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Background: For glioblastoma (GBM) treatments to be effective in vivo, understanding the effects of the tumor
microenvironment is imperative. In traditional cell culture conditions, glucose concentrations do not model
physiologic levels, nor the diminished concentrations found in tumor niches. We therefore sought to profile the
differences in kinase activity in GBM cells cultured in restricted glucose to identify pathways that could be targeted

Methods: Using the PamStation12 platform, we examined the ability of GBM lysates from cells cultured in standard
or low glucose conditions to phosphorylate 144 tyrosine and 144 serine/threonine peptides that correspond to
known protein phosphorylation sites. Potential kinase targets were identified and validated using small molecule

Results: Using results from two GBM patient-derived xenografts, we determined common changes to peptides
derived from Phospholipase C, Gamma 1 (PLCGT1) and Raf-1. Using PLC and Raf inhibitors, we found a significantly
stronger growth inhibitory effect of the PLC inhibitor U73122 under restricted glucose conditions. In contrast, Raf
inhibitors were significantly growth inhibitory regardless of the nutrient level tested.

Conclusions: Together, our data demonstrate that kinase activity is altered in low glucose conditions and that
kinomic profiling can assist with the identification of effective strategies to target GBM growth. Our data further
suggest the importance of accurately modeling the tumor microenvironment to reproduce cancer cell signaling
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Background

Glioblastoma (GBM) is a highly aggressive brain tumor
and the most commonly occurring primary malignant
glioma in adults, accounting for approximately 50% of
all primary malignant brain tumor diagnoses [1-3].
Standard of care consists of surgical resection, concur-
rent radiation and chemotherapy, followed by adjuvant
chemotherapy. While this treatment has extended the
average survival to 14.6 months and increased 2 year
survival to 17%, the overall prognosis still remains poor
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[4, 5]. GBM has proven difficult to treat due to tumor
heterogeneity and the presence of tumor microenviron-
ments such as low pH, oxygen, and nutrients [6—14].
Initially described as the Warburg Effect, tumor cells
can activate alternative metabolic pathways for produc-
tion of ATP and biomolecules to circumvent microenvi-
ronmental obstacles and fuel tumor growth [15].
Nutrient restriction is a modulator of the cellular meta-
bolic state and can alter the kinase signaling pathways in
the cell, with glucose playing a key role as a precursor
for protein, nucleic acid, and lipid synthesis [9, 16—-20].
Tyrosine kinase inhibition is a common modality in
cancer treatment, as a myriad of components of the pro-
tein tyrosine kinase family have been recognized as
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proto-oncogenes [21]. Previous drugs developed to im-
pede tyrosine kinase activity for cancer treatment have
had limited success, as one of the major challenges is the
presence or development of resistance to treatment
with long-term use, such as acquired resistance to
epidermal growth factor receptor (EGFR) inhibitors [21].
High-throughput profiling of kinase activity (kinomics) al-
lows direct measurement of targetable activity, without
the limitations of using genomic or other molecular surro-
gates. Paired with an unbiased prediction tool, kinomics
has been utilized to help determine responders from
non-responders, with the goal to improve drug efficacy by
applying this technique to patient stratification [21]. The
critical aspect of this technology is its ability to precisely
measure the pertinent mechanism of action of a kinase
inhibitor [21].

One important group of enzymes that may be altered by
kinase activity during cancer progression are phospholip-
ase C (PLC) family members, which serve as modulators
of intracellular lipids and are involved in many cancer sig-
naling cascades. Phospholipase C, gamma 1 (PLCG1) is
most notably characterized in cancer by activation of cel-
lular proliferation in response to growth factors such as
epidermal growth factor receptor (EGFR) and platelet de-
rived growth factor receptor (PDGFR), both common
pathways altered in GBM. Elucidating how these kinase
pathways change in response to local microenvironments
during GBM progression will allow more directed
approaches in treatment.

