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Background
EVs are particles that are released from cells and delim-
ited by a lipid bilayer membrane [1, 2]. EVs can either 
pinch off the surface of the plasma membrane via out-
ward budding (e.g., microvesicles with a diameter of 
100–1000  nm or apoptotic bodies with a diameter of 
1000–5000 nm) or can be generated inside multivesicu-
lar endosomes or multivesicular bodies (MVBs) via dou-
ble invagination of the plasma membrane and then are 
released to the extracellular space through the exocytosis 
pathway (i.e., exosomes with a diameter of 50–150  nm) 
(Fig.  1) [3, 4]. These EVs enclose many constituents 
of parent cells, including nucleic acids, proteins, and 
metabolites, and display a wide range of sizes. EVs are 
implicated in cell-to-cell communication, allowing cells 
to exchange components and influencing various patho-
physiological processes in both parent and recipient cells 
[5–10].
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Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, 
metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological 
conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-
associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some 
studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental 
cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate 
their biological functions. In this review, we summarized and discussed EV-DNA research advances with an 
emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological 
functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide 
potential directions or guidance for future EV-DNA investigations.
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EVs are present in various tissues (e.g., the brain, mela-
noma, adipose, and liver) [11–16] and body fluids (e.g., 
plasma, urine, breast milk, ascites, saliva, cerebrospinal 
fluid, and bile) [17–21]. The lipid membrane of EVs can 
protect their cargoes against degradation, particularly 
for nucleic acids [22–25]. Compared with EV-associ-
ated RNA (EV-RNA), DNA molecules were later found 
within EVs and have been less investigated. However, EV-
DNA has attracted increasing interest, and correspond-
ing advances are ongoing. Single-strand DNA (ssDNA), 
double-strand DNA (dsDNA) or chromatin DNA, and 
mtDNA, have been detected inside and/or outside EVs 
enriched from in vitro cultured cells and biofluids such 
as plasma [26–32], serum [33, 34], urine [35], gastric 
juice [36], saliva [37], pleural effusion [38], and lymphatic 
drainage [39]. In this review, we summarize and discuss 
advances in EV-DNA-associated detection, biological 
function, and liquid biopsy applications.

EVs are a highly heterogeneous population manifest-
ing in their size, content (cargo), source (cell of origin), 
and functional impact on recipient cells [3]. There is 
a lack of defined nomenclature for EV populations. In 
addition to biogenesis-related terms such as exosome, 
microvesicle, and ectosome, operational terms, such as 
small EVs (sEVs) and large EVs, are commonly used to 
denote EV subtypes in published papers [1]. sEVs are 
usually obtained with a diameter of generally < 200  nm 
after separation via methods such as differential ultracen-
trifugation (dUC) or filtration [1, 2]. Compared with large 
EVs, sEVs are widely prepared as starting materials and 

are studied more in terms of EV-DNA characterization, 
functions, and applications. As such, this review pays 
more attention to DNA fragments derived from a mixed 
population of sEVs without further demonstration of 
their intracellular origin. In addition, as there is no strict 
consensus on upper and lower size cut-offs [1], the term 
EVs is used in the manuscript except that sEVs need to be 
highlighted.

EV-DNA detection
Typically, EV-DNA detection requires three steps: EV 
isolation, DNA extraction, and DNA characterization 
(Fig. 2). On the basis of physical characteristics (such as 
size and density) and biochemical properties (e.g., sur-
face protein markers), a variety of approaches have been 
developed to isolate EVs; these approaches have been 
summarized in many reviews [40–46] and are not intro-
duced here. As current studies have performed DNA 
analyses on EV populations and single EVs, we reviewed 
EV-DNA detection at the population-vesicle and single-
vesicle levels.

EV-DNA detection at the population-vesicle level
Cells can release a large number of EVs in culture media 
or biofluids (e.g., approximately 109/mL in peripheral 
blood) [47, 48]. However, EVs are relatively small in size, 
and the amount of fragmented gDNA or mtDNA is lim-
ited [49]. Thus, EV isolation and DNA extraction meth-
ods are concerned. Currently, dUC is widely used to 
isolate or concentrate EVs from culture media or body 

Fig. 1  Schematic illustration of heterogeneous EVs carrying diverse DNA fragments. EVs can be released by plasma budding or form in the multivesicular 
body (MVB) followed by release through the exocytosis pathway
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fluids. For EV-DNA isolation, various commercial kits 
that are applied to extract DNA from cells, blood or tis-
sues have also been used to isolate DNA from EVs, such 
as the QIAamp Micro Kit (Qiagen), the QIAamp DNA 
Mini Kit (Qiagen), the DNeasy Blood and Tissue Kit 
(Qiagen), the MagAttract HMW DNA Kit (Qiagen), and 
the GenElute Mammalian Genomic DNA Miniprep Kit 
(Sigma‒Aldrich) [26, 27, 30–35]. These DNA isolation 
kits use a silica membrane or magnetic beads to selec-
tively bind DNA and do not require toxic phenol‒chlo-
roform extraction or ethanol precipitation. In addition, 
few EV-DNA isolation kits that integrate EV and DNA 
isolation have also been developed on the market; for 
example, the EV-DNA isolation kits of Duolaimi Bio-
technology Co., Ltd. (Wuhan, China) & GeMExo Biotech 
Corp. (http://www.dlmbiotech.com) were used. Unfortu-
nately, few comparative studies have been performed on 
existing EV and DNA isolation methods to explore the 
optimal procedure for EV-DNA isolation from culture 
media, body fluids, or tissues.

