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Abstract
Background  Multiple studies have shown that tumor-associated macrophages (TAMs) promote cancer initiation and 
progression. However, the reprogramming of macrophages in the tumor microenvironment (TME) and the cross-talk 
between TAMs and malignant subclones in intrahepatic cholangiocarcinoma (iCCA) has not been fully characterized, 
especially in a spatially resolved manner. Deciphering the spatial architecture of variable tissue cellular components in 
iCCA could contribute to the positional context of gene expression containing information pathological changes and 
cellular variability.

Methods  Here, we applied spatial transcriptomics (ST) and digital spatial profiler (DSP) technologies with tumor 
sections from patients with iCCA.

Results  The results reveal that spatial inter- and intra-tumor heterogeneities feature iCCA malignancy, and tumor 
subclones are mainly driven by physical proximity. Tumor cells with TME components shaped the intra-sectional 
heterogenetic spatial architecture. Macrophages are the most infiltrated TME component in iCCA. The protein trefoil 
factor 3 (TFF3) secreted by the malignant subclone can induce macrophages to reprogram to a tumor-promoting 
state, which in turn contributes to an immune-suppressive environment and boosts tumor progression.

Conclusions  In conclusion, our description of the iCCA ecosystem in a spatially resolved manner provides novel 
insights into the spatial features and the immune suppressive landscapes of TME for iCCA.
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Background
As a highly lethal hepatobiliary malignancy, intrahepatic 
cholangiocarcinoma (iCCA) is increasing in incidence 
and has low survival rates [1]. Accumulating evidence 
suggests that iCCA features a dense stromal reaction 
and complex tumor immune microenvironment, com-
posed of immune cells, cancer-associated fibroblasts 
(CAFs), and tumor-associated macrophages (TAMs) 
involved in tumor progression [2, 3]. However, the com-
plicated interaction landscapes of iCCA cells and mul-
tiple stromal components are not entirely understood, 
especially in a spatially resolved way. TAMs dominate 
the immune cell population in the tumor microenviron-
ment (TME) of most solid tumors [4, 5]. The phenotype 
and metabolism of macrophages are affected by intense 
communication with other cells in the TME via cell-cell 
contact-dependent mechanisms and soluble messengers. 
By stimulation, macrophage polarization ranges from 
pro-inflammatory and anti-inflammatory/immune-sup-
pressive activation. Targeting TAMs is a favored immu-
notherapy strategy. Further investigations are needed to 
elucidate the underlying molecular crosstalk mechanisms 
driving iCCA pathogenesis to identify novel therapeutic 
targets.

Histopathology is exclusively used as a diagnostic tool 
in clinical settings, as many diseases are characterized 
by abnormal spatial organization within tissues [6]. Tis-
sue transcriptomes are usually studied using either bulk 
RNA-sequencing (RNA-seq) or single-cell RNA sequenc-
ing (scRNA-seq) approaches, neither of which reserve 
tissue spatial information [6]. Molecular heterogeneity, 
within and between tumors, has been recognized in most 
malignant tumurs [7–10]. Expansion of tumor subclones 
with varying molecular alterations within and beyond 
the entity greatly influences disease evolution and thera-
peutic effects [11–13]. ScRNA-seq is a powerful tool for 
transcriptionally dissecting cellular variability within the 
tissue. It has been applied in previous studies to delin-
eate the inter-tumor heterogeneity of human iCCAs and 
identify four malignant epithelial subclusters with dis-
tinct marker genes [10]. However, the positional context 
of heterogenous gene expression containing information 
regarding pathological changes and cellular variability in 
iCCA is lacking. For this purpose, the spatial transcrip-
tomics (ST) method and digital spatial profiler (DSP) 
technology were developed to decipher the spatial archi-
tecture of variable tissue cellular components in multiple 
physiological or pathological scenarios [14–17].

Here, we aimed to define the transcriptome of specific 
areas and decipher iCCAs’ spatial inter- and intra-tumor 

molecular heterogeneity by applying spatial-resolved 
high-throughput technologies for in situ and quantita-
tive gene expression detection. By retaining the tissue 
domains’ positional information, we could superimpose 
the malignant variability and expression data onto tissue 
histological images, making the transcriptomics spatially 
visible. In addition, we depicted the interaction landscape 
between malignant cells and TAMs that are close to one 
another. The TFF proteins secreted by iCCA cells could 
reprogram macrophages into a tumor-permissive state 
with high S100A protein expression levels.

Methods
ICCA samples and RNA quality control
Three human iCCA samples were obtained from the 
Department of general surgery of Qilu Hospital (Jinan, 
China). This study was conducted in accordance with 
the Declaration of Helsinki with written informed con-
sent from all patients. The project was approved by the 
Regional Ethics Committee at Shandong University, 
Jinan, China. The tumor samples were embedded in 
OCT (#4583, SAKURA) before cryo-sectioning for RNA 
extraction. A 10 μm section for each patient was placed 
in Lysing Matrix D (#116913050, MP Biomedicals) and 
lysed using FastPrep (MP Biomedicals). Total RNA was 
extracted and RIN values were determined. Sections 
underwent successfully steps only if passed the qual-
ity control. Hematoxylin and eosin-stained images were 
manually annotated by a trained pathologist to identify 
different tissue regions, including tumoral, stromal and 
normal hepatocellular regions.