In this study, we sought to determine how kinase ac-
tivity may be modulated by the tumor microenviron-
ment in GBM, with the goal of identifying important
pathways that could be targeted for cancer treatment.
Utilizing kinase arrays, we were able to determine dif-
ferences in peptide phosphorylation that are nutrient
dependent and predict pathways important for GBM
growth. Our experiments demonstrate the importance
of accurately modeling the tumor microenvironment
for drug screening.

Methods

Cell culture

Cells from dissociated GBM patient-derived xenografts
(PDX) GBM14 and GBM456 were cultured at 37 °C in
Dulbecco’s Modified Eagle’s Medium (DMEM)/F-12 50/
50 with no phenol red, containing Gem21 NeuroPlex
supplement w/o vitamin A, 1% Penicillin/Streptomycin,
1% Sodium Pyruvate, and 20 ng/mL each of recombin-
ant human EGF and FGF basic 145aa. For kinomic as-
says, cells were plated from each cell line in high glucose
media [Neurobasal-A Medium, 25 mM D-Glucose, 1%
Penicillin/Streptomycin, 1%  Sodium Pyruvate, 1%
L-glutamine, 20 ng/mL hEGF and hFGE, B27] or low glu-
cose media [high glucose media diluted 1:10 with
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Neurobasal-A supplemented medium without D-Glucose —
final concentration of glucose is 450 mg/L or 2.5 mM] and
incubated at 37° for a minimum of 3 days prior to harvest.
Normal Human Astrocytes (NHA) were purchased from
Lonza and cultured and treated in DMEM high glucose
supplemented with 10% Fetal Bovine Serum, 1% N2 Neuro-
Plex, 3ug hEGE, and 1% Penicillin/Streptomycin. NHA cells
were split and treated alongside the GBM PDX cells with
the indicated inhibitors.

Multiplex in vitro kinase assay

Kinomic profiling was performed in the UAB Kinome
Core using standard methods [22-25]. Briefly, the pro-
tein lysates were extracted from the cells as described
previously and quantified using a standard BCA assay
with duplicates of each sample loaded at 15pg/well for
tyrosine (PTK) assay or 2ug/well for serine/threonine
(STK) assay onto the PamChips (PamGene International,
‘s-Hertogenbosch, The Netherlands). The in vitro kinase
assay images were captured using the PamGene Evolve
Software on the PamStation®12 platform and then im-
ages were imported to BioNavigator for raw primary
analysis. Phosphorylation as measured by FITC intensity
was captured multiple times during the course of the
assay as the lysate is pumped across the array in cycles
for the kinetic portion of the assay. During the kinetic
portion, 50 ms exposures were used for image capture at
the indicated cycle number. At the end of the reaction,
the lysate and kinase assay reagents were rinsed off and
multiple camera exposures (10, 20, 50, 100 ms) were in-
tegrated into a post wash slope, multiplied by 100 and
Log2 transformed to compare and visualize signal in
both low and high intensity peptides [21].

Unsupervised clustering analysis

Unsupervised hierarchical clustering of both sample(col-
umn) and peptide(row) using Euclidian distance
means-based hierarchal clustering method with complete
linkage was performed within BioNavigator on all peptides
to generate a clustered heatmap, with a heatmap colored by
Signal change (from peptide mean across all replicates) and
dendrogram trees to show similarity clustering. Addition-
ally, to measure the strength of these relationships, a
pvclust algorithm using R (v3.1.1) and Rstudio was used to
generate approximately unbiased (au) and bootstrap prob-
ability (bp) values for each branch for high signal (>7.0)
peptides.

Inhibitor treatment

Inhibitors were obtained from Selleck Chemicals and
resuspended in DMSO to 10 mM stocks that were
used via serial dilution to generate 1000x stocks for
use at 1 puL/mL to generate the indicated final con-
centrations. After incubating in high and low glucose
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media for at least 3 days, GBM14 and GBM456 cells were
split without using a dissociation reagent or Accutase was
used to split NHA, into 96 well plates in triplicate at a
density of 1000 cells/well in their corresponding high or
low glucose media. Cells were allowed to recover for 24 h
prior to drug or vehicle treatment. Cells were treated with
the PLC inhibitor U73122 to a final concentration of 0.5,
2, and 4 pM or the Raf inhibitor AZ628 at a final concen-
tration of 0.5 or 2 uM. Using Cell Titer Glo 2.0 reagent
(Promega), growth of cells was measured using a lumin-
ometer after treatment with inhibitor at the indicated
timepoints. This experiment was replicated a minimum of
three times.