For DNA analysis, DNA enzymes, including DNase I, 
S1 nuclease, and dsDNase, are used to determine which 
forms of DNA fragments (e.g., ssDNA or dsDNA) are 
loaded into EVs [50–54]. To determine the location of 
DNA fragments inside or outside EVs, isolated EVs are 
treated with or without DNA enzymes before EV lysis. 
For quantitation, the EV-DNA concentration can be 
determined via ultraviolet absorbance-based Thermo 
Scientific™ NanoDrop™ Spectrophotometer (with a detec-
tion range of 2‒12,000 ng/µL) or a fluorescence-based 
fluorometer [28]. Comparatively, fluorometric quantita-
tion with a DNA-binding fluorescent dye is more sensi-
tive and specific for the nucleic acid of interest. However, 

before testing, samples for fluorometric quantitation 
need to be processed with kits such as the Invitrogen™ 
Qubit™ dsDNA HS Assay Kit (with a detection range 
of 0.1‒120 ng), the Invitrogen™ Quant-iT™ PicoGreen™ 
dsDNA Assay Kit (with a detection range of 50 pg‒2 µg), 
and the Promega™ QuantiFluor™ dsDNA System (with a 
detection range of 0.01‒200 ng, https://www.promega.
com.cn). In addition, the length of EV-DNA fragments 
can be determined via agarose gel electrophoresis with 
a DNA ladder/marker, Agilent Bioanalyzer 2100 instru-
ment, or Agilent 4200 TapeStation instrument. Sequenc-
ing results revealed that EV-DNA fragments isolated 
from EV populations span all chromosomes and mito-
chondrial DNA [51, 55].

Although DNA fragments have been detected from 
EVs, there is no consensus on EV-DNA parameters 
including location, form, concentration, and size. It 
seems that large EVs or EV surfaces carry complex DNA 
fragments with greater weights [52, 56, 57]. In addition, 
factors that can cause DNA damage and cellular damage 
or stress increase the amount of DNA fragments loaded 
into EVs from culture media or body fluids [58–65]. 
Takahashi et al. reported that abnormal accumulation of 
harmful DNA in the cytosol could activate the DNA dam-
age response and trigger an aberrant immune response 
via the cGAS (cylic GMP-AMP synthase)-STING (a stim-
ulator of interferon genes) signaling pathway [66]. Thus, 
EV-mediated DNA excretion from cells is presumed to 
be helpful for maintaining cellular homeostasis. Similarly, 
EV-mediated mtDNA release may be necessary to main-
tain subcellular mitochondrial homeostasis [67]. How-
ever, these assumptions need to be proven in the future.

Fig. 2  Schematic workflows of EV-DNA detection at the population-EV and single-EV levels. In general, EVs are first isolated from culture media or body 
fluids, followed by DNA enzyme digestion, EV lysis, DNA extraction, and DNA analysis. When DNA analysis is performed via nanoflow cytometry (nFCM), 
EV lysis and DNA extraction are not needed, but DNA staining is needed. When DNA cargoes are profiled in a single EV via hydrogel-based droplet digital 
multiple displacement amplification (ddMDA), EV lysis is still needed, while DNA extraction is not needed
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Meanwhile, some studies have explored how nuclear 
DNA and mtDNA fragments are loaded into EVs [68, 69]. 
In 2019, Yokoi et al. preliminarily explored the mecha-
nism by which nuclear contents are loaded into exosomes 
[68]. They reported that MVBs and the tetraspanin CD63 
biomarker directly interact with the micronuclei (MN), 
suggesting that gDNA-containing exosomes are likely 
produced following MN collapse, where their nuclear 
contents are shuttled into MVBs via tetraspanins [68]. 
Recently, Zhang et al. reported that the transcription fac-
tor FOXM1 interacts with LC3 in the nucleus and trans-
fers specific chromatin DNA fragments, including the 
DUX4 gene and telomere DNA, to EVs through secre-
tory autography during the lysosome inhibition process 
[69]. This finding revealed for the first time how chroma-
tin DNA fragments are specified to EVs. With respect to 
how mtDNA fragments are loaded into EVs, mitochon-
drial-derived vesicles (MDVs) seem to be involved in 
this process [70]. MDVs have been proposed as another 
method for controlling mitochondrial quality in addi-
tion to the mitochondrial–lysosome axis [71, 72]. Like 
MN-mediated DNA fragments packaged into MVBs [68], 
mtDNA fragments are likely routed to exosomes after 
MDVs interact with MVBs; however, this hypothesis 
needs to be proven. In addition, EVs are enriched in lip-
ids such as cholesterol, phospholipids, and sphingolipids 
[73, 74]. Cytoplasmic DNA is taken up in intraluminal 
vesicles possibly via its interaction with the lipid raft-like 
region of the MVB membrane [75].

However, Jeppesen et al. argued that exosomes do not 
carry DNA or DNA-binding histones [76]. To obtain exo-
somes, they first used the dUC method to isolate crude 
sEVs, followed by purification with high-resolution iodix-
anol density gradient fractionation. Then, immunoaffin-
ity beads targeting exosomal tetraspainins are used to 
specifically isolate exosomes from other types of sEVs, 
which fail to collect marker-negative sEV subpopulations 
[76]. Through the use of the same method for isolating 
sEVs from fresh human plasma, Lichá et al. reported that 
60–75% of the DNA remained on the surface of sEVs and 
that a portion of the DNA was localized inside the sEVs 
[52]. In addition, Zhang et al. used asymmetric flow-flow 
fractionation to identify two sEV subpopulations with 
diameters of 90–120 nm and 60–80 nm as well as non-
membranous nanoparticles termed ‘exomeres’ (~ 35 nm), 
and reported that these particles have unique DNA pro-
files [77]. Altogether, DNA fragments can be detected 
from bulk EVs; however, the high intrinsic heterogeneity 
of EV populations may lead to various and even conten-
tious results in terms of EV-DNA features. It is necessary 
to develop optimal enrichment methods to obtain more 
homogeneous EV subpopulations for accurate character-
ization of EV-DNA fragments.

