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Abstract: Despite tremendous research efforts focused on diagnosis and treatment, pancreatic ductal
adenocarcinoma remains the third leading cause of cancer-related death in the United States, with a 5-year overall
survival rate of less than 5%. Although resistance is rather complex, emerging evidence has demonstrated that
epigenetic alterations (e.g. miRNA) have important roles in PDAC progression as well as resistance to therapy.
Certain miRNAs have been identified as potential prognostic biomarkers in PDAC. In this review, we summarize the
recent developments in miRNA research related to PDAC therapeutic resistance mechanisms and the potential of
miRNAs as prognostic biomarkers for future clinical management of PDAC.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is the third
deadliest cancer in the United States [1]. It is character-
ized by late clinical presentation, early metastasis and
poor prognosis [2]. A large proportion of patients are di-
agnosed with locally advanced or metastatic disease at
the time of presentation [3]. Current therapy for PDAC
mainly involves surgical resection, adjuvant chemother-
apy and radiotherapy [4]. Despite the advancement in
clinical management (e.g. Abraxane), patient outcomes
remain unsatisfactory [5, 6].
In addition to patients presenting with advanced dis-

ease, many patients also experience early appearance of
post-operative recurrence [7]. Therefore, adjuvant treat-
ments (chemotherapy, radiotherapy etc.) are necessary
and critical for management of patients with advanced
disease. However, few effective chemotherapeutic op-
tions exist for advanced PDAC patients in the clinic.
Since 1997, gemcitabine has been approved as the stand-
ard first-line chemotherapeutic, several novel therapeutic
regimens based on gemcitabine have also been investi-
gated for PDAC treatment [8]. Multiple agents have
been assessed in combination with gemcitabine includ-
ing 5-fluorouracil, oxaliplatin, cisplatin and capecitabine

[9–12]. However, the impact on patient survival is rather
limited. Such failure is caused, at least in part, by che-
moresistance. Chemoresistance is mainly classified into
intrinsic and acquired resistance. Compared with intrin-
sic resistance where therapy is ineffective from the start
of treatment, acquired resistance with continuous
chemotherapy ultimately causes relapse and metastasis
[13]. Over the past decade extensive research efforts
have been dedicated to investigate the underlying mech-
anisms of chemoresistance. Resistance involves PDAC
stem cells which have unique characteristics including
enhanced epithelial–mesenchymal transition (EMT), au-
tophagy, and altered metabolism that contributes to
their plastic nature and chemoresistant phenotype. Al-
tered expression of many different genes (e.g. KRAS,
TP53, CCND1, BCL-2, BIRC5) and changes in key sig-
naling pathways (e.g. Notch, PI3K/AKT, NF-κB, Hedge-
hog, cell cycle, apoptosis) also contribute to resistance
[13–16]. Clearly there is an urgent need to develop early
detection and/or novel prognostic biomarkers to help
better manage PDAC treatment to maximize survival
benefits and to avoid toxicity.

Epigenetic regulations mediated by miRNAs in
PDAC resistance mechanism
Based on a large body of growing evidence, we know
PDAC resistance is regulated, at least in part, by epigen-
etic alterations including miRNA. miRNAs are small
non-coding RNAs 18–22 nucleotides in length that have
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been identified to be associated with tumorigenesis, cell
cycle control, apoptosis, proliferation, chemoresistance,
invasion and metastasis [17]. In PDAC, miRNAs have
been demonstrated to modulate key targets and pathways
such as KRAS, TP53, PI3K/AKT, NF-κB and Hedgehog
signaling, and their aberrant expression is associated with
chemoresistance (14). It has been shown that miR-17-92
cluster counteracts quiescence and chemoresistance in a
distinct subpopulation of pancreatic cancer stem cells by
acting through the NODAL/ACTIVIN/TGF-β1 signaling
cascade [18]. A number of important miRNAs in PDAC
are listed in Table 1.
In terms of resistance of PDAC to chemotherapeutic

treatment, miR-21 is one of the most investigated onco-
genic miRNAs related to gemcitabine resistance. Ele-
vated expression of miR-21 inhibits the anti-tumor
activity of gemcitabine, and is significantly associated
with shorter survival time [19]. Giovannetti et al. suggests
that miR-21 contributes to gemcitabine chemoresistance
by inhibiting tumor suppressor gene phosphatase and ten-
sin homologue (PTEN), thereby activating the PI3K/AKT
pathway [20]. Park et al. illustrated that silencing miR-21
leads to cell cycle arrest (G1 phase) and induction of
apoptosis by up-regulating PTEN [21]. Hwang et al.
showed that down-regulation of miR-21 expression corre-
lates with prolong overall survival and benefit from che-
motherapeutic treatment [22]. In addition to miR-21,
several other miRNAs (miR-34, miR-217, miR-96, miR-
145) have been shown to be deregulated and impact the

