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Abstract

Background: Changes in DNA methylation over the course of life may provide an indicator of risk for cancer. We
explored longitudinal changes in CpG methylation from blood leukocytes, and likelihood of future cancer diagnosis.

Methods: Peripheral blood samples were obtained at baseline and at follow-up visit from 20 participants in the Health,
Aging and Body Composition prospective cohort study. Genome-wide CpG methylation was assayed using the
[lfumina Infinium Human MethylationEPIC (HM850K) microarray.

Results: Global patterns in DNA methylation from CpG-based analyses showed extensive changes in cell composition
over time in participants who developed cancer. By visit year 6, the proportion of CD8+ T-cells decreased (p-value =0.
02), while granulocytes cell levels increased (p-value = 0.04) among participants diagnosed with cancer compared to

those who remained cancer-free (cancer-free vs. cancer-present: 0.03 + 0.02 vs. 0.003 + 0.005 for CD8+ T-cells; 0.52 + 0.
14 vs. 066 + 0.09 for granulocytes). Epigenome-wide analysis identified three CpGs with suggestive p-values <10~ ° for

differential methylation between cancer-free and cancer-present groups, including a CpG located in MTA3, a gene
linked with metastasis. At a lenient statistical threshold (p-value <3 x 10~ %), the top 10 cancer-associated CpGs
included a site near RPTOR that is involved in the mTOR pathway, and the candidate tumor suppressor genes RECS,
KCNQTI, and ZSWIM5. However, only the CpG in RPTOR (cg08129331) was replicated in an independent data set.
Analysis of within-individual change from baseline to Year 6 found significant correlations between the rates of change
in methylation in RPTOR, REC8 and ZSWIM5, and time to cancer diagnosis.

Conclusion: The results show that changes in cellular composition explains much of the cross-sectional and
longitudinal variation in CpG methylation. Additionally, differential methylation and longitudinal dynamics at specific
CpGs could provide powerful indicators of cancer development and/or progression. In particular, we highlight CpG
methylation in the RPTOR gene as a potential biomarker of cancer that awaits further validation.
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Background

DNA methylation plays a central role in cell differentiation
and in defining cellular phenotypes. Differences in DNA
methylation have been associated with a growing list of
morbidities, ranging from metabolic disorders and
age-related decline in health, to developmental and neuro-
psychiatric conditions. The standard approach in an
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epigenome-wide association study (EWAS), which attempts
to link DNA methylation to disease, involves collection of a
single biospecimen from each participant (typically periph-
eral blood or saliva) and performing cross-sectional ana-
lyses to compare methylation patterns in cases against
matched healthy controls [1, 2]. While differences in CpG
methylation between cases and controls may be directly re-
lated to disease, these case-control differences may also
represent DNA sequence variation, differences in disease
treatment, differences in behavior or environment, or differ-
ences in cellular composition [3, 4]. Despite these
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limitations in the interpretation of DNA methylation re-
sults, such epigenetic markers, if consistent and replicable,
could serve as powerful biomarkers that can be assayed
from minimally invasive tissues such as circulating blood.

Cancer is fundamentally due to abnormal cell pheno-
type and proliferation, and historically, it was the first
disease linked to aberrant DNA methylation [5-7]. The
cancer epigenome often involves global hypomethylation
at repetitive elements, while also potentially involving
the hypermethylation at CpGs in the promoter regions
of tumor suppressor genes and other cancer-related
genes [8—10]. While abnormal epigenomic changes
within tumor cells would hold the most impact, there is
developing evidence that methylation changes relevant
to cancer progression can be detected in circulating
blood. For example, global changes in repetitive ele-
ments as well as targeted CpG methylation found in
DNA from blood cells have been reported for multiple
cancer types [11-15]. This suggests the possibility of a
pan-cancer biomarker panel detectable in blood that
could precede the clinical detection and diagnosis of
cancer [16].

Few longitudinal studies have investigated the
time-dependent dynamics in DNA methylation as a po-
tentially important indicator of tumorigenesis [14, 15].
The present study examines the longitudinal restructur-
ing of the methylome over five years and evaluates
whether change in CpG methylation is a biomarker of
cancer in older adults. Our approach involves dimension
reduction techniques and evaluates leukocyte propor-
tions and differential methylation at the level of individ-
ual CpGs. Overall, our study defined global and targeted
changes in the blood methylome that were correlated to
cellular composition, aging, and cancer in the Health
ABC cohort.