EV-DNA analysis at the single-vesicle level
Currently, technologies for single EV analysis, such as 
nanoflow cytometry (nFCM), atomic force microscopy, 
droplet digital polymerase chain reaction (ddPCR), digi-
tal ELISA, and immunofluorescence imaging, have been 
developed to facilitate in-depth comprehension of vari-
ous EV subtypes with differential physical properties, 
molecular compositions, or biological roles [41, 49, 78–
82]. However, few studies have been carried out to ana-
lyze EV-DNA at the single-EV level thoroughly. On the 
basis of a laboratory-built nFCM, Liu et al. detected sin-
gle EVs bearing DNA fragments labeled with the mem-
brane-permeable nucleic acid stain SYTO™ 16 (Fig.  2) 
[83]. This laboratory-built nFCM method can analyze 
single EVs as small as 40  nm in diameter and single 
DNA fragments of 200  bp. In addition, in combination 
with enzymatic treatment, the results revealed that (1) 
naked DNA or DNA associated with nonvesicular enti-
ties was abundantly present in EV samples prepared from 
cell culture media by dUC; (2) the quantity of EV-DNA 
in individual EVs exhibited high heterogeneity, and the 
population of DNA-positive EVs varied from 30 to 80% 
depending on the cell type; (3) external EV-DNA was 
mainly localized on relatively small EVs (e.g., < 100  nm 
for the HCT-15 cell line), and the secretion of exter-
nal DNA-positive EVs could be significantly reduced by 
exosome secretion pathway inhibition; (4) internal EV-
DNA was mainly packaged inside the lumen of relatively 
large EVs (e.g., 80–200 nm for the HCT-15 cell line); (5) 
dsDNA was the predominant form of both the external 
and internal EV-DNA; (6) histones (H3) were not found 
in EVs, and EV-DNA was not associated with histone 
proteins; and (7) genotoxic drugs induced an increased 
release of DNA-positive EVs and the number of both 
external DNA-positive EVs and internal DNA-positive 
EVs as well as the DNA content.

Additionally, Jiao et al. developed a hydrogel-based 
droplet digital multiple displacement amplification 
(ddMDA) approach for the comprehensive analysis of 
EV-DNA at the single-EV level [84]. EV samples were 
prepared via dUC, and then, single EVs were dispersed in 
thousands of cross-linked poly(ethylene glycol) hydrogel 
droplets and lysed for DNA amplification and identifica-
tion (Fig. 2). The results revealed that (1) 5 − 40% of EVs 
were associated with DNA, and significant differences 
existed not only between normal and tumor cells but 
also between tumor cells treated with anticancer drugs 
and untreated cells; (2) compared with EVs with a mean 
diameter of 109.7 ± 59.1  nm, EVs with a mean diameter 
of 170.4 ± 95.6  nm presented a greater proportion of 
DNA-containing EVs and a more substantial presence 
of intraluminal DNA; (3) these DNA-containing EVs 
carry multiple DNA fragments on average; and (4) both 
dsDNA and ssDNA were detected at the single-EV level. 
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These two studies used EVs isolated from in vitro culture 
media as the starting material for EV-DNA analysis at 
the single-EV level. The features of EV-DNA fragments 
derived from body fluids or tissues remain to be exam-
ined at the single-EV level.

Taken together, current methods for EV-DNA detec-
tion at either the population-EV or single-EV level 
require isolation of EVs from culture media or body flu-
ids in advance (Fig. 2). Hence, the EV isolation method is 
critical and determines which type of EV is used for sub-
sequent DNA analysis. It is unknown whether the char-
acteristics of isolated EV-DNA fragments are consistent 
with those of the original culture media and body fluids. 
The optimal EV isolation method for accurate character-
ization of EV-DNA should be explored.

Biological functions of EV-DNA
EVs released from donor cells can be taken up and con-
vey their molecular cargoes, including DNA, to recipi-
ent cells via receptor‒ligand interactions, endocytosis 
and/or phagocytosis or even membrane fusion, thereby 
exerting effects on recipient cells. Accumulating evi-
dence has revealed that EV-DNA can be transferred to 
recipient cells through horizontal transmission and even 
vertical transmission from parents to offspring. After 
uptake, on the one hand, EV-DNA can offer additional 

gene materials to recipient cells, leading to changes in 
gene transcription, protein translation, and/or phenotype 
(Fig.  3). On the other hand, EV-DNA serves as a signal 
molecule to activate cytoplasmic DNA-sensing pathways 
(e.g., cGAS-STING and the AIM2 inflammasome) and 
drive the immune or inflammatory response in recipient 
cells (Fig. 3).

EV-DNA serves as an additional gene material contributing 
to changes in gene expression and/or the phenotype of 
recipient cells
In 2012, Waldenström et al. reported for the first time 
that DNA-stained (with acridine orange) EVs derived 
from the culture media of cardiomyocytes were trans-
ferred to target fibroblasts and could be seen in the fibro-
blast cytosol and even in the nuclei [85]. However, it is 
not clear whether EV-DNA transfer into recipient cells 
is functional. Since then, increasing evidence indicates 
that EVs contain functional genes or chromosomal DNA 
fragments and telomeres and transfer them to recipient 
cells, resulting in changes in gene expression and/or phe-
notypes [86–94]. Cai et al. reported that an endogenous 
promoter of the AT1 (angiotensin II type 1) receptor, 
NF-kB, could be recruited to the transferred DNAs in the 
nucleus and increase the transcription of the AT1 recep-
tor in recipient HEK293 cells [86]. In addition, unique 

Fig. 3  Schematic overview of DNA-containing EVs acting on recipient cells. Heterogeneous-source DNA-containing EVs can be transferred to recipient 
cells and transform or affect their biological responses: (1) EV-DNA may translocate to the recipient cell nucleus and/or mitochondria and be integrated 
into the host genome, resulting in changes in the gene expression and/or phenotype of recipient cells; (2) EV-DNA may activate cytosolic DNA sensors 
of recipient cells, triggering the innate immune or inflammatory response
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BCR/ABL hybrid gene-containing EVs derived from 
human chronic myelogenous leukemia K562 cells were 
found to be transportable to HEK293 cells or neutrophils, 
resulting in the expression of the BCR/ABL hybrid gene 
mRNA and protein in the recipient cells [86]. K562 cell-
derived EVs were injected into the tail vein of Sprague‒
Dawley rats and immunodeficient NOD/SCID mice, and 
some characteristics of chronic myeloid leukemia, such 
as fever, thinning, splenomegaly, and neutrophilia, but 
reduced neutrophil phagocytic activity were observed 
[87]. Lanna et al. also reported that EV-mediated telo-
mere transfer from antigen-presenting cells (APCs) to 
T cells (primarily naïve and central memory cells) dur-
ing initial synaptic contact with APCs could elongate 
the telomeres of T cells and make them stemlike and/or 
central long-lived memory cells, conferring long-lasting 
immune protection [88].