Spatial transcriptomic library preparation and sequencing
Spatial transcriptomic amplification and library prepa-
ration were performed by Annoroad Gene Technology 
(Beijing, China) using Visium Spatial Gene Expression 
platform (10x Genomics) according to the manufactur-
er’s instructions. Final libraries were sequenced on Illu-
mina NovaSeq6000 system (Illumina, Inc., San Diego, 
California, US). Around 3,000 tissue domains in each 
section were captured and analyzed.

Pre-processing of raw data
Raw data was processed with Space Ranger (10x Genom-
ics). The forward read contained the spatial barcode and 
UMI sequence while the reverse read contained the tran-
script information used for mapping to the reference 
GRCh38 human genome with STAR [18]. Afterwards 
data was processed individually using the R package 
STUtility [19] and normalized using the regularized 
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negative binomial regression method implemented in 
the SCTransform function. The number of variable genes 
selected with SCTransform was determined by apply-
ing a residual variance cutoff of 1.1 (variable.features.
rv.th = 1.1) with the additional parameter settings: return.
only.var.genes = FALSE and variable.features.n = NULL. 
Individual data was also processed with Seurat [20] R 
package.

Spot annotation and spatial mapping of single-cell data 
using SPOTlight
We annotated each spot combining the pathological mor-
phology with canonical marker genes and the R package 
SPOTlight [21] which is centered around a seeded non-
negative matrix factorization (NMF) regression, initial-
ized using cell-type marker genes and non-negative least 
squares (NNLS) to subsequently deconvolute ST capture 
locations (spots). For this purpose, scRNA-seq dataset 
(GSE138709) of iCCA samples were downloaded from 
the Gene Expression Omnibus (GEO) database. We used 
the same labels as in the figures from original publication 
[14]. By using annotated single-cell data in combination 
with ST data, SPOTlight estimates proportions of every 
cell type that presents in the single-cell data at each spa-
tial capture location [21]. Integration was performed by 
the wrapper function SPATAwrappers::inferSpotlight().

Marker detection
Differentially expressed genes within each annotated 
zone were determined using the FindAllMarkers function 
in Seurat by performing a Wilcoxon signed-rank test. The 
function performs the test pairwise between each cluster 
and its background (all other spots in the data set). Gene 
markers was filtered to include genes with an adjusted 
p value lower than 0.05 and an average log fold change 
higher than 1.0, thus omitting down-regulated genes.

Receptor-ligand interaction inference
Signaling crosstalk via soluble and membrane-bound 
factors among different spot zones and between macro-
phages and malignant subclones was predicted using the 
R package CellChat v2[22], which is specially designed 
for enabling the inference of cell-cell communication 
from multiple spatially resolved transcriptomics datasets. 
CellChat v2 is based on expanded database CellChatDB 
v2 by including more than 1000 protein and non-protein 
interactions (e.g. metabolic and synaptic signaling) with 
rich annotations.

Digital spatial profiler library preparation and sequencing
The GeoMx Digital Spatial Profiler (DSP) is a method 
for highly multiplex spatial profiling of proteins or 
RNAs on fixed sections by counting unique indexing 
oligonucleotides assigned to each target of interest [23]. 

In the current study, DSP was performed by Capital-
Bio Technology Corporation (Beijing, China) as previ-
ously described [24]. Following probe hybridization, UV 
cleavage, and barcode collection, gene expression was 
quantitated by PCR amplification and Illumina sequenc-
ing. The antibodies used in the study were anti-PanCK 
(#NBP2-33200, Novus) (Cy3, 5.5 µg/ml), anti-CD3 (#sc-
20047AF594, SantaCruz) (Texas Red, 10 µg/ml) and anti-
CD68 (#sc-20060AF647, SantaCruz) (Cy5, 1 µg/ml).

Pseudo-time analysis using monocle
We learned trajectory graphs and performed pseudo-
time analysis of all malignant subclones from individual 
patient using R packages Monocle [25], demonstrating 
the evolution trajectories of cancer cells and distinct 
highly expressed genes along the pseudo-time.

Cell culture
Cholangiocarcinoma cell lines QBC-939 and HUCCT1, 
human leukemia monocytic cell line THP-1 were main-
tained in DMEM media or RPMI-1640 media (Thermo-
Fisher Scientific) supplemented with 10% fetal bovine 
serum (FBS) (Atlanta Biologics), 1% penicillin-streptomy-
cin and 2mM L-glutamine. All cell lines were confirmed 
mycoplasma-free (MycoAlert PLUS mycoplasma detec-
tion kit, Lonza). THP-1 cells were treated with 100ng/ml 
phorbol-12-myristate-13-acetate (PMA) for 24 h to allow 
cell adhesion to the plate and differentiation into resting 
M0 macrophages. For RNA analysis, cells were seeded in 
12-well plates at appropriate numbers (5 × 104 – 3 × 105 
cells per well) to allow cells to grow to ~ 90% confluence 
at the endpoint. For siRNA treatment, cells were seeded 
48 h before being treated with TFF3 siRNA or control 
siRNA. For the coculture experiments, THP-1-derived 
M0 macrophage cells were placed into the bottom wells 
of 6-well plate (Corning, NY) at a density of 10,000 
cells per cm [2]. To obtain TAMs, M0 were cultured by 
the addition of conditioned media from CCA cell lines 
(HUCCT1 or QBC939) for another 48 h.