Methods

Health, aging and body composition study (health ABC
study)

The Health ABC Study is a prospective, longitudinal co-
hort that was recruited in 1997-1998 and consisted of
3075 older men and women participants aged 70-79
years at baseline. Participants resided in either the Mem-
phis, TN or Pittsburgh, PA metropolitan areas, and were
either of African American or Caucasian ancestry [17].
Individuals with limited mobility, history of active treat-
ment for cancer in the past 3years, or with known
life-threatening disease were excluded. More informa-
tion on participant screening and recruitment can be
found at the study website [https://healthabc.nia.nih.
gov]. There were annual clinical visits to record health
and function, and subjects were followed for up to 16
years. The study collected data on adjudicated health
events, including cancer, and a biorepository was
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developed. All participants provided written informed
consent and all sites received IRB approval. The present
study leverages data on a small set of Health ABC par-
ticipants who had DNA available from bufty coat col-
lected at baseline and at follow-up visits (mostly at year
6 from baseline).

DNA methylation microarray and data processing

Due to low DNA quality/quantity, 3 participants had
DNA from only one visit year, and in total, we generated
DNA methylation data on 37 samples. Participant char-
acteristics and DNA collection time-points are provided
in Table 1. Seven of the 20 participants received adjudi-
cated cancer diagnosis in following years with four be-
tween baseline and Year 6, and three after Year 6.

DNA methylation assays were performed, as per the
manufacturer’s standard protocol, using the Illumina Infi-
nium Human MethylationEPIC BeadChips (HMS850K)
(http://www.illumina.com/). For this work, samples were
shipped to the Genomic Services Lab at the HudsonAlpha
Institute for Biotechnology (http://hudsonalpha.org). The

Table 1 Characteristics of participants

D Ancestry'  Sex! Age' Followup Year Cancer’ Time*

Per1  EA Male 75 6 no

Per2  AA Male 71 6 yesP 7
Per3  AA Female 72 6 no

Per4 EA Male 74 6 yes* 5
Per5 EA Female 76 6 no

Per6  EA Male 75 6 yes® 4
Per7  AA Male 76 2 no

Per8  AA Female 78 6 no

Per9  EA Female 78 6 yes® 1
Peri0 AA Male 74 6 yes°® 10
Per1l AA Female 74 6 no

Per12 AA Female 71 6 no

Per13 EA Male 76 6 yes 05
Per14 EA Male 75 na no

Per15 EA Female 73 6 no

Per16 EA Male 73 6 no

Per17 AA Female 76 na no

Per18 AA Female 78 6 yes® 1
Per19 AA Female 72 6 (no baseline DNA) no

Per20 EA Female 70 6 no

'Self-reported race, sex, and age at baseline; EA = European Americans or
Caucasians and AA = African Americans

2Year from baseline when second DNA sample was collected; two participants
had no follow-up DNA and one participant had no baseline (visit year 1) DNA
due to low DNA quality/quantity

3Cancer diagnosis during following years; all participants were considered free
of diagnosed cancer at time of screening and recruitment; p = prostate, c =
colon; b = breast; | = leukemia; s = stomach; o = other

“Time from baseline to cancer diagnosis in years
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HMBS850K arrays come in an 8-samples-per-array format;
prior to hybridization, samples were randomized so that
individuals were randomly distributed across the arrays.
Raw intensity data (idat files) were loaded to the R pack-
age, minfi (version 1.22) [18]. Methylation level at each
CpG was estimated by the B-value, which is the ratio of
fluorescent intensities between the methylated probe and
unmethylated probe. For quality checks (QC), we com-
pared the log median intensities between the methylated
(M) and unmethylated (U) channels using the “plotQC”
function and examined the density plots for the [-values
(QC plots are provided in Additional file 1: Figure S1). All
37 samples passed the initial QC (Additional file 1: Figure
S1A). Participant sex, as determined by DNA methylation,
matched the sex listed in the participant record.

Methylation data was quantile-normalized using the
minfi “preprocessQuantile” function. To evaluate sample
clustering, we performed hierarchical cluster analysis and
principal component analysis (PCA) using the full set of
866,836 probes (Additional file 1: Figure S1B). Sex was a
strong source of variance when the full set of probes was
used. We therefore filtered out 19,681 probes that targeted
CpGs on the sex chromosomes. An additional 2558 probes
were filtered out due to detection p-values >0.01 in 3 or
more samples. Finally, we excluded 104,949 probes that
have been flagged as unreliable due to poor mapping qual-
ity or overlap with genetic sequence variants (MASK.gen-
eral list of probes from [19]). This resulted in 739,648
probes that were considered for downstream analyses. The
updated PC plot showed no clustering by sex or by the Illu-
mina Sentrix ID, which indicated that there was no strong
chip effect. However, there were two outlier samples from
the same individual (Per13) (Additional file 1: Figures S1B,
S1C). Since the two samples were assayed on different Sen-
trix arrays, the outlier status is unlikely to be the result of
technical artifact, but rather, flags Per13 as a biological out-
lier (excluded from downstream analyses). As an additional
error checking step to confirm if samples from the same
participants paired appropriately with self, we repeated the
unsupervised cluster analysis using only 52,033 probes that
were filtered out from the main set of probes due to overlap
with common single nucleotide polymorphism (SNP) in
the dbSNP database (Additional file 2: Figure S2).