Additionally, EVs bearing tumor-associated oncogene 
DNA or mutated gene DNA were found to be able to 
drive a protumorigenic phenotype in normal recipient 
cells [89–92]. EVs derived from patients with dediffer-
entiated liposarcoma (DDLPS) or DDLPS cell lines carry 
MDM2 oncogene DNA. These EVs can be transferred to 
preadipocytes, leading to impaired p53 activity in preadi-
pocytes and increased proliferation, migration, and pro-
duction of matrix metalloproteinase 2 [89]. Domenis et 
al. showed that mutated dsDNA (TP53 c.818G > A and 
KRAS c.35G > T) in EVs derived from the human colon 
cancer cell line SW480 could be actively transcribed 
in normal CCD841-CoN colon epithelial and THLE-2 
hepatic cells, thereby transforming normal cells and 
modifying their phenotypes, such as proliferation and 
migration [90, 91].

With respect to cancer therapy, studies have shown 
that EV-mediated mtDNA transfer helps cancer cells 
acquire resistance [55, 93]. Hormonal therapy can induce 
oxidative phosphorylation-deficient breast cancer cells. 
However, the impaired metabolism in cancer cells could 
be rescued via the transfer of mtDNA-laden EVs derived 
from cancer-associated fibroblasts, promoting escape 
from metabolic quiescence and hormonal therapy-resis-
tant metastatic breast cancer [55]. Additionally, EVs 
from chemoresistant triple-negative breast cancer cells 
can transfer mtDNA to sensitive cancer cells by increas-
ing mtDNA levels with mutations in the mtND4 gene 
(which is responsible for tumorigenesis), thus leading to 
acquired chemoresistance [93].

More recently, Bolumar et al. discovered that maternal 
endometrial EVs could mediate vertical DNA transmis-
sion to preimplantation embryos and demonstrated that 
the internalization of EV-derived nuclear-encoded (n)
DNA/mtDNA by trophoblast cells of murine embryos 
was associated with a reduction in mitochondrial respi-
ration and ATP production [94]. This finding suggested 

that EV-mediated vertical transmission of maternal DNA 
was associated with altered embryo bioenergetics during 
the periconception period. Taken together, these results 
indicate that EVs bearing DNA fragments from donor 
cell nuclear DNA or cytoplasmic mtDNA can be inter-
nalized and incorporated into the genome of recipient 
cells, resulting in corresponding functional or phenotypic 
changes.

EV-DNA serves as a signal molecule triggering innate 
immunity in immune cells
The innate immune response is the first line of defense 
against infection by bacterial and fungal pathogens. 
Abnormal DNA in the cytosol of cells can be sensed by 
DNA sensors such as toll-like receptor 9, cGAS, and 
STING and absent in melanoma 2 (AIM2), which medi-
ates type I interferon (IFN) production and inflam-
masome activation [95–99]. With respect to tumor 
treatment, Kitai et al. reported that cancer cells treated 
with the antitumor drug topotecan (TPT) secreted DNA-
loaded EVs, which could activate dendritic cells (DCs) 
via a STING-dependent pathway and produce inflam-
matory cytokines [100]. In vivo, TPT administration 
inhibited tumor growth in tumor-bearing mice, which 
was accompanied by the infiltration of activated DCs 
and CD8+ T cells [100]. For radiotherapy, mouse breast 
carcinoma cells treated with 8 Gy X 3 released dsDNA-
containing EVs [101]. Likewise, EV-DNA was shown to 
stimulate DC upregulation of costimulatory molecules 
and STING-dependent activation of IFN [101]. In vivo, 
irradiated tumor cell-derived EVs were found to elicit 
tumor-specific CD8+ T-cell responses and significantly 
better protect mice from tumor development than EVs 
from untreated tumor cells in a prophylactic vaccination 
experiment [101]. Furthermore, Lv et al. reported that 
nonionizing ultraviolet radiation and ionizing radiation 
(X-ray and Boron neutron capture therapy) had differ-
ent effects on EV-DNA fragments derived from tumor 
cells [102]. Boron neutron capture therapy induced more 
DNA fragments in tumor cell-derived EVs. These DNA-
loaded EVs were also shown to activate the DNA-sensing 
pathway in DCs and enhance their functions, including 
antigen presentation and migration capacity [102]. After 
these EV-educated DCs are vaccinated, the effector T 
cells significantly expand and infiltrate into tumors [102]. 
These results suggest that EV-DNA derived from treated 
cancer cells can activate immune cells and elicit protec-
tive antitumor immunity.