Quantitative RT-PCR (qPCR)
Cells were seeded in 12-well plates at the density required 
to approach confluence at the end of experiment before 
being lysed for RNA extraction using RNeasy Mini Kit 
(Qiagen). cDNA was created using qScript XLT cDNA 
Supermix (Quantabio) per the manufacturer’s protocol. 
qPCR was carried out using Power SYBR Green Master 
Mix (Applied Biosystems) and primers (Supplemental 
Table 1) in an Applied Biosystems StepOne Real-Time 
PCR cycler: 95 °C (15 s) and 60 °C (1 min). Ct values were 
calculated using StepOne software accompanying the 
real-time cycler.



Page 4 of 15Dong et al. Biomarker Research          (2024) 12:100 

Whole cell extracts and immunoblotting analysis
Cells grown and treated in 12-well plated were washed 
with cold PBS twice and then lysed in RIPA lysis buffer 
(50mM Tris-HCl, pH8.0; 150mM NaCl; 5mM EDTA; 
0.5mM EGTA; 1% Igepal CA-630 (NP-40); 0.1% SDS; 
0.5% Na deoxycholate) supplemented with 1x protease/
phosphatase inhibitor cocktail (#78438, Thermo-Fisher 
Scientific), 2mM Na3VO4 and 10mM NaF. Protein con-
centrations were determined using the BCA protein 
assay (Beyotime). Lysate samples with the same amount 
of total protein (40–50 µg) were mixed with 4x Laem-
mli Sample Buffer (Bio-Rad, with 2-mercaptoethanol) 
and run on 4–20% Express-Plus PAGE gels in Tris-SDS 
running buffer (GenScript). Proteins were transferred to 
PVDF membranes, blocked with 5% non-fat milk and 
incubated with primary and then secondary antibodies.

Immnunohistochemistry
Formalin-fixed paraffin-embedded tissue sections from 
excised specimens were processed for immunohisto-
chemistry (IHC) according to standard procedures. The 
antibodies used for IHC were anti-CD163 (#16646-1-AP, 
Proteintech), anti-S100A4 (#16105-1-AP, Proteintech), 
anti-S100A8 (#15792-1-AP, Proteintech) and anti-TFF3 
(#23277-1-AP, Proteintech). IHC staining was per-
formed according to the manufacturer’s instructions. 
ImageJ software was used to relatively quantify the IHC 
results. The AOD (Average Optical Density) values of 
positively stained area was calculated by using a color 
deconvolution for separating the staining components 
(diaminobezidine and hematoxylin). All sections were 
independently analyzed in a double-blind manner by two 
students, with discrepancies resolved through re-confir-
mation and results reviewed by a clinician.

Multiplexed immunofluorescence assay
Tissues were fixed in 4% paraformaldehyde for 24 h, 
transferred to 30% sucrose for 20 h, embedded in OCT 
(#4583, SAKURA) and frozen at -80 °C; 10 μm thick slices 
were rinsed with PBS followed by blocking in 5% serum, 
2% BSA, and 0.3% Triton X-100 in PBS. For multiplexed 
immunofluorescence (mIF) staining, we followed the 
Opal protocol staining method as previously described 
[26]. Slides were incubated in primary antibodies at 4 °C 
overnight, rinsed with PBS, incubated in secondary anti-
body for 2 h, and mounted with DAPI mounting media. 
Sections were imaged using a Zeiss M1 fluorescent 
microscope. Images were processed using Fiji’s ImageJ 

software. The antibodies used for mIF were anti-PanCK 
(#NBP2-33200, Novus) (Cy3, 5.5 µg/ml), anti-CD3 (#sc-
20047AF594, SantaCruz) (Texas Red, 10 µg/ml) and anti-
CD68 (#sc-20060AF647, SantaCruz) (Cy5, 1 µg/ml); or 
anti-CD163 (#16646-1-AP, Proteintech) (Cy5.5, 1 µg/ml), 
anti-S100A4 (#16105-1-AP, Proteintech) (SpRed, 2.5 µg/
ml), anti-S100A8 (#15792-1-AP, Proteintech) (SpGreen, 
2.5 µg/ml) and anti-TFF3 (# 23277-1-AP, Proteintech) 
(SpOrange, 3.5 µg/ml).

Statistics
Macrophage differentiation, qPCR, western blot, immu-
nohistochemistry and immunofluorescence assays were 
done with at least three technical and biological repli-
cates. Data was shown as mean ± SEM. The parametric 
2-tailed Student t test was used to compare two groups. 
P < 0.05 was considered as statistically significant.