Estimating cellular composition

Cellular heterogeneity has a strong influence on DNA
methylation, and methods have already been devel-
oped to estimate cellular composition of whole blood
from genome-wide DNA methylation data [20-22].
We used the “estimateCellCounts” function in minfi,
which implements a modified version of the algorithm
by Houseman et al. [22] and relies on a panel of
cell-type specific CpGs to serve as proxies for differ-
ent types of white blood cells.
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Analyses of DNA methylation data

Considering the small sample size of the genome-wide
data, we first started with a dimension reduction ap-
proach and applied PCA to capture the major sources of
global variance in the methylome. The top 5 principal
components (PCs) were then related to baseline vari-
ables using chi-squared tests for categorical variables
(sex and race), and analysis of variance for continuous
variables (BMI and age). We also examined the
time-dependent change in the PCs with visit year as the
predictor variable. Correlations between leukocyte types
and the PCs were examined using bivariate analysis. We
considered adjudicated cancer diagnosis as the main out-
come variable and examined whether methylome-based
variables differed between those who developed cancer
and those who remained cancer-free.

Our primary analysis was to evaluate differential
methylation at the CpG-level. As in Roos et al. [16], we
first fitted a linear regression model on each probe for
the first 5 PCs (B-value ~ PCl+PC2+PC3+PC4+
PC5) to adjust for the effects of confounding variables
such as cellular heterogeneity and additional unknown
sources of variance. The adjusted p-values were then
used to examine differential methylation between
cancer-free and cancer-present groups using t-tests. The
t-tests were done with data only from visit Year 6. To
evaluate the reliability of identified cancer-associated
CpGs, we acquired the full results from Roos et al. [16],
and compared the p-values and the direction of effect
(i.e., increases or decreases in methylation in the cancer
group relative to cancer-free group). To evaluate longi-
tudinal trajectory, we considered only the top 10 CpGs
associated with cancer and calculated the change in
B-values from baseline to Year 6 (deltaP = Year 6 — base-
line), which was then correlated to time-to-diagnosis
(i.e., years from baseline to when participant received
diagnosis).

Data availability

The deidentified raw data set with normalized
B-values are available from NCBI NIH Gene Expression
Omnibus (GEO accession ID GSE130748).

Results

Participant characteristics

The study sample included almost equal numbers of
men and women, and equal numbers of African Ameri-
can and Caucasian participants (Table 1). Baseline age
ranged from 70 to 78 years with an average age of 74 +
2.4 years. Follow-up DNA collection occurred at Year 6,
with the exception of one participant with follow up
DNA collected at year 2 (Per7). Three participants had
DNA from only one time point, and thus these were
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included in the cross-sectional analysis but not the
time-dependent analysis.

During the Health ABC follow-up period, 7 partici-
pants (35%) were diagnosed with cancer at times ranging
from 6 months to 11 years from baseline (Table 1). Can-
cer diagnoses included cancer of the prostate, colon,
breast, and stomach, as well as one case of leukemia.
There were no differences in race, sex, or baseline age or
body mass index (BMI) between participants diagnosed
with cancer and those who remained cancer-free
(Table 2).

Quality of DNA methylation data and outlier

identification

Unsupervised hierarchical clustering using the full set of
probes showed that 15 of the individuals with longitu-
dinal data paired within the same participant (Additional
file 1: Figure S1B). The two exceptions, Perl (cancer--
free) and Per9 (received cancer diagnosis at year 1 from
baseline), did not cluster with self, and this observation
suggests potential intra-individual discordance in the
epigenetic data or increased cellular heterogeneity over
time [23, 24]. To verify that the non-pairing longitudinal
samples are indeed from the same respective partici-
pants, we performed the cluster analysis using only
probes that were flagged for overlap with SNPs, as these
provide a signal for underlying genotype variation. Using
these SNP probes, all individuals with longitudinal sam-
ples, including Perl and Per9, paired appropriately with
self (Additional file 2: Figsure S2). Overall, the PC and
cluster plots showed no batched effects and a generally
stable methylation pattern over time, with the exception
of the two participants. The QC analyses also identified
Perl3 as an outlier (Additional file 1: Figsure S1B, S1C).