Statistical analysis

For inhibitor treatments, a student’s t-test was used to
compare the effects of treatment under restricted and
standard glucose at the indicated time points with the
indicated concentration of drug.

Results

Evaluation of the GBM Kinome in physiologic glucose

To better understand the GBM kinome in physiologic-
ally relevant tumor microenvironments, we cultured
GBM cells in standard (25 mM) or low (2.5 mM) glu-
cose (Fig. 1). GBM cells were obtained from dissociated
PDX and subsequently cultured in the absence of serum
but in the presence of EGF, FGF, and B27. These condi-
tions have been shown to best recapitulate parental tu-
mors [26]. We then performed kinomics on both serine/
threonine and tyrosine kinase arrays to monitor phos-
phorylation of substrate peptides with known phosphor-
ylatable target sequences. Following quality control
examination of the phosphorylation curves, we per-
formed an unsupervised hierarchical clustering analysis
to determine how the kinomic signatures of high signal
peptides clustered across all samples/conditions. Not-
ably, the most obvious clustering was by xenograft origin
(Fig. 2a). These data, and the scoring of the clustering
strengths, suggest that any differences in the kinome due
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to changes in glucose levels do not override the intrinsic
differences in the kinome of xenografts derived from dif-
ferent patients (Fig. 2a-b).

We next sought to determine if there were common
peptides that were differentially phosphorylated with low
glucose culture between the two xenografts. We identi-
fied peptides that were uniquely regulated in either
GBM456 or GBM14 cells with a Log2 change in
restricted glucose greater than 0.3 (Fig. 3a) or less
than - 0.3 (Fig. 3b). The phosphorylatable sites in
the proteins that correspond to those in the individ-
ual peptides are indicated. Of note, the protein
modification targets that were identified with culture
in low glucose are predominately tyrosine phosphor-
ylation sites.

A subset of peptides also displayed similar changes in
phosphorylation in both GBM456 and GBM14. To iden-
tify peptides with common increases in phosphorylation,
which are shown in both the labels to the right of the
clustered heatmap (Fig. 2a) and in the overlapping re-
gions of the Venn diagrams (Fig. 3a), the change was
required to be in the same direction with a Log2 of
at least 0.3 in both cell types or 0.5 in one cell type
and 0.2 in the other. Using these criteria, five pep-
tides were shown to have common increases in phos-
phorylation with restricted glucose exposure. These
were peptides derived from regions of muscarinic
acetylcholine receptor M5 (ACMS5_498_510), cluster
of differentiation CD79A (CD79A_181_193), Forkhead
box protein O3 (FOXO3_25_37), phospholipase C,
gamma 1 (PLCG1_764_776), and Raf-1 (RAF1_332_344).
Among these, only the PLCG1 peptide demonstrated
Log2 increases greater than 0.5 for both GBM456 and
GBM14. These data suggested common increases in
PLCG1 phosphorylation at tyrosine 771 and 775 in the
presence of restricted glucose.

We also used a similar approach to identify peptides
with common decreases in phosphorylation upon expos-
ure to restricted glucose. Using the criteria of a Log2
change of at most - 0.3 in both cell types or-0.5 in
one cell type and — 0.2 in the other, six peptides were
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Fig. 1 Overview of the kinomics experimental approach. The PamChip Array Assay permits analysis of peptides with Serine, Threonine, or
Tyrosine phosphorylatable sites. We utilized the assay to measure kinase activity in lysates isolated from GBM cells cultured in low or standard
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Fig. 2 Heatmap of kinomic profiling with xenograft derived cells cultured in standard or restricted glucose. a Unsupervised clustering of kinomic
data from cells isolated from two different GBM PDX of distinct subtype indicates grouping by xenograft followed by the treatment condition
(standard or restricted glucose) (b). Scoring of dendrogram branching using Pvclust with unsupervised clustering (Euclidean/ward) of kinomic
data having >7.0 average Log2 values with approximately unbiased (au) and bootstrap probabilities (bp) values superimposed. Nboot iterations = 1000
J