Data transparency
All the sequencing data related to the clinical samples 
described in this study have been deposited in the 
Genome Sequence Archive in National Genomics Data 
Center under the accession number: HRA11087. The raw 
sequencing data are available for non-commercial pur-
poses under controlled access because of data privacy 
laws, and access can be obtained by request to the cor-
responding authors. All other datasets used and/or ana-
lyzed during the current study are available within the 
manuscript and its supplementary information files. The 
source code for bioinformatics analyses can be accessed 
via: https://github.com/xiaolu369/ST-iCCA/blob/main/
ST_code.

Results
Spatial architecture landscape of iCCA
We included three iCCA cases in the current study. 
Table  1 summarizes the clinical characteristics of all 
patients. Around 3,000 spots were captured from each 
section. We utilized a manual histologic annotation 
based on a hematoxylin and eosin (HE) image for each 
case, performed by a trained pathologist, to identify the 
tumor region and stroma area. The pathological annota-
tion was used for comparison with results from the ST 
analysis results and for guiding region selection using 
DSP.

Accordingly, sections of the three iCCA speci-
mens underwent ST library preparation and sequenc-
ing. Analyses using STUtility tool and annotations of 

Table 1  Clinical characteristics for enrolled patients
Sample ID Gender Age Tumor grade TNM Spot counts Median genes/spot Median UMI/spot Total genes
Patient 1 Male 56 G2 T2N0M0, II 3,618 3,209 8,328 21,897
Patient 2 Female 63 G2 T2N1M0, IIIB 3,205 4,998 15,515 22,086
Patient 3 Male 75 G1 T1aN0M0, IA 4,699 5,115 20,399 22,729

https://github.com/xiaolu369/ST-iCCA/blob/main/ST_code
https://github.com/xiaolu369/ST-iCCA/blob/main/ST_code
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Fig. 1 (See legend on next page.)
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transcriptional signatures identified five spot zones in all 
slides, including the malignant_zone (56.27%, featured by 
KRT19), macrophage_enriched_zone (14.72%, featured 
by CD68), hepatocyte_zone (10.61%, highly expressed 
with ALB), immune_zone (9.41%, highly expressed with 
CD3D, MS4A1, and MZB1) and fibroblast/ECM_zone 
(8.99%, featured by ACTA2) (Fig.  1a-c and Supplemen-
tary Fig. 1).

All of the distinct zones were mapped to discrete 
locations. From a spatial view, the majority were malig-
nant_zone spots, which dominated the central part of 
the sections. The normal hepatocytes wrapped around 
the section as adjacent liver tissue. The most infiltrated 
cell type in the TME was the myeloid linage macrophage, 
while there were few tumor-infiltrating T cells and B cells 
at the edges. This was consistent with previous findings 
in which iCCA was not a group of immunogenic malig-
nancies (Fig.  1a-c). However, each patient still had dis-
tinct gene expression profiles and spatial architecture, 
demonstrating the coexistence of multiple cholangiocar-
cinoma signatures within a single tumor type. The pro-
portion of all spatial zones in individual sections showed 
a similar distribution (Supplementary Fig. 1b).

As the ST data indicated, macrophages were the most 
abundantly infiltrated TME component. To further con-
firm this finding, we applied the SPOTlight tool using the 
single-cell RNA-seq data from GSE13870914 (Supple-
mentary Fig.  2a) to deconvolute the ST spots and esti-
mate the proportions of every cell type in the single-cell 
data at each spatial capture location (Fig. 1a right panel 
and Supplementary Fig.  2b). As a single ST spot covers 
around ten cells, so we selected the spots that were anno-
tated as malignant and counted the proportion of domi-
nated TME components. This indicated that the highest 
proportion was macrophage-dominated malignant spots 
(32.15%). The fibroblast-dominated and immune cell-
dominated spots were 10.08% and 14.04% respectively 
(Fig. 1d).

Next, we used the multiplexed immunofluorescence 
(mIF) approach to demonstrate that CD68 positive mac-
rophages were strongly infiltrated in the TME compared 
to the weak infiltration of CD3D positive immune cells 
(Fig.  1e). This suggests a macrophage-highly-infiltrated 
immunophenotype of iCCA. Regarding the surround-
ing normal hepatocytes, a recent paper [27] identified an 
invasive zone around the iCCA tumor border containing 
a subpopulation of damaged hepatocytes with increased 

serum amyloid A1 (SAA1) and A2 (SAA2) expression. 
This could lead to macrophage recruitment and M2 
polarization. Correspondingly, we confirmed high SAA 
expression in the hepatocyte zone (Fig. 1f ), which could 
contribute to the high infiltration of macrophages in the 
TME. We would further explore the mechanisms of mac-
rophage infiltration and their functions in the TME of 
iCCA.