Table 2 Baseline characteristics of participants by cancer

diagnosis
Cancer'
no yes p-value?
N 13 (65%) 7 (35%)
Age 74 (+£2.3) 75 (£2.5) 0.29
Ancestry/race’ 0.64
AA 7 (35%) 3 (15%)
EA 6 (30%) 4 (20%)
Sex 0.08
Female 9 (45%) 2 (10%)
Male 4 (20%) 5 (25%)
BMI 2701 (£3.77) 27.75 (£542) 0.72

'Counts (percent of total) for categorical variables and mean (SD) for
continuous variables

2p-values based on Chi-square test and ANOVA

3Self-reported race identity; EA = European Americans or Caucasians, and
AA = African Americans
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Since Per13 was diagnosed with leukemia within 6
months of the first Health ABC visit, the distinct methy-
lation pattern is consistent with disease-related changes
in leukocyte composition, and Perl3 was excluded from
further analyses.

Longitudinal changes in CpG-based blood cell
composition

We performed a CpG-based estimation of blood cell pro-
portions [20-22] . We evaluated differences in blood com-
position between baseline and Year 6. The estimated
proportion of CD8+ T-cells decreased, while the propor-
tion of granulocytes increased (Fig. la, b; Table 3). The
proportions of the other blood leukocyte subtypes
remained relatively stable with no significant differences
between the two visits (estimates for all participants at
both time points are in Additional file 3: Table S1). We
however note pronounced changes in cell composition for
Per1, one of the two participants that did not pair with self
in the hierarchical cluster; cellular heterogeneity partly ex-
plains the discordance in the longitudinal data.

Association between CpG-based blood cell estimates and

cancer

We next examined if variation in blood cell composition
was associated with cancer diagnosis. We performed the
analysis stratified by baseline and Year 6. At baseline,
none of the blood cells differentiated between those who
developed cancer and those who remained cancer-free.
By Year 6, CD8+ T-cell proportion was lower and gran-
ulocyte proportion was higher in the cancer-present
group with modest statistical significance (Fig. la, b;
Table 3).

Global patterns in DNA methylation and association with
cell composition

To examine the global patterns of variation in the
methylome, we performed PCA using the 739,648
probes. PC1 to PC5 captured 49% of the variance in the
data (Additional file 4: Data S1). Age and BMI were not
correlated with the top 5 PCs. PC4 showed an associ-
ation with race only at Year 6 (p-value = 0.02), and PC5
with sex only at baseline (p-value =0.02) (full results in
Additional file 4: Data S1).

Correlation with blood cell estimates showed that
PC1, which accounts for 21% of the variance, had a
strong positive correlation with granulocytes and nega-
tive correlations with lymphoid cells (T-cells, B-cells,
and natural killer or NK cells) at both baseline and Year
6 (full correlation matrix is provided in Additional file 4:
Data S1). PC5 was positively correlated with monocytes
at both baseline and Year 6 (Additional file 4: Data S1).
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Fig. 1 Longitudinal plots for DNA methylation-based estimates. The line plots (left) show the individual trajectory over time and the box plots
(right) show the data averaged by visit year (baseline =1, and Year 6) in cancer-free (no) or cancer-present (yes) groups. a Estimated proportions
of CD8+ T-cells show a significant decline over time (baseline vs Year 6, solid line above boxplots) and are lower in the cancer-present group
relative to the cancer-free group at Year 6 (cancer-free vs cancer-present, dashed line above boxplots). b Granulocyte proportions generally
increase over time and are higher in the cancer-present group by Year 6. ¢ The first principal component (PC1) computed from genome-wide
methylation shows significant change over time as well as significant cross-sectional difference between the cancer-free and cancer-present
groups by Year 6. In the line plots, red lines identify individuals who received a cancer diagnosis, and black lines identify those who remained
cancer-free. Significance codes are “p-value < 0.05, " p-value < 0.01

Global patterns in DNA methylation and association with stronger by Year 6 (Table 3; Fig. 1c). The remaining 4 PCs

cancer

We next evaluated whether the PCs could differentiate be-
tween individuals who remained cancer-free compared to
those who received a cancer diagnosis. PC1, which captured
the variation in cellular composition, showed a modest asso-
ciation with cancer diagnosis at baseline and this became

were not associated with cancer (Additional file 4: Data S1).