In addition, EV-DNA was found to be involved in intes-
tinal immune and inflammatory responses [103–105]. 
Lian et al. reported that chemotherapeutic irinotecan 
(CPT-11) can induce the packaging of a large amount of 
gDNA and mtDNA into the EVs of intestinal cells, which 
can activate the AIM2 inflammasome in innate immune 
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cells (e.g., macrophages and DCs), promote the secretion 
of the mature cytokines IL-1β and IL-18, and cause intes-
tinal toxicity [103]. In addition to chemotherapy-induced 
intestinal immune-dyfunctional response, EV-DNA has 
also been shown to participate in the development of 
inflammatory bowel disease (IBD), such as Crohn’s dis-
ease [104, 105]. A high content of EV-DNA, including 
mtDNA and nuclear DNA fragments, was detected in the 
plasma or colon lavage of murine colitis and Crohn’s dis-
ease patients and was positively correlated with disease 
activity [104]. Zhao et al. discovered that EVs from the 
plasma of active human Crohn’s disease and LPS-dam-
aged colon epithelial cells could trigger STING activation 
and increase inflammation in macrophages, whereas the 
effect disappeared after removal of EV-DNA via sonica-
tion and dsDNase to digest dsDNA in or out of the EVs 
[104]. In IBD patients, gut microbiota-derived EV-DNA 
was also shown to induce barrier function damage and 
inflammatory responses in epithelial cells via the cGAS/
STING pathway [105].

Additionally, EV-mediated DNA transfer has been 
shown to play an important role in pathogen infection 
progression [106–108]. EVs from malaria parasite (Plas-
modium falciparum)-infected red blood cells contain 
parasite gDNA, which can be internalized by monocyte 
cells and stimulate STING-TBK1-IRF3-dependent gene 
induction [108]. Additionally, Torralba et al. reported 
that the interaction of T cells with antigen-bearing DCs 
could initiate the antipathogenic programs of DCs [109]. 
T-cell-derived EVs contain gDNA and mtDNA, which 
can stimulate the cGAS/STING pathway and induce the 
expression of IRF3-dependent interferon-regulated genes 
in DCs [109]. T-cell EV-treated DCs were more resistant 
to subsequent viral infections. These findings indicate 
that the interaction of T cells with DCs has physiologi-
cal consequences for DC functions. T cells prime DCs 
through EV-mediated DNA transfer, suggesting a specific 
role for antigen-dependent contacts in conferring protec-
tion to DCs against pathogen infection.

Taken together, these findings indicate that EV-DNA 
transfer from donor cells to recipient cells has physiologi-
cal and pathological significance. However, the detailed 
mechanisms underlying EV-DNA uptake are poorly 
understood. Recipient cell responses to EVs have been 
shown to rely on the donor cell source and dose [110]. 
The EV dose had a more significant effect than the cell 
source; however, EV cell source-specific responses were 
observed at low doses [110]. In addition, as EVs convey 
complex molecular cargoes to neighboring or distant 
cells, some new phenotypic and molecular responses in 
recipient cells may be attributed to other regulatory mol-
ecules in EVs or synergistic effects of all cargoes in EVs. 
It is strongly necessary to deplete the DNA cargo within 
EVs to determine EV-DNA-induced function.

Liquid biopsy application of EV-DNA
Liquid biopsy is defined as the sampling and analysis of 
components (e.g., circulating tumor cells, circulating cell-
free DNA (cfDNA), circulating tumor DNA (ctDNA), 
circulating tumor RNA, and exosomes present in body 
fluids such as blood, urine, and saliva [111–113]. Com-
pared with tissue biopsy, liquid biopsy is minimally inva-
sive or even noninvasive, which facilitates its routine 
clinical use in patients for disease diagnosis and dynamic 
monitoring of disease progression and treatment 
response. For EVs, the membrane bilayer structure has a 
protective effect on the encapsulated cargoes against deg-
radation. DNA in serum EVs was reported to be stable 
for 1 week at 4 °C, 1 day at room temperature, and after 
repeated freeze‒thaw cycles (less than three times) [24]. 
Clearly, DNA fragments inside EVs are more stable than 
cfDNA. cfDNA was reported to have a short half-life 
of 2–2.5 h [114]. Furthermore, EVs can reflect their cell 
of origin and are associated with the physiological and 
pathological status of the body. Given these advantages, 
EV-DNA has been considered an alternative resource for 
gene detection and screening EV-DNA-based markers 
for disease diagnosis and monitoring (Fig. 4) [115–122]. 
Many studies have explored the potential of EV-DNA-
based liquid biopsy for the treatment of cancers such as 
lung cancer, pancreatic cancer, urinary cancer, and ner-
vous system tumors [123–152].

Lung cancer
Current studies have shown that samples collected from 
lung cancer patients, including blood plasma, pleural 
effusion, and bronchoalveolar lavage fluid (BALF), con-
tain EV-DNA with detectable epidermal growth fac-
tor receptor (EGFR) mutations (e.g., exon 19 deletion, 
p.L858R, p.T790M) (Table  1) [38, 123, 124, 126, 127]. 
In both plasma and BALF samples from non-small cell 
lung cancer (NSCLC) patients, EV-DNA-based analy-
sis showed greater agreement with conventional tissue 
biopsy than did cfDNA-based liquid biopsy [123]. In par-
ticular, the test results of the BALF samples were signifi-
cantly greater than the results of the plasma samples for 
both ctDNA and EV-DNA, indicating that proximal bio-
fluids better represented the tumor status [123]. Further-
more, the use of EV-DNA from BALF samples was more 
effective than tissue biopsy for detecting the p.T790M 
mutation in patients who developed resistance to epi-
dermal growth factor receptor-tyrosine kinase inhibi-
tors (EGFR-TKIs) [123]. In addition to mutation analysis, 
Batochir et al. identified specific methylation patterns 
in the EV-DNA of lung cancer BALF and reported that 
combinations of seven epigenetic biomarkers (including 
HOXA9, HOXD3, PCDH1, NID2, NPTX2, RASSF1A, 
and SFRP2) were capable of discriminating between lung 
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Table 1  EV-NA- and cfDNA-based gene analyses in lung cancer
Cancer type Sample 

type
EV 
collection

EV-DNA 
extraction

EV-NA 
extraction

cfDNA 
extraction

EGFR 
mutation

Gene 
analysis

Comparison 
outcome

Refer-
ence

NSCLC Blood 
plasma 
and BALF

dUC High-
Pure PCR 
Template 
Preparation 
Kit (Roche 
Diagnostics, 
Mannheim, 
Germany)