Inter- and intra-patient molecular and spatial 
heterogeneity of iCCA
As inferred by other ST studies on tumors [28], the prom-
inent molecular inter-tumor heterogeneity for dominant 
cancer cells as somatic mutations are patient-specific [29, 
30]. Therefore, we extracted all malignant spots in our 
data for further analysis to properly capture each patient’s 
spatial molecular profile. The malignant spots could be 
further divided into several subclones. Specifically, in 
patient 1, the malignant spots were divided into four sub-
clones: Mal_1_SLC2A1+, which expressed high levels of 
SLC2A1, Mal_2_TFF3+, with high levels of secreted tre-
foil factor proteins (TFFs), Mal_3_REG4+, which featured 
high levels of REG4, and Mal_4_necrotic, demonstrating 
a necrotic phenotype. Similarly, we identified four sub-
clones for patient 2 and patient 3, respectively, includ-
ing a hepatocyte-like subgroup (Mal_1_hepatocyte_like), 
Mal_2_SLC2A1+, Mal_3_TFF3+, and Mal_4_necrotic 
for patient 2, and Mal_1_DMBT1+, Mal_2_REG4+, 
Mal_3_TFF3+, and Mal_4_nacrotic for patient 3 (Fig. 2a, 
b and Supplementary Fig. 1a). Each malignant subclone 
expressed distinct cancer-related genes (Fig. 2b and Sup-
plementary Fig.  3). SLC2A1 is overexpressed in various 
tumors, which could promote tumor glycolysis, prolif-
eration, and migration [31–34]. A newly published study 
reveals SLC2A1 promotes immune suppression and des-
ert of liver metastatic lesions via promoting SPP1 + mac-
rophages and their inhibitory interactions with T cells 
[35]. REG4 is also up-regulated in multiple cancer types 
[36, 37]. The REG4 secreted by cancer cells promotes 
macrophage polarization to M2, promoting tumor 
growth and distant metastasis [38]. Necrosis is a perva-
sive feature of many aggressive, fast-growing tumors, as 
indicated by the association between iCCAs, phagocyte 
recruitment, TME modification, and increased risk of 
tumor metastasis [39].

From a spatial view, the malignant subclones showed 
distinct distribution patterns, either twisted together, like 

(See figure on previous page.)
Fig. 1  Dissecting iCCA ecosystem by spatial transcriptomics RNA sequencing. (a) The spot annotation of ST data and HE staining of tissue sections for 
three iCCA patients (Patient 1/2/3) enrolled in the current study. (b) T-distributed stochastic neighbor (t-SNE) embedding of all spots colored by spot an-
notation as either malignant spot or TME spot (upper panel), KRT19 expression level (middle panel) representing for malignant cell and CD68 expression 
level (bottom panel) for macrophage. (c) Spot proportion of each annotated cell type. Mal: malignant; Mac: macrophage; Fib: fibroblast; Hep: hepatocyte; 
Immu: immune. (d) Spot proportion of malignant spots dominated by specific TME components (macrophage, fibroblast or immune cell). (e) Multiplex 
IF staining of PanCK, CD3 and CD68 on patient tissue sections, the white arrows indicate for CD68 positive macrophages. (f) Average expression of SAA1 
and SAA2 in annotated spot subpopulations
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Fig. 2  Spatial intra-tumor heterogeneity of iCCA. (a) Spatial distribution and proportion of malignant sub-populations in iCCA tissue section. (b) Different 
expressed genes for each malignant sub-population and the spatial expression distribution for typical marker genes. (c) DSP sequencing of 14 ROIs on 
section of patient 3. Left panel showing a schematic overview of DSP workflow and the spatial distribution of ROIs. Antibodies are covalently bonded 
to a DNA indexing oligo with a UV photo-cleavable linker. The solid line indicating the boundary between malignant enriched region and the stroma 
enriched region, and the dashed line indicating the boundaries of malignant sub-populations revealed by ST data. Right heatmap showing the overall 
transcriptional similarities of all ROIs
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in patient 1 or driven by physical proximity and separated 
by stroma regions liker in patient 2 and 3, indicating the 
malignancy was affected by the surrounding microenvi-
ronment, and tumor cells with TME components shaped 
the intra-sectional heterogenetic spatial architecture. 
To confirm the spatial distribution features captured 
by ST data, we further applied the DSP method on sec-
tions adjacent to the one used for ST from patient 3. We 
stained the section with fluorescently labeled antibod-
ies specific to epithelial cell marker PanCK, macrophage 
marker CD68, and leukocyte marker CD3. We manually 
isolated regions of interest (ROI) positive for PanCK or 
CD68 and CD3, which represented regions dominated 
by malignant cells or macrophages and T cells, respec-
tively (Fig. 2c left panel). The cellularity of a typical ROI 
averaged ~ 300 cells. We used the negative probe counts 
to set a quantitation limit [40]. A correlation analysis of 
all ROIs based on the individual regional transcriptomic 
profile demonstrated a spatial proximity similarity pat-
tern (Fig.  2c right panel), consistent with the manual 
demarcation by the dashed lines according to the spatial 
expression profile of the ST data.