Differential CpG methylation between cancer and cancer-
free groups

Following the PC analysis, we explored differential
methylation at the level of individual CpGs. Given the
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Table 3 Association between cancer and CpG-based estimates of blood cells and PC1

Comparison between baseline and year 6'

Baseline Year 6 p (baseline vs 6)
CD8T 0.07 +0.06 0.02+0.02 0.006
Gran 046 +£0.14 0.57£0.14 0.02
PCI -731+157 85111341 0.004

Baseline (cancer yes vs. no) Year 6 (cancer yes vs. no)
Cancer No Yes p No Yes p
CD8T 0.08+0.07 0.04+0.02 0.16 0.03+0.02 0.003 +0.005 0.02
Gran 043+£0.14 052+0.12 0.17 0.52+0.14 0.66 £0.09 0.04
PC1 -1219+1373 245+1587 0.06 2.13+10.99 19.14+10.23 0.008

'Excludes Person 13 and data from Year 2
CD8T: CD8+ T-cells; Gran: granulocytes; PC1: principal component 1

small sample size, we carried out simple t-tests to com-
pare the cancer-present vs. cancer-free groups at Year 6,
the time when PC1 showed a significant difference be-
tween the two groups. To control for cellular heterogen-
eity and unmeasured confounding variables, we
performed the EWAS using residual B-values adjusted
for the first 5 PCs. No CpG reached the genome-wide
significant threshold (p-value <5 x 10~ ®). However, three
CpGs, including one located in an intronic CpG island
of the metastasis associated gene (cg02162462, MTA3),
were genome-wide suggestive (p-value <10 °) (Fig. 2).
We considered the top 10 cancer-associated CpGs and
evaluated these for replication (Table 4). Among these
top 10, 5 CpGs were associated with lower methylation
in the cancer group (cancer-hypomethylated), and the
remaining 5 showed higher methylation in the cancer
group (cancer-hypermethylated). To test for replication,

we cross-checked our results with those from Roos et al.,
which evaluated for pan-cancer CpG biomarkers in blood
using the previous version of the Illumina Human Methy-
lation 450 K (HM450K) array. [16]. Of the top 10 CpGs in
Tables 4, 5 probes were also represented in the HM450K
array. The CpG in the intron of RPTOR (cg08129331),
which was cancer-hypomethylated in Health ABC, also
showed a similar hypomethylation in the Roos cohort at
p-value = 0.05. The CpG in the 3" UTR of MRPL44, which
showed cancer-hypermethylation in Health ABC, showed
hypermethylation in the Roos cohort at p-value = 0.08.

Longitudinal changes in CpG methylation and diagnosis
time

Since these CpGs differentiated between those who de-
veloped cancer and those who remained cancer-free at
Year 6, we then explored if the longitudinal changes in

—log,,(p) (VY6; redisual beta)

Chromosome

Fig. 2 Epigenome-wide association plot. The Manhattan plot shows the association between the CpGs and cancer at Year 6. The x-axis
represents the chromosomal locations, and each point depicts a CpG probe. The y-axis is the —log;o(p-value) of differential methylation between those
who received cancer diagnosis vs. those who remained cancer-free. The red horizontal line indicates the genome-wide significant threshold (p-value <5 x
10~ % and the blue horizontal line indicates the suggestive threshold (p-value <10™°)

8 9 10 M 12 13 14 15 17 19 21
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Table 4 Top 10 cancer associated CpGs
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Residual B-value Y6 ttest in HABC® Replication in Roos. et al. Correlation of Y6-Y1 with YTD in HABC®

ProbelD Chr (Mb) ' Location? Canc. yes-no (pval) Canc. yes-no (pval)* R
€g09608390 17(1.00) exon ABR 0.019 (1.1E-06) -042 (041)
€g01399430 5(6.52) intergenic —0.048 (5.6E-06) 0.34 (0.50)
cg02162462 2(42.8) Intron1 MTA3; CGI  —0.027 (1.0E-05) 0.02 (0.93) 0.63 (0.18)
€g25105842 2(224.83)  3'UTR MRPL44 0.016 (1.6E-05) 0.37 (0.08) 0.09 (0.86)
€g05808305 11(2.77) intron; KCNQ1 —0.016 (1.8E-05) 0.30 (0.57)
€g25403416 19(30.19)  3'UTR; C190rf12 0.019 (1.8E-05) —0.14 (0.30) —0.06 (0.91)
cg07516252 14(2464)  promoter RECS; CGl —0.038 (2.0E-05) 0.08 (0.37) 0.89 (0.02)
cg08129331 17(78.56)  Intron1 RPTOR —0.039 (2.4E-05) —-0.13 (0.05) 0.83 (0.04)
€g11784099 21(46.23) Intron1 SUMO3 0.035 (2.4E-05) —0.06 (0.91)
€g04429789 1(45.52) intron ZSWIM5 0.024 (2.7E-05) —-0.81 (0.05)
cD8T —0.027 (0.02) —-0.202 (0.70)
Gran 0.14 (0.04) —0.05 (0.93)
PC1 17.01 (0.008) —0.21 (0.69)
'GRCh37/hg19