shown to have common decreases in phosphorylation
(Fig. 3b). These peptides corresponded to regions of CRK
(CRK_214_226), cortactin (SRC8_CHICK_470_482), epi-
dermal growth factor receptor (EGFR_1062_107),
neutrophil cytosol factor 1 (NCF1_296_308), PLCG1

(PLCG1_1246_1258), and RET (RET_680_692). Of these
peptides, only the EGFR derived peptide demonstrated
Log2 change of of at most -0.5 for both GBM456 and
GBM14, but changes in PLCG1 and CRK had a Log2 of
-0.4 or less in both cell types.
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Fig. 3 Proteins and phosphorylation sites corresponding to peptides differentially phosphorylated in restricted glucose. All peptides with a Log2
change > 0.3 (@) or < — 0.3 (b) when GBM456 (blue) or GBM14 (red) cells were cultured in low glucose in comparison to standard conditions are
indicated. The Venn Diagram shows overlapping peptides in the center that have Log2 changes indicated above in both cell types. Peptides for

a. Peptides for which there was at least a < — 0.5 in one cell type and < —0.2 Log2 change in the other are also shown in the overlapping region
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rosine phosphorylation sites

Targeting restricted glucose mediated changes in

phosphorylation

As the data suggested increased phosphorylation at a
subset of common targets among GBMs, we next

considered whether inhibition of these targets could
have distinct effects in low glucose. PLC and RAF small
molecule inhibitors were commercially available, and we
confirmed that the kinetic curves (captured over
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pumping cycles) for peptides PLCG1_764_776 and
RAF1_332_344 demonstrated increased phosphorylation
upon incubation with lysates from GBM cells exposed to
low glucose in comparison to standard glucose (Fig. 4).
The kinetic curves had the most consistent differential
slope for the PLCG1 peptide, so we first tested the im-
pact of increasing concentrations of the PLC inhibitor
U73122. Using an ATP-based luminescent assay to screen
for general changes in cell growth, the highest concentra-
tion of U73122 caused similar inhibition of proliferation
under both standard/high and restricted/low glucose con-
ditions. However, 2 uM of U73122 caused less than 50%
growth inhibition in GBM PDX cells in standard cell cul-
ture conditions, whereas treatment in low glucose blocked
GBM cell growth (Fig. 5a, b). A time course of growth ef-
fects similarly demonstrated that there was a significant
increase in the efficacy of 2 uM of U73122 when cells
were exposed to low glucose (Fig. 5¢, d). This effect was
not observed in non-neoplastic astrocytes (Fig. 5e). We
also did not observe a significant difference in the efficacy
of the RAF inhibitor AZ628 against GBM cells cultured in
standard or restricted glucose (Fig. 5f). Together, these
data indicate that small molecule inhibitor efficacy may
differ depending on the level of glucose in the cell with a
specific finding that PLC but not RAF inhibition was sig-
nificantly different in restricted glucose.
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Discussion

We have investigated the impact of restricted glucose on
the GBM kinome to develop a better understanding of
how modeling of GBM microenvironments could im-
prove our knowledge of tumor cell signaling and drug
screening. Therapies identified via in vitro screens often
fail in clinical trials. While this has been previously at-
tributed to the now well recognized limitations of
long-term passaged cell lines, we expect that a major
contributor is also the failure to culture cells in vitro
under conditions that best mimic the in vivo microenvir-
onment. Improving in vitro model systems is therefore
likely to be one cost-effective method to improve the
translational potential of drug studies.