The spatial expression of TFFs in iCCA
In our data, distinct patients with iCCA shared a com-
mon malignant subclone, which highly expressed TFFs. 
The TFF protein family includes three members: TFF1, 
TFF2, and TFF3, all of which are mitogens. TFF3 can 
stimulate epithelial cell migration in various systems [41]. 
Previous evidence demonstrated that TFFs were involved 
in the tumorigenesis of cholangiocarcinoma, playing vital 
roles in the early or in situ tumor stages [42]. As TFF3 
is more abundant than the other two proteins (TFF2 is 
usually undetectable, and TFF1 was significantly more 
expressed in benign tumors), we mainly focused on TFF3 
expression in this study. We first detected TFF protein 
expression in our iCCA cohort using IHC staining with 
the TFF3 antibody, which confirmed the prominent dis-
tribution of TFF3 in the tumor region compared with the 
normal biliary tract (Fig. 3a).

Next, to preliminarily explore the function of TFFs in 
the evolution of cholangiocarcinoma malignancy by ST 
data, we constructed the pseudo-time trajectory of all 
malignant spots and visualized the genes varying along 
the pseudo-time. Unsupervised clustering of those genes 
and gene ontology (GO) analysis revealed the dynamic 
transcriptional programs associated with tumorigen-
esis (Fig. 3b). TFF expression was sustained through the 
pseudo-time period in all three cases, indicating TFF 
involvement in malignant tumor evolution. TFFs and 
other genes in the same cluster were enriched in the ‘tight 
junction,’ ‘cell adhesion,’ and ‘HIF-1 signaling’ pathways 
(Fig. 3b and Supplementary Fig. 3b).

To get an overview of the cell-to-cell communication 
landscape in a spatially resolved manner, we used the 
CellChat_v2 tool with an expanded database, including 
more than 1,000 protein and non-protein interactions. 
The overall profiles presented comprehensive crosstalk 
between every two annotated spot zones in all three 
iCCA cases, with differing interaction intensities (Fig. 3c 
and Supplementary Fig.  4a). Further analysis regard-
ing the receptor-ligand interaction number and strength 
revealed that the macrophage group exerted the most 
robust interactions with others, in terms of number and 
intensity. Interestingly, the TFF + malignant subgroup 
showed a more active interaction with the macrophages 
than other malignant subpopulations, either as the 
sender or recipient (Fig.  3d and Supplementary Fig.  4b, 
c). This indicates a complicated underlying crosstalk 
mechanism between TFF-secreting tumor cells and the 
phenotype of macrophages in the TME. Further investi-
gation is warranted.

The tumor-permissive activation states of macrophages in 
the TME of iCCA
Macrophages are extremely versatile and adopt many dif-
ferent activation states or phenotypes in response to their 
environment [43]. Macrophages residing in the TME are 
TAMs. TAMs show a tumor-permissive phenotype that 
is not initiated by lymphocyte signaling but is achieved by 
the TME [44]. In our spatial data, macrophages were the 
most aggregated TME cell cluster penetrating the malig-
nancy, contributing to an immunosuppressive microenvi-
ronment. We investigated the cross-talk between TAMs 
and malignant cells to identify any feedback signals.

First, to explore the heterogenous phenotypes of TAMs 
in iCCA, single cell data of iCCA patients was obtained 
from GSE13870914. We extracted the macrophages for 
sub-clustering (Fig. 4a). All macrophages were annotated 
into four sub-populations, each featured by specifically 
high-expressed marker genes (Fig.  4a, b). Mac_CD163 
demonstrated the classical TAM markers CSF1R and 
MARCO and the classical M2 marker CD163. Mac_SPP1 
cells showed positive levels of the novel TAM markers 
SPP1 and MMP9. Strikingly, the majority of the sub-
population was Mac_S100P, which expressed high lev-
els of S100As genes (S100A4, S100A8, and S100A9) and 
CD163 (Fig.  4b). Recent studies reveal that a monocyte 
lineage with high expression of S100A family genes exerts 
immunosuppressive function by blocking the CD4 + T 
cell immune response [45]. All TAM subsets have vary-
ing levels of the chemokine CXCL12, which is involved 
in tumor proliferation, immune inhibition by exclusion of 
NK cells and T cells from tumor areas, [46–49] and hom-
ing of cancer cells to metastasis-prone tissues [50].

As CD163 is a universal marker for macrophages infil-
trated in iCCAs and its expression indicates alternative 
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macrophage polarization with a tumor-permissive phe-
notype, we attempted to confirm its universally spatial 
distribution in our data (Fig.  4c). We found an immu-
nosuppressive microenvironment in iCCAs. Next, we 
adopted the SPOTlight tool to deconvolve the macro-
phage_enriched spots in our spatial data to estimate the 
proportion of each macrophage sub-population from 

the single cell data. This indicated the dominant macro-
phage subset was Mac_S100P (Fig. 4d). When we quan-
tified the expression of TFF3 and CD163 by choosing 
around ten visual fields under a microscope for each 
patient section (Fig.  4e and Supplementary 5a, b), we 
further observed a positive linear co-distribution of 
CD163 and TFF3 (Fig. 4f ). Furthermore, we included an 

Fig. 3  TFF proteins are overexpressed in iCCA and dominantly mediate the crosstalk between malignant cells and macrophage. (a) IHC staining showing 
an intensive expression of TFF3 in iCCA tissues. (b) Genes varying along the pseudo-time and the enriched signaling pathways for patient 3. (c) Interac-
tions between every two spot groups in patient 1. (d) Interaction number and strength between every two spot groups in patient 1