2CGl is CpG island

3Mean difference between cancer-present and cancer-free groups of Health ABC at Year 6 and t-test p-values
“Mean difference between cancer discordant twins in Roos et al. (yes - no) and t-test p-values
>Mean Correlation between years to diagnosis and longitudinal change in residual B-values (delta = Year 6 — baseline) in cancer group of Health ABC

methylation over time (deltap = Year 6 — baseline) could
be related to time to cancer diagnosis. For the 5
cancer-hypomethylated CpGs in Table 4, we predicted
that the within-individual decline in methylation at Year
6 (negative deltaP) would be greater in those who were
closer to diagnosis (positive correlation with years to
diagnosis or  YTD). Inversely, for the 5
cancer-hypermethylated CpGs, we predicted that the
within-individual increase in methylation at Year 6
(positive deltaP) would be greater in those closer to diag-
nosis (negative correlation with YTD). With the excep-
tion of three probes that showed Pearson correlation
near 0, the remaining seven CpGs showed a correlation
pattern that was consistent with our predictions (Table
4). The CpGs in REC8 (cg07516252), RPTOR, and
ZSWIMS (cg04429789) were statistically significant at
p-value <0.05. Figure 3 shows the longitudinal plots for
these 3 CpGs and the correlation between deltaP and
YTD.

Discussion

Summary

In this study, we evaluated two aspects of the aging
methylome in an older group of participants: (1) differ-
ences in DNA methylation patterns between those who
developed cancer and those who remained cancer-free,
and (2) the longitudinal trajectory over time. We used
DNA purified from peripheral blood cells collected from
a subset of Health ABC Study participants who provided
DNA samples separated by approximately 5 years. Over-
all, there was strong intra-individual stability from

baseline to Year 6, and with the exception of two partici-
pants, all other participants with longitudinal samples
paired with self when grouped by unsupervised hierarch-
ical clustering. When a large number of random CpGs
or genome-wide data are used in such clustering ana-
lysis, samples generally group by age and shared geno-
type (i.e., either monozygotic twins or with self), with
few exceptions [25—27]. The few exceptions likely reflect
individual discordance and epigenetic drift that occurs
within a person, particularly at old age [23, 24]. We
found that cellular composition is a major source of
variation and significantly contributed to the variance
explained by the primary principal component (PC1). In
terms of the biomarker utility of DNA methylation, our
study highlighted a few CpGs as potential biomarkers,
and the dynamic changes over time at these CpGs were
correlated with time to cancer diagnosis.

Cellular heterogeneity as both informative and a

potential confounder

Cellular composition is clearly a major correlate of DNA
methylation and can be a confounding variable when we
attempt to relate the methylome derived from heteroge-
neous tissue to aging and disease [28]. The composition
of cells in circulating blood can be influenced by natural
immune aging and also by numerous correlated health
variables including lifestyle, infectious disease, leukemia
or similar cancers, and environmental exposures. For ex-
ample, one of the most consistent features of the aging
immune system involves thymic involution and the
time-dependent decline in both the absolute number
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Fig. 3 Longitudinal rate of change in CpG methylation. The line plots (left) show the individual DNA methylation -values from baseline to Year 6
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and the relative percent of naive CD8+ T-cells [29-32].
A strategy to estimate the composition of cells from
DNA methylation data is to rely on specific CpGs that
are known to be strong cell-specific markers and can
serve as surrogate measures of cellular sub-types [20-
22]. With the current data, we applied this in silico
approach to estimate the relative proportions of CD8
+ T-cells, CD4+ T-cells, B-cells, NK cells, granulo-
cytes, and monocytes. The DNA methylation-based
estimates of cell proportions showed a decrease in
CD8+ T-cells and an increase in granulocytes over
the course of 5years. By Year 6 from baseline, the
proportion of CD8+ T-cells was lower and proportion
of granulocytes higher in the cancer-present group

relative to the cancer-free group. Since the first few
PCs captured the variance due to cellular compos-
ition, PC1 also showed a similar change over time.
PC1 showed a slight distinction between the
cancer-present vs. cancer-free groups even at baseline,
and this became more pronounced by Year 6. These
differences are likely because PC1 summarized the
changes in the composition of multiple cell subtypes
including those that were not estimated using the ref-
erence set of cell-specific CpGs. PCA may therefore
be more effective at capturing the composite changes
arising from different cellular subtypes and may also
be more disease-informative than the estimated pro-
portion of major cell types.
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Our observations are consistent with the general de-
crease in lymphoid cells and increase in myeloid cells dur-
ing aging [29-31]. In line with the lower lymphocytes and
higher granulocytes in the cancer group, work from both
model organisms and humans have shown an inverse rela-
tionship between lymphocytes and granulocytes with
lower B-cells and T-cells, and higher neutrophils being
associated with higher mortality risk [33-35]. While we
cannot disentangle the inter-correlations between aging,
cell composition, and methylation patterns, our results do
demonstrate that DNA methylation data derived from
peripheral blood in older participants can be used to glean
information on their cellular profiles, and this in turn can
be related to their health and disease status.