High-
Pure PCR 
Template 
Preparation 
Kit (Roche 
Diagnostics, 
Mannheim, 
Germany)

Exon 19 dele-
tion, p.L858R, 
p.T790M

PNAC-
lamp™ 
EGFR Muta-
tion Detec-
tion Kit 
(Panagene, 
Daejeon, 
Korea)

EV-DNA outper-
form cfDNA

[123]

Pulmonary 
adenocarcinoma

Pleural 
effusions

dUC High-
Pure PCR 
Template 
Preparation 
Kit

High-
Pure PCR 
Template 
Preparation 
Kit

Exon 19 dele-
tion, p.L858R, 
T790M

PNAC-
lamp™ 
EGFR Muta-
tion Detec-
tion Kit 
(Panagene, 
Daejeon, 
Korea)

EV-DNA outper-
form cfDNA

[126]

Stage IV lung 
adenocarcinoma

Pleural 
effusion

dUC ExoLution Plus 
Isolation Kit
(Exosome 
Diagnostics)

QIAamp 
Circulating 
Nucleic 
Acid Kit 
(Qiagen)

416 cancer-
relevant 
genes

Targeted 
NGS

Comparable [38]

NSCLC Blood 
plasma

ExoQuick™ 
(System 
Biosciences, 
Mountain 
View, CA, 
USA)

MagMAX
Cell-Free 
DNA 
Isolation Kit 
(Thermo 
Fisher 
Scientifc)

MagMAX™ Total 
Nucleic Acid 
Isolation Kit 
(Thermo Fisher 
Scientifc)

MagMAX 
CellFree 
DNA 
Isolation Kit 
(Thermo 
Fisher 
Scientifc, 
Waltham, 
MA, USA)

Exon 19 dele-
tion, p.L858R, 
p.T790M

ddPCR EV-NA outper-
form cfDNA and 
EV-DNA

[127]

Fig. 4  Schematic illustration of EV-DNA-based gene analyses for liquid biopsy. EV-DNA isolated from body fluids can be used for various gene analyses 
(including mutation, copy number variation, epigenetic modification, etc.) with the help of diverse PCR and sequencing techniques
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cancer and benign lung diseases suspected of lung malig-
nancy [125].

With respect to the specimen of pleural effusion, the 
results revealed that (1) EV-DNA- and cfDNA-based 
EGFR genotyping for patients who were either EGFR-
TKI naïve without EGFR-TKI treatment or who acquired 
resistance to EGFR-TKI also showed good agreement 
with tissue biopsy; (2) the detection rate of p.T790M 
using EV-DNA was more efficient than that using cell 
blocks or cfDNA [126]. In 18 patients who acquired 
resistance to EGFR-TKIs with the p.T790M mutation, 
EGFR genotyping via EV-DNA, cfDNA, and cell blocks 
detected this mutation in 13, 11, and 3 patients, respec-
tively [126]. Targeted next-generation sequencing (NGS) 
results revealed that the genetic profiles of EV-DNA and 
cfDNA isolated from pleural effusions of stage IV lung 
adenocarcinoma patients were comparable, except for 
copy number variations (CNVs), which presented lower 
similarities between these two samples [38].

In addition to comparisons between EV-DNA and 
cfDNA, EV-associated nucleic acids (EV-NAs), includ-
ing DNA and RNA, were extracted from the blood 
plasma samples of NSCLC patients, and their clinical 
utility was explored. ddPCR-based EGFR mutation test 
results showed that short-length EV-NAs (~ 200 bp) con-
tained more detectable tumor-derived nucleic acids than 
EV-DNA (~ 200  bp in length or full length) or cfDNA. 
Short-length EV-NAs and cfDNA generally showed good 
concordance with the tissue EGFR results. The sensitiv-
ity of liquid biopsy using EV-NAs was greater than that 
of liquid biopsy using cfDNA [127]. Overall, EV-DNA, 
especially proximal biofluid-derived EV-DNA, is promis-
ing as an alternative source for lung cancer liquid biopsy.

Pancreatic cancer
Human blood samples are often collected from pancre-
atic cancer patients for the detection of cancer-related 
mutations in EV-DNA [128–133] (Table 2). The concen-
tration of EV-DNA in serum was reported to be greater 
than that in plasma; however, the mutant allele fraction 
(MAF) of KRAS in EV-DNA in serum was lower [129]. 
In addition, the levels of tumor-derived mutant KRAS 
DNA were highest in association with large EVs and sEVs 
early and with sEVs and soluble proteins late in disease 
progression, indicating that sEVs were the most enriched 
in tumor-derived DNA throughout disease progression 
[130].

ddPCR-based gene testing revealed that mutant KRAS 
EV-DNA was present in 7.4%, 66.7%, 80%, and 85% of 
age-matched healthy controls and localized, locally 
advanced, and metastatic pancreatic ductal adenocar-
cinoma patients, respectively [133]. Similarly, mutant 
KRAS cfDNA was detected in 14.8%, 45.5%, 30.8%, and 
57.9% of these individuals [133]. A greater percentage 

of pancreatic ductal adenocarcinoma patients presented 
detectable KRAS mutations in EV-DNA than in cfDNA. 
In 48 clinically annotated serum samples from pancre-
atic ductal adenocarcinoma patients, dPCR analyses of 
EV-DNA revealed the KRASG12D mutation in 39.6% of 
patients and the TP53R273H mutation in 4.2% of patients 
[128]. KRASG12D and TP53R273H mutations were detected 
in EV-DNA from intraductal papillary mucinous neo-
plasm patients and chronic pancreatitis patients. Nota-
bly, KRAS mutations were identified in EV-DNA from 
healthy controls, indicating the need for careful consider-
ation and application of liquid biopsy findings [128].