 



Page 10 of 15Dong et al. Biomarker Research          (2024) 12:100 

Fig. 4  Physical proximity distribution of CD163 + TAMs with TFF3 + malignant cells. (a) tSNE plot of macrophages of single cell data, colored by subclus-
ters. (b) Dot plots showing the expression levels of marker genes of macrophage subclusters. (c) IHC staining showing the expression of CD163 in iCCA 
tissue indicating for the distribution of CD163 + TAMs. (d) SPOTlight tool inferring proportion estimate of each macrophage sub-population from the 
single cell data for the macrophage_enriched spots in ST data. (e) IHC staining showing the physical proximity distributions of CD163 and TFF proteins 
in the same or adjacent microscopic views. (f) Linear correlation of AOD values of TFF3 and CD163. (g) IHC staining of S100A4 and S100A8 for three iCCA 
patients. (h) Multiplexed IF staining of CD163, S100A4, S100A8 and TFF3
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Fig. 5 (See legend on next page.)
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additional independent cohort of 24 iCCA patients to 
perform IHC of TFF3 and CD163, among which, tissue 
sections of 16 patients showed positive staining of TFF3 
with positive of CD163 in physical proximity (Supple-
mentary 5c, d). S100A4 and S100A8 staining confirmed 
their high expression in the macrophage group (Fig. 4i). 
We then applied a multiplexed IF staining method, which 
demonstrated the co-localization of CD163, S100A4, 
and S100A8 surrounding the TFF3-positive malignant 
cells (Fig.  4j and Supplementary Fig.  6a). We assumed 
that the malignant iCCA cells promoted the recruited 
macrophages towards a tumor-permissive direction by 
secreting TFF3 proteins. Those alternatively activated 
macrophage states expressed high levels of S100A pro-
teins terminally towards the M2 polarization.

Interactions between iCCA malignant cells and 
macrophages
To validate our hypotheses, we cultured human mono-
cyte cell line THP-1 and cholangiocarcinoma cell lines 
QBC-939 and HUCCT1 for an in vitro analysis. First, we 
used 100 ng/ml of PMA to induce THP-1 monocytes to 
differentiate into macrophages, as previously reported 
[51]. After 24 h of incubation, we observed a different 
cell geometry (Fig. 5a middle panel) and elevated mRNA 
expression for the macrophage marker CD68 (Fig.  5b). 
This indicated macrophage differentiation (M0) of THP-1 
cells. Then, we co-cultured the supernatant of QBC-939 
or HUCCT1 cells with the unstimulated M0 cells. After 
48 h, M0 cells exhibited the prominent, elongated shape 
of M2 polarization [52] (Fig.  5a right panel). To con-
firm the macrophage polarization state, we performed 
RT-PCR (Fig.  5c, d) and Western blotting (Fig.  5e, f ) to 
evaluate M2 or TAM marker expression. We found that 
macrophages stimulated with the supernatant of cholan-
giocarcinoma cells expressed high levels of M2 markers, 
including CD163, CD206, ARG-1, and IL-10 (Fig.  5c, e 
and Supplementary Fig. 6b). After stimulation, they also 
up-regulated the expression of S100A4 and S100A8 at 
both the mRNA and protein levels (Fig. 5d, f ), consistent 
with the ST data. This suggests that iCCA malignant cells 
promote pro-tumor macrophage reprogramming.

Next, to explore whether the above phenotypic polar-
ization is partly mediated by TFF proteins, we designed 
two siRNAs targeting TFF3 to attenuate its expression 
in QBC-939 cells (Fig.  5g-i). After TFF3 depletion, the 

expression of M2 markers (CD163, CD206, ARG-1, and 
IL-10) and S100A4 and S100A8 were remarkably down-
regulated (Fig.  5i, j), which confirmed our hypotheses 
that iCCA cells induce the M2 phenotype and pro-tumor 
polarization of resident macrophages by secreting TFF 
proteins.

Discussion
Intrahepatic cholangiocarcinoma is a highly heteroge-
neous cancer. However, knowledge regarding its tumor 
microenvironment remains limited, especially in a spa-
tially resolved manner. Here, we provided a spatial atlas 
of human iCCA at a high resolution to better under-
stand the topological architecture of iCCA heterogeneity. 
We applied high-throughput ST and DSP technologies 
to retrieve spatial transcriptomics down to almost an 
individual cell level, and identified a condensed local-
ization of cancer cells with relatively low levels of TME 
cell infiltration. Furthermore, we explored the inter- and 
intra-tumor heterogeneity, considering the tumor sub-
clone organization architecture. The spatial subclones of 
malignant cells from different patients with iCCA were 
similar, although inter-tumor heterogeneity was noted. 
Subclones within the same tumor section were shaped by 
physical proximity and the surrounding microenviron-
ment. Our data revealed complicated spatial intra-tumor 
malignant cell compositions of iCCA that were not evi-
dent through morphologic annotation.