Identifying (pan)cancer CpGs

Following the cell estimation and PC analysis, we took
an EWAS approach to examine differential methylation
at the level of individual CpGs. Previous studies have
already demonstrated that DNA methylation patterns
can provide a powerful “pan-cancer” biomarker—i.e., an
epigenetic signature of cancer that can serve as a general
biomarker for the presence of cancer, and possibly differ-
ent cancer types as well [36, 37]. The majority of these
studies have involved comparisons between normal vs.
tumor tissue, or are dependent on the shedding of
cell-free DNA from the primary site of cancer and there-
fore are indicators of in situ changes that occur in tumor
cells [36, 38—42]. Relatively few studies have taken a pro-
spective approach that involves sample collection prior
to disease diagnosis [43, 44], and even fewer have
attempted to track longitudinal changes across multiple
timepoints [14, 15]. Nevertheless, these few prospective
studies have shown that both the global patterns and
DNA methylation at specific CpG sites can be indicators
of cancer, and even more strikingly, that some of these
generalized changes can be detected in circulating blood
cells [14, 15, 43, 44].

Given this background, our goal was to examine if we
can also detect similar “pan-cancer” CpG biomarkers.
We used a simple approach and contrasted DNA methy-
lation between the cancer-present and cancer-free
groups at Year 6, the time when we expect the differ-
ences to be more pronounced. Despite the small sample
size, 3 CpGs passed the conventional genome-wide sug-
gestive threshold of 10™° [45], and the suggestive hits in-
cluded a CpG located in the first intron and overlapping
a CpG island within the metastasis associated 1 family
member 3 (MTA3), a gene known to play a role in
tumorigenesis and metastasis. To incorporate the longi-
tudinal information, we then focused on the top 10 dif-
ferentially methylated CpGs and examined whether the
within-individual longitudinal changes in B-values in the
cancer group were correlated with time to diagnosis.
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Due to the small sample size, it was not feasible to
evaluate correlations with cancer stage or progression,
and the correlations were examined only for the time to
the first adjudicated diagnosis. The overall trend indi-
cated that the magnitude of change over five years, with
greater negative slope for cancer-hypomethylated CpGs
and correspondingly greater positive slope for
cancer-hypermethylated CpGs, was correlated with the
time to cancer diagnosis. Although this analysis was car-
ried out in only the 6 cancer cases, the correlations be-
tween delta} and time to diagnosis were significant for
the CpGs in the promoter region of RECS8, and introns
of RPTOR and ZSWIMS.

To gather additional lines of evidence, we examined if
the association with cancer for these CpGs can be repli-
cated in an independent dataset, and if the cognate
genes have been previously related to cancer or tumori-
genesis. For replication we referred to the work by Roos
et al. [16]. While the study by Roos et al. compared
cancer-discordant monozygotic twins and involved a
much wider age range, some design features common to
our study are: (1) the cancer group included samples
collected from individuals who had already received can-
cer diagnosis (post-diagnosis) and from individuals
within 5 years to diagnosis (pre-diagnosis), (2) a variety
of cancer types were represented, and (3) genome-wide
DNA methylation was measured using peripheral blood
cells. In the Health ABC Study set, 3 participants (ex-
cluding Per13 with leukemia) had been diagnosed by
Year 6, and the remaining participants received a diag-
nosis 1-5 years after Year 6. Since the Roos dataset was
generated on the previous version of the Illumina DNA
methylation arrays (HM450K), only 5 of the top 10
probes were represented on that array and could be eval-
uated for replication. Only the CpG in the intron of
RPTOR (cg08129331) was replicated and was also asso-
ciated with a consistently lower methylation in the can-
cer group (p-value=0.05 in Roos study). The 3'UTR
CpG in MRPL44 (cg25105842) showed a consistent in-
crease in methylation in the Roos study, but this did not
reach statistical significance (p-value = 0.08).