PI3K/AKT pathway in PDAC [14]. EMT/ mesenchymal-
epithelial transition (MET) has been shown to be critical
in chemoresistance of PDAC and is mediated by key miR-
NAs. Emerging evidence confirms that the miR-200 family
plays a key role in chemoresistance via reversing EMT. Ali
et al. reported that down-regulation of miR-21 and restor-
ation of miR-200b and miR-200c inactivates pAKT by
reactivation of PTEN and reverses EMT, resulted in en-
hanced gemcitabine sensitivity [19]. Furthermore, Li et al.
show that miR-200b, miR-200c, let-7 family (let-7b, let-7c,
let-7d, let-7e) are down-regulated in gemcitabine-resistant
PDAC cells. Restoration of miR-200 and let-7 results in a
reversal of PDAC from EMT to MET and sensitivity to
gemcitabine treatment [23].
Previous studies have demonstrated that the miR-34

family (miR-34a, b and c) is associated with p53 and
p38-MAPK pathways in response to DNA damage [24].
Down-regulation of miR-34 is responsible for progres-
sion of various malignancies including PDAC, lung,
breast, prostate and liver cancer [25]. miR-34 has an
anti-cancer role via modulating targets implicated in
apoptosis, cell cycle, and DNA repair, such as NOTCH,
BCL2, VEGFA, CCND1 and CDK6 [26]. In regards to
PDAC resistance, Ji et al. reported that miR-34 is regu-
lated by p53, and inhibits target genes NOTCH and
BCL-2. Loss of miR-34 leads to the enrichment of cancer
stem cells or tumor-initiating cells and restoration of
miR-34 inhibits PDAC cell growth and enhanced che-
motherapeutic sensitivity to gemcitabine [27].

Table 1 Critical miRNAs as potential diagnostic, therapeutic, prognostic targets in PDAC

miRNAs Function Expression in
tumor

Targets Pathway Ref.

miR-21 Oncogenic Up-regulated PTEN, PDCD4, CDK6, CDKN1A, IL-6R, FAS, TPM1, APAF1,
SOCS5

PI3K/AKT [20–22]

miR-34 Tumor
suppressor

Down-regulated NOTCH, BCL2, VEGFA, CCND1, CDK6 p53/p38-MAPK/NOTCH PI3K/
AKT

[14, 24,
26]

miR-200
family

Tumor
suppressor

Down-regulated E-cadherin, ZEB, Vimentin NOTCH, EMT [14, 20,
23]

Let-7 family Tumor
suppressor

Down-regulated KRAS, HRAS, LIN28, HMGA2, NF2, TRIM71 EMT, KRAS [16]

miR-15a Tumor
suppressor

Down-regulated WANT3A, FGF7, BMI-1 ERK/AKT, EMT [28, 29]

miR-506 Tumor
suppressor

Down-regulated SPHK1, PI3M SPHK1/AKT/NF-κB [31, 32]

miR-221 Oncogenic Up-regulated KIT, CDKN1C, CDKN1B EMT, PKC/NF-κB, PTEN/PI3K/
AKT

[14, 21]

miR-96 Tumor
suppressor

Down-regulated KRAS, AKT KRAS, PI3K/AKT [14, 15]

miR-17-92 Tumor
suppressor

Down-regulated p21, p57, TBX3 NODAL/ACTIVIN/TGF-1 [18]

miR-145 Tumor
suppressor

Down-regulated KRAS, RREB1 KRAS, PI3K/AKT [14]

miR-155 Oncogenic Up-Regulated TP53INP Apoptosis, Exosome
Synthesis

[30]
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Zhang et al. suggested that miR-214 enhances che-
moresistance to gemcitabine by down-regulating the
tumor suppressor gene ING4, while miR-15a can sup-
press the growth of chemoresistant PDAC cells via tar-
geting WNT3A and FGF7, contributing to progression
and proliferation through the phosphorylation of the ki-
nases ERK and AKT [28]. Moreover, Guo et al. indicated
that miR-15a inhibits cell proliferation and EMT by
down-regulating BMI-1 in PDAC [29].
miR-155 expression has been shown to induce gemci-

