature risk score distribution; (B) The sur-
vival status and time of corresponding patient; (C) The heatmap of the
lncRNA expression value. Rows represent lncRNAs and columns for pa-
tients. The black line means the median risk score cutoff dividing patients
into low-risk and high-risk groups. Figure S4. LncRNA risk score
performance in the GSE17538 validation dataset. The distribution of sig-
nature risk score, patients’ survival status and sevenlncRNA expression
were analyzed in the GSE17538 validation patients(N = 200). (A) The distri-
bution of lncRNA signature risk score distribution; (B) The survival status
and time of corresponding patient; (C) The heatmap of the lncRNA ex-
pression value. Rows represent lncRNAs and columns for patients. The
black line means the median risk score cutoff dividing patients into low-
risk and high-risk groups. Figure S5. Kaplan-Meier estimates of the dis-
ease free survival (DFS) of patients using the seven-lncRNA signature,
stratified by MMR status. Entire GSE39582 dataset were first stratified by
MMR status (dMMR or pMMR) and Kaplan-Meier plots were then used to
visualize the survival probabilities for patients within each stratum. (A)
Kaplan-Meier curves for the entire GSE39582 dataset patients (N = 511);
(B) Kaplan-Meier curves for patients with dMMR (N = 72); (C) Kaplan-Meier
curves for patients with pMMR (N = 439). The tick marks on the curves
represent the censored events. The differences between the two curves
were determined by the two-sided log-rank test. dMMR, deficient mis-
match repair; pMMR, proficient mismatch repair. (D) The ROC curves of
sevenlncRNA risk score (blue) and MMR status (red) were shown in entire
GSE39582. Figure S6. Receiver operating characteristic (ROC) analysis of
Seven-lncRNA risk score and other available clinical features in entire
GSE39582 data set. Patients with known information about CIMP status
(N = 487), BRAF mutation (N = 503), CIN status (N = 455), CIT subtype (N =
537), TP53 mutation (N = 344), Tumorlocation (N = 557) were evaluated.
CIMP, CpG island methylator phenotype; CIN, chromosomal instability; CIT
subtype, Cartes d’Identite des Tumeurs molecular subtype. Figure S7.
LncRNAs interaction networks. (A) The network represents lncRNAs (Yel-
low diamond) and associated proteins (Purple circle), in which 6 lncRNAs
and 55 proteins derived from CLIP-seq data from ENCORI were visualized.
(B) The network represents lncRNAs (Yellow diamond) and interacted
miRNA (Purple circle), in which 3 lncRNAs and 87 miRNAs derived from
ENCORI were shown.

Additional file 2 Table S1 Univariable Cox regression analysis of the
seven-lncRNA risk score and other available variables in GSE39582 data
set. Table S2 Multivariable Cox regression analysis of the seven-lncRNA
risk score and five other variables in GSE39582 data set (N = 473). Table
S3 Multivariable Cox regression analysis of the seven-lncRNA risk score
and other variables in GSE39582 data set. Table S4 Multivariable Cox re-
gression analysis of the seven-lncRNA risk score and all eleven available
clinical variables in GSE39582 data set (N = 249).

Additional file 3 Table S5. Gene set enrichment analysis (GSEA) results
of GSE39582 cohort.

Additional file 4 Table S6A. LncRNAs associated protein identified in
ENCORI database. Table S6B. LncRNAs associated miRNAs identified in
ENCORI database.
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