Cancer associated CpGs in tumor suppressor genes

Eight of the top ten cancer CpGs were located within
annotated gene features including the top CpG,
¢g09608390, located in the exon of RhoGEF and GTPase
activating protein gene, ABR. We did not find a
clear-cut link between ABR and cancer in the existing
literature. However, among the eight genes in the list,
RECS8 (meiotic recombination protein) is a known tumor
suppressor. There is also evidence that KCNQI (potas-
sium voltage-gated channel member), MTA3, and
ZSWIMS (zinc finger SWIM-type 5) have tumor sup-
pressive roles.
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MTA3 is a chromatin remodeling protein that has a com-
plex association with cancer [46, 47]. In certain types of
malignant tumors such as glioma, certain breast cancers,
and adenocarcinomas, MTA3 is under-expressed and is im-
plicated as a tumor suppressor [47-50]. In other carcin-
omas such as hepatocellular, lung, gastric, and colorectal
cancers, MTA3 is reported to be overexpressed, with higher
expression correlated with tumor progression and poorer
prognosis [51-55]. In the Health ABC samples, the CpG
(cg02162462) located in the first intron of MTA3 and over-
lapping a CpG island had lower methylation in the
cancer-present group at Year 6. At baseline, there was no
significant difference between the groups. The negative del-
taP, though not statistically significant, was greater in par-
ticipants closer to receiving a clinical cancer diagnosis
(Pearson correlation R = 0.63). While we could not replicate
this CpG in the Roos dataset, the collective evidence sug-
gests that methylation changes in the CpG island of MTA3
may be associated with tumor development and
progression.

RECS8 has a more consistent tumor suppressive role and
promoter hypermethylation and suppression of its expres-
sion occurs in tumor cells [56—59]. In the Health ABC sam-
ples, the CpG in the promoter (cg07516252) was
hypomethylated and not hypermethylated in the group that
received cancer diagnosis. The rate of promoter hypome-
thylation was also significantly correlated with time to diag-
nosis (R =0.89). Since our study is blood-based and does
not stem from the primary tumor site, the hypomethylation
may indicate aberrant methylation over time in individuals,
with greater changes observed in those individuals who are
closer to clinical manifestations. However, this promoter
CpG did not replicate in the Roos data.

KCNQI is another tumor suppressor gene, and loss of
its expression is considered to be an indicator of metas-
tasis and poor prognosis [60—62]. There is also evidence
that the reduction in KCNQ!I expression in cancer cells
may be mediated by promoter hypermethylation [61,
63]. In the Health ABC samples, the intronic CpG
(cg05808305) had much lower methylation in the cancer
group and was significant only at Year 6. Among the
known and potential tumor suppressive genes, only the
intronic CpG in ZSWIMS5 (cg04429789) was associated
with hypermethylation in the Health ABC cancer diag-
nosed group; for this CpG, the positive deltaPp was sig-
nificantly correlated with time to diagnosis with greater
positive change in those closer to receiving a diagnosis
(R=-0.81). So far, we have found only one study show-
ing that the expression of ZSWIMS5 inhibits malignant
progression [64]. We could not test replication for the
CpG in ZSWIMS since this was not a probe that was in-
cluded in the HM450K array.

Based on the multiple lines of evidence, we highlight
the CpG in the first intron of RPTOR (cg08129331) as a
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stronger potential pan-cancer biomarker as this specific
CpG was replicated in the Roos data. This gene codes
for a member of the mTOR protein complex, which
plays a key role in cell growth and proliferation, and dys-
regulation of this signaling pathway is a common feature
in cancers [65]. The lower methylation of this CpG in
cancer-free individuals in Health ABC was significant
only in Year 6. For the longitudinal change, the correl-
ation between the deltaP and time to diagnosis was sig-
nificant for cg08129331. This specific CpG has been
previously presented as a marker to differentiate be-
tween different medulloblastoma subtypes [66]. Another
study has also indicated that the decrease in methylation
in RPTOR measured in peripheral blood may be a bio-
marker for breast cancer, although this failed replication
in a follow-up study [67, 68]. Similar to RECS, there was
more negative change in B-value from Year 1 to 6 in in-
dividuals closer to receiving a cancer diagnosis.

Limitations

The present work was carried out in a very small and
heterogenous group of participants. The cancer-present
group consisted of different types of cancers, and there
was a combination of individuals who received the diag-
nosis before and after Year 6. The differences in DNA
methylation should therefore be interpreted as potential
correlates rather than predictive indicators of disease.
Due to the limitation in sample number, we performed
simple t-test comparisons rather than more complex re-
gressions such as mixed modeling. Furthermore, we con-
sidered the cancer diagnosis as the main outcome
variable and did not account for cancer type, stage or
progression. Additionally, while we took steps to statisti-
cally correct for immune cell composition, the data was
derived from white blood cells from older participants.
The in-silico approach to estimate cell composition can-
not discern the finer repertoire of cellular subtypes that
are known to change particularly in older individuals.
The results we present therefore require further replica-
tion in a larger cohort. Our study is mainly a demonstra-
tion of concept that highlights the utility of longitudinal
blood collection and the potential information on health
and disease that can be gained by tracking dynamic
changes in the methylome.

Conclusion

Taken together, our analysis detected global changes in the
methylome that are partly due to cellular heterogeneity and
also due to changes at specific CpGs that could indicate
cancer development and progression. From the multiple
lines of evidence, we posit methylation in RPTOR as a po-
tential biomarker of cancer that justifies further investiga-
tion and validation.
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