Traditional therapies such as radiation and standard 
chemotherapy (gemcitabine and cisplatin) are mostly 
ineffective for iCCAs and do not significantly improve 
overall survival [53]. As a complex ecosystem, TME can 
provide a niche that favors tumor growth, metastasis, 
chemoresistance, and tumor-specific immune evasion. 
However, knowledge regarding the tumor stroma inter-
action in iCCA is lacking. Previous studies have reported 
that up to 50% of iCCA cases displayed an immune desert 
pattern characterized by very weak expression of TME 
signatures. Approximately 20% of cases were character-
ized by expression of monocyte-derived signatures [54]. 
Our study provided a comprehensive molecular analysis 
of the TME for iCCA, which revealed low immune cell 
infiltration in iCCA ecosystems outside of cancer cores. 
Moreover, we demonstrated that TAMs play a crucial role 
in TME-mediated immunosuppressive microenviron-
ment in iCCA ecosystems. TAMs are negative prognostic 

(See figure on previous page.)
Fig. 5  TFF3 secreted by malignant cells promoted the pro-tumor polarization of TAMs. (a) Schematic overview of THP-1 stimulation workflow. (b) The 
relative expression level of CD68 mRNA in THP-1 cell and stimulated M0 cell. (c) The relative expression levels of canonical marker genes of M2 after co-
culture of cholangiocarcinoma cells with M0 cells. (d) The relative expression levels of S100P genes after co-culture of cholangiocarcinoma cells with M0 
cells. (e) The relative protein level of CD163 after co-culture of cholangiocarcinoma cells with M0 cells. (f) The relative protein levels of S100P genes after 
co-culture of cholangiocarcinoma cells with M0 cells. (g) The relative expression level of TFF3 after depletion of TFF3 with siRNA in QBC-939 cells. (h) IHC 
staining showing the relative protein level of TFF3 after depletion of TFF3 with siRNA in QBC-939 cells. (i) Western blotting showing the relative protein 
level of TFF3 with siRNA in QBC-939 cells and CD163 and S100P in TAMs after depletion of TFF3. (j) The relative mRNA expression levels of canonical marker 
genes of M2 and S100P after depletion of TFF3 with siRNA in QBC-939 cells
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factors for iCCAs [55, 56], which could explain the poor 
prognosis and high relapse rate of human iCCA cases.

TAMs stimulate tumor angiogenesis, suppress tumor 
immunity, and assist with tumor cell migration and inva-
sion [57, 58]. Increased macrophage density in tumor 
sites is correlated with poor patient survival in many 
types of cancer. Cancer cell signaling influences macro-
phage function, while the TAMs-produced proteins pro-
mote tumor growth, establishing a feedback loop. TME 
cells often face oxygen and nutrient deprivation. Hypoxic 
and nutrient stress provokes tumor cell death, shown as 
a necrotic zone in our data. This serves as a communi-
cative system attracting macrophages and directing their 
phenotype [59]. As an aggressive malignancy, hypoxia, 
nutrient deprivation, and cell death are ubiquitous in 
iCCAs. This clarifies why we annotated a necrotic zone in 
all patient cases and detected HIF-1 signaling activation 
sustaining the iCCA tumorigenesis. Interestingly, stud-
ies have demonstrated that macrophages in hypoxic areas 
show more tumor-permissive activation [60].

Macrophages show highly plastic features, and can 
alter their phenotype in response to environmental sig-
nals, which results in fundamentally distinct subpopula-
tions. Pro-inflammatory cytokines, such as interleukin 
(IL)-1β, IL-6, and IL-8, can classically activate macro-
phages to the M1 phenotype, mounting an anti-tumor 
immune response [61]. Hypoxic tumor cells produce 
cytokines such as oncostatin, HMGB-1, TGF-β, or IL-6 
to promote an alternative macrophage (M2) polariza-
tion and tumor progression [62]. Other novel genes up-
regulated in tumor cells, like SLC2A1 and REG4, promote 
M2 polarization. In our data, we identified TFF proteins 
as another group of factors up-regulated by iCCA cells 
that promote the M2 tumor-permissive polarization of 
TAMs. Blocking the cross-talk between malignant cells 
and macrophages by targeting TFF proteins may restrain 
the suppression of immune surveillance, increase the 
immune response against tumors, inhibit iCCA pro-
gression, and improve patient prognosis. Our data is 
based on the Visium 10X technology, meaning that the 
transcriptome data is obtained from a collection of cells 
within each spot, not individual cells. This method may 
mask the heterogeneity between cells. However, Visium 
10X technology can elucidate the positional relationships 
and interactions between cells in space.

Conclusions
In conclusion, our study provides evidence of tumor 
ecosystem heterogeneity in iCCAs regarding immune 
suppression and tumor progression, in addition to the 
crosstalk between iCCA cells and TAMs. Our results 
indicate that high TFF3 expression in iCCA may promote 
macrophage polarization towards the TAMs-M2 pheno-
type. TFF3 may be a potentially important molecule for 

blocking the crosstalk between TAMs and iCCA cells. In 
summary, our data help clarify the mechanisms of tumor-
macrophage interaction and offer new perspectives for 
targeting TFF3 in iCCA treatment.
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