In addition to EV-DNA detection for the diagnosis of 
pancreas-associated pathologies, the clinical utility of 
EV-DNA and cfDNA KRAS MAFs in patients with local-
ized and metastatic pancreatic ductal adenocarcinoma 
was determined, and the results were compared [132]. 
Compared with standard readouts, such as imaging 
and carbohydrate antigen 19 − 9, the dynamics of KRAS 
mutation detection in circulating nucleic acids, including 
EV-DNA and cfDNA, could be correlated with disease 
progression. In 34 patients with potentially resectable 
tumors, an increase in EV-DNA after neoadjuvant ther-
apy was significantly associated with disease progression, 
whereas ctDNA did not correlate with outcomes [132]. 
The concordance rates of KRAS mutations present in 
surgically resected tissue and detected in liquid biopsy 
samples were greater than 95%. These findings suggest 
that EV-DNA-based mutation analyses have great poten-
tial for pancreatic cancer diagnosis and monitoring.

Urinary cancer
Among urinary cancers, body fluids from urothelial blad-
der carcinoma (UBC), prostate cancer, and renal cell 
carcinoma have been reported to contain EV-DNA [35, 
56, 57, 134, 135] (Table 3). For prostate cancer, large EVs 
carry most of the tumor DNA in patient blood plasma, 
whereas negligible amounts of DNA are presented in the 
sEVs from the same patients [56, 57]. Whole-genome 
sequencing (WGS) revealed that plasma EV-DNA from 
patients with metastatic prostate cancer could represent 
tumor genomic features and reflect genetic aberrations 
in the cell of origin [134]. With respect to UBC, cfDNA 
and EV-DNA extracted from urine samples from patients 
undergoing surgical treatment with somatic mutations 
and CNV similar to those of tumor tissues were mea-
sured [35]. Nonetheless, these findings are preliminary, 
and more tests are needed to explore the clinical utility 
of EV-DNA as an alternative biomarker for urinary can-
cer. In addition, as urine is a specific sample for urinary 
cancers and can be easily collected in a truly noninvasive 
manner, urine-derived EV-DNA gene analysis may be 
more effective for detecting urinary cancers.
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Nervous system tumors
For nervous system tumors, glioma- and neuroblastoma-
derived EV-DNA have been analyzed to identify tumor-
associated genes, gene mutations, and gene modifications 
such as methylation [136–140]. In glioblastoma multi-
forme, the NANOG and SOX2 genes were detected in 
EV-DNA isolated from conditioned culture media [136, 
137]. Genome-wide methylation profiling of glioblastoma 
cell-derived EVs revealed that EV-DNA could reflect 
genome-wide methylation profiles [138]. Rosas‑Alonso et 

al. detected of O6-methylguanine-DNA methyltransfer-
ase methylation in the plasma EV-DNA of glioblastoma 
patients with a remarkable sensitivity of 85.7%, and sug-
gested EV-DNA-based liquid biopsy for monitoring dis-
ease progression in IDH-wild type glioblastoma patients 
[139]. Regarding neuroblastoma, EVs from blood plasma 
samples from patients were determined to contain 
dsDNA [140]. Whole exome sequencing results revealed 
that such EV-DNA carried tumor-specific genetic muta-
tions, including those occurring on known oncogenes 

Table 2  EV-DNA- and cfDNA-based gene analyses in pancreatic cancer
Sample origin Sample type EV 

collection
EV-DNA 
extraction

cfDNA 
extraction

Gene 
aberration

Gene 
analysis

Comparison 
outcome

Refer-
ence

Patients with 
pancre-
atic ductal 
adenocarci-
noma, chronic 
pancreatitis 
and intraductal 
papillary 
mucinous 
neoplasm, and 
healthy human 
subjects

Blood serum dUC QIAamp DNA 
Micro Kit 
(Qiagen)

KRASG12D and 
TP53R273H 
mutations

dPCR [128]

Patients with 
I-IV stages of 
pancreatic 
cancer

Blood serum/plasma ExoEasy Maxi 
Kit (Qiagen)/ 
dUC

QIAamp DNA 
Micro Kit 
(Qiagen)

KRAS mutants 
at codons 
12/13

ddPCR [129]

Patients with 
pancreatic can-
cers of known 
mutant KRAS 
G12 genotype

Blood plasma dUC/
Size-exclu-
sion chro-
matography 
(Izon SP1)

Phenol: 
Chloroform: 
Isoamyl 
alcohol

KRAS G12V

KRAS G12D
dPCR [130]

Patients with 
advanced pan-
creatic cancer

Blood plasma dUC/qEV size 
exclusion 
chromatog-
raphy/ Total 
Exosome 
Isolation 
precipitation

DNeasy Blood 
& Tissue Kit 
(Qiagen)

QIAamp 
Circulating 
Nucleic Acid 
kit (Qiagen)

KRAS mutants 
at codons 
12/13

ddPCR comparable [131]

Patients with 
metastatic 
disease, local-
ized disease, 
pancreatic 
cysts and non-
neoplastic 
pancreatic 
disease

Blood plasma dUC QIAamp 
Circulating 
Nucleic Acid 
Kit (Qiagen)

QIAamp 
Circulating 
Nucleic Acid 
Kit (Qiagen)

KRAS mutants 
at codons 
12/13

ddPCR EV-DNA outper-
form cfDNA

[132]

Patients with 
localized, 
locally
advanced, and 
metastatic 
pancreatic 
ductal adeno-
carcinoma and 
healthy 
controls

Blood plasma dUC MagAt-
tract High 
Molecular 
Weight DNA 
kit (Qiagen)

QIAmp Circu-
lating Nucleic 
Acid Kit
(Qiagen)

KRAS mutants 
at codons 
12/13

ddPCR EV-DNA outper-
form cfDNA

[133]
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and tumor suppressor genes in neuroblastoma (ALK, 
CHD5, SHANK2, PHOX2B, TERT, FGFR1, and BRAF), 
and represented the entire exome [140]. Furthermore, 
neuroblastoma-derived EV-DNA was useful for identify-
ing variants responsible for acquired resistance, such as 
mutations in the ALK, TP53, and RAS/MAPK genes that 
occur in relapsed patients [140].