We found that the kinome of GBM cells is altered by
culture in physiologic glucose in comparison to the
standard cell culture conditions. Specific peptides for re-
gions in PLCG1 and RAF1 with Tyr phosphorylation
sites were more actively phosphorylated under low glu-
cose conditions. Signaling pathways related to PLCG1
and RAF1 have been previously identified to be activated
and/or mutated upon restricted glucose culture: AKT
phosphorylation [27] and RAS mutation [28] increase in
restricted glucose. While these data provide some valid-
ation of our approach, other peptide phosphorylation
changes indicate alterations to pathways that have not
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Fig. 4 Kinetic curves for peptides corresponding to regions of PLCG1 and RAF1. Kinomic profiling demonstrated changes in the peptides that
contain tyrosine phosphorylation sites corresponding to regions of PLCG1 (a, b) and Raf-1 (c, d). Representative curves for results from lysates
isolated from GBM14 (a, ¢) or GBM456 (b, d) cells cultured in standard or restricted glucose with measurements over pumping cycles (time) are shown.
Phosphorylation as measured by FITC intensity was captured at the indicated cycle number as the lysate was pumped across the array in cycles
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been thoroughly investigated in GBMs. A peptide corre-
sponding to ACM5 (CHRM5) was differentially phos-
phorylated in restricted glucose, but there are
limited reports on the potential role of this muscarinic
receptor in glioma. Data do suggest that acetylcholine
can act through muscarinic receptors to induce prolifer-
ation of astrocytes and glioma cells [29, 30], potentially
via the M3 receptors [31]. In contrast, activation of M2
receptors has been associated with decreased glioma
growth [32, 33] and increased cell death [34], including
in the tumor initiating cell subset [35]. Changes in phos-
phorylation to the peptide corresponding to regions of

CD79A, the immunoglobulin-associated alpha chain of
the B-cell antigen receptor complex, further suggest the
importance of studying the impact of tumor microenvi-
ronments on immune system function. Thus, our find-
ings suggest additional avenues of investigation to
further explore the mechanisms through which re-
stricted glucose impacts cancer growth.

PLCG]1 is part of the gamma subclass of PLCs which
exclusively contain SH2 and 3 domains, and the enzyme
has been reported to be an important effector of acti-
vated RTKs such as EGFR and PDGF [36, 37]. The tar-
geting and recruitment of this enzyme to activated RTKs
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requires the SH2 domain [38]. Therefore, the observed
effects in the current study of increased phosphorylation
of Tyr771 and Tyr775 in the context of low glucose
could reasonably be attributed to increased RTK signal-
ing, as these phosphorylation sites lie within the SH2
homology domain. Indeed, EGFR is predicted to be acti-
vated in low glucose when analyzing our results with
Kinexus Kinase Predictor (data not shown). While EGFR
inhibitors have thus far not led to significant improve-
ments in GBM patient survival, these findings and litera-
ture do suggest that other low glucose activated or
elevated upstream kinases could be targeted based on
the kinomic array results.

Short term exposure to restricted nutrient conditions
alters kinase activity in GBM but intrinsic differences in
kinomes between patient samples remain: clustering of
kinomic data was most strongly dependent on the xeno-
graft rather than the glucose level. These data suggest
that the different genetic alterations between tumors are
likely to be the dominant force driving a kinomic signa-
ture. However, we did not compare the kinome of the
GBM cells in distinct cell culture conditions to that in a
portion of the non-dissociated tumor directly. The possi-
bility remains that, even when glucose is at physio-
logical levels, cell culture itself promotes kinomic
shifts. By comparing parental tumor profiles to those
in distinct cell culture conditions, we may identify the
optimal in vitro conditions to mimic in vivo cell sig-
nals. Such optimization would better improve the
translational potential of any molecular, biological, or
drug studies.

Conclusions

Our data provide strong evidence that the kinome of
GBM does change when physiologically relevant glucose
levels are utilized in comparison to the high glucose
levels present in standard medias. As a proof of concept,
we determined that PLCG1 peptide phosphorylation and
efficacy of a PLC inhibitor were significantly altered in
low glucose conditions. When considered in the broader
context of drug screening, these data demonstrate the
utility of high-throughput platforms that incorporate
physiologically relevant microenvironments.
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