tabine resistance. Prolonged exposure to gemcitabine
leads to increased miR-155 expression, which inhibits
apoptosis and increases exosome production, resulting
in gemcitabine resistance [30]. Li et al. reported that
miR-506 can inhibit cell proliferation, induce cell cycle
arrest, promote apoptosis and enhance chemosensitivity
to gemcitabine in PDAC by regulating the SPHK1/AKT/
NF-κB signaling pathway [31]. Meanwhile, Du et al. re-
vealed that miR-506 represses PDAC cell proliferation
by targeting PIM3, a member of oncogenic PIM family
[32]. Based on these studies, it appears that miR-506
plays a tumor suppressor role in PDAC. The functions
of several miRNAs in PDAC are shown in Fig. 1.

miRNAs as prognostic biomarkers
Based on the poor prognosis of PDAC, the development
of early detection methods, more effective treatment op-
tions and better prognostic biomarkers are of critical sig-
nificance. Besides the significance of miRNAs for early
detection and diagnosis, accumulating evidence suggests

that miRNAs have great potential as prognostic bio-
markers [33, 34]. Dillhoff et al. showed that 79% of
PDAC patients with miR-21 high expression have poor
outcomes [35]. Bloomston et al. found that six miRNAs
(miR-30a-3p, miR-105, miR-127, miR-187, miR-452, and
miR-518a-2) are predictive of better prognosis (survival
time beyond 2 years) in PDAC patients [36]. One recent
study found that over-expression of miR-212 and miR-
675 and down-regulation of miR-148a, miR-187, and let-
7 g were independent predictors of worse prognosis in
PDAC patients [37]. miR-142-5p and miR-204 are found
to be down-regulated in chemoresistant PDAC cells, and
high expression of these miRNAS in PDAC patients as-
sociates with better overall survival [38]. One study has
concluded that miR-155, miR-203, miR-210, miR-222,
miR-200c and miR-302 are associated with PDAC pa-
tients’ outcome [39]. In our previous studies, we found
that low expression of miR-506 was an independent pre-
dictor of poor prognosis in PDAC, while miR-15a is
significantly related with prognosis of PDAC patients
[29, 31]. Collectively, these studies support the potential
role of miRNAs as prognostic biomarkers for PDAC.

Other class of noncoding RNAs in PDAC resistance
and prognosis
Beyond miRNA, other types of noncoding RNAs (e.g.
lncRNA, circRNA) have also been implicated in cancer
resistance and prognosis [40–42]. It has been reported
that elevated HOTAIR expression is significantly associ-
ated with poor prognosis of PDAC patients. HOTAIR

Fig. 1 Schematic illustration of miRNAs that are important in PDAC through regulation key targets and signaling pathways
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has oncogenic activity by suppressing a number of
interferon-related genes and genes related to cell cycle con-
trol [43]. Huang et al. recently reported that circular RNA,
hsa_circ_0000977, is upregulated in PDAC. Inhibition of
hsa_circ_0000977 suppresses PDAC cell proliferation and
induces cell cycle arrest. Hsa_circ_0000977 interferes with
hsa-miR-874-3p and increases Polo like kinase 1 (PLK1)
expression [44]. It is conceivable that we are still at the early
stage of exploring other types of noncoding RNAs in PDAC
and there will be more exciting discoveries in the future.

Conclusions
It is clear that PDAC utilizes a variety of mechanisms to
maintain a highly resistant phenotype. The highly plastic
nature of PDAC resistance is mediated by genetic and
epigenetic alterations. The epigenetic controls such as
miRNAs allow cells to quickly adapt to the genotoxic
stress environment caused by chemotherapy. miRNAs
can quickly modulate mRNA translation in PDAC cells
in response to chemotherapeutic treatment. As a result,
a number of miRNAs have shown great potential as
prognostic biomarkers in PDAC. Hopefully these bio-
marker miRNAs will form a solid foundation to better
manage clinical treatment strategies to enhance survival
benefits and avoid toxicity. Beyond miRNAs as prognos-
tic biomarkers, as miRNAs are multi-targeted entities
that suppress a number of key targets and pathways,
some of these miRNAs will be good candidates to de-
velop as novel therapeutics for overcoming PDAC
resistance.

Abbreviations
circRNA: circular RNA; EMT: Epithelial–mesenchymal transition; lncRNA: long
noncoding RNA; MET: Mesenchymal–epithelial transition; PDAC: Pancreatic
ductal adenocarcinoma
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