In addition to the abovementioned tumors, bioflu-
ids from other cancers, such as lymphoma [28], pedi-
atric acute myeloid leukemia [30], colorectal cancer 
[141–143], colon cancer [144], breast cancer [145, 146], 
gastric cancer [36], oropharyngeal squamous cell carci-
noma [147], epithelial ovarian cancer [148], pheochro-
mocytoma [149], paraganglioma [149], melanoma [150], 
hepatocellular carcinoma [151], and osteosarcoma [152], 
are sporadically reported having EV-DNA molecules.

More recently, some studies have shown that EV-DNA 
exists in samples of noncancerous diseases [153, 154]. 
The copy number of mtDNA in the blood EVs of patients 
with cardiovascular disease was found to be greater than 
that in healthy subjects [153]. Song et al. also detected 
mutations in the plasma EV-DNA of patients with pul-
monary nodules and developed a compact 21-gene panel 
for the differential diagnosis of malignant PN and benign 
PN [154]. At the NCBI website (http://clinicaltrials.gov), 
9 clinical trials have been registered for exploring the 
role of EV-DNA in cancer screening (NCT06192875), 
cancer diagnosis (NCT03236675, NCT05854563, 
NCT04164134, and NCT04742608), occurrence and 
development of gastric cancer (NCT05956847) and acute 
respiratory distress syndrome caused by extrapulmo-
nary sepsis (NCT05061212), and treatment monitoring 
(NCT03228277 and NCT03217266) (Table  4). Among 
them, only two trials, NCT04164134 and NCT03228277, 
were completed, but no results were posted. Much 
more effort is still needed to validate EV-DNA-based 

biomarkers in independent cohorts or prospective trials 
and establish EV-DNA-based liquid biopsies for cancer 
or noncancerous diseases in the future.

Conclusions and outlooks
In summary, attractive advances have been made in 
the field of EV-DNA research. Nuclear gDNA and/or 
mtDNA fragments have been discovered in EVs isolated 
from culture media and various biofluids. Furthermore, 
EV-DNA has been shown to play diverse roles in multiple 
physiological and pathological processes and potentially 
serves as an alternative gene material for disease liquid 
biopsy. However, technologies that enable the isolation 
of homogeneous EV subpopulations from either culture 
media or biofluids are lacking. dUC has been extensively 
used to isolate and distinguish sEVs from large EVs, but 
the obtained EVs are still a mixed population that can-
not better reflect their biogenesis, cell or tissue origin. It 
is essential to develop novel approaches capable of sepa-
rating EV subpopulations from each other. In addition, 
as there are no standard protocols for EV and DNA iso-
lation, EV-DNA obtained via different approaches may 
present controversial characteristics. The optimal proce-
dures for EV-DNA isolation should also be investigated 
to define EV-DNA features well.

In addition to the discovery and validation of DNA 
within EVs, how EV-DNA is formed and released from 
donor cells followed by uptake, internalization, and func-
tion in recipient cells remains to be further explored to 
better understand the molecular mechanisms behind 
EV-DNA functions. For tissue-derived EVs, studies 
focused on DNA are lacking and should be carried out 
in the future. With respect to liquid biopsy, DNA inside 
EVs seems to be more stable than cfDNA without a 
lipid bilayer coating. More studies should be carried out 
to investigate the translation potential of EV-DNA for 

Table 3  EV-DNA- and cfDNA-based gene analyses in urinary cancer
Cancer 
type

Sample 
type

EV collection EV-DNA 
extraction

cfDNA 
extraction

Gene 
aberration

Gene analysis Comparison 
outcome

Refer-
ence

UBC Urine ExoQuick-TC 
(System Biosci-
ences, Mountain 
View, CA)

QIAamp DNA 
Mini Kit (Qiagen, 
Valencia, CA)

MagMax 
Cell-Free 
DNA 
Isolation Kit 
(Thermo 
Fisher 
Scientific)

somatic muta-
tions of 9 genes 
and CNV

Target gene capture 
sequencing/sWGS

Comparable [35]

Prostate
cancer

Blood 
plasma

dUC/iodixanol 
density gradient 
centrifugation 
(Optiprep™)

QIAamp DNA 
Micro Kit (Qiagen)

WGS [56]

Prostate 
cancer

Blood 
plasma

dUC DNeasy Blood and 
Tissue Kit (Qiagen)

MLH1, PTEN, and 
TP53 genes

real time qPCR [57]

Renal cell 
carcinoma

Blood 
plasma

dUC  Slagboom buffer 
with rproteinase K

mitochondrial 
genes (such as 
HV1 and CYB)

qPCR/dPCR/ NGS [135]

http://clinicaltrials.gov
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disease diagnosis and monitoring. Notably, disease-spe-
cific samples such as BALF for NSCLC, urine for bladder 
cancer, and bile for hilar cholangiocarcinoma are likely 
more efficient for liquid biopsy. In addition to mutations, 
other cancer-associated gene aberrations and epigenetic 
modifications remain to be comprehensively profiled in 
EV-DNA from different body fluids. Taken together, 
continuous research is still needed to comprehensively 
characterize EV-DNA features, deeply parse EV-DNA 
functions, and better apply EV-DNA for disease liquid 
biopsy.
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Plasma of Advanced NSCLC Patients
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NCT05854563 Cough Capture as a Portal into the Lung-ICTR Pilot Cough Recruiting
NCT04164134 New Strategies to Detect Cancers in Carriers of Mutations in RB1: Blood Tests Based on Tumor-

educated Platelets, or Extracellular Vesicles.
Blood Completed

NCT04742608 Development of Liquid Biopsy Technologies for Noninvasive Cancer Diagnostics in Patients with 
Suspicious Thyroid Nodules or Thyroid Cancer
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NCT05061212 The Mechanism of Extracellular Vesicles Containing Mitochondrial DNA in acute respiratory 
distress syndrome (ARDS) Lung Injury Caused by Extrapulmonary Sepsis
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