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Introduction
Immunotherapy has been revolutionizing cancer treat-
ments, especially immune checkpoint inhibitors (ICIs), 
bringing significant efficacy in solid tumor treatments. 
Immune checkpoint molecules, like programmed cell 
death protein 1 and its ligand (PD-1/PD-L1), cytotoxic 
T-lymphocyte antigen-4 (CTLA-4), could play substan-
tial roles in both maintaining immune tolerance and 
eliminating tumors. ICIs have been applied in cancer 
immunotherapy, which demonstrated significant effi-
cacy in multiple types of cancer by activating adaptive 
immunity.

The efficacy of ICIs mainly depends on the levels of 
immune checkpoint molecules in tumors [1]. For exam-
ple, PD-L1 expression on tumor cells has become a com-
mon biomarker in selecting lung adenocarcinoma [2] and 
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Abstract
Immunotherapy has emerged as a pivotal modality in cancer treatment, with immune checkpoint inhibitors 
effectively combating malignancies by impeding crucial pathways within the immune system and stimulating 
patients’ immune responses. Soluble forms of immune checkpoints exhibit a remarkable diversity and can be 
readily tracked in circulation, holding immense potential as biomarkers for cancer treatment. An increasing 
number of studies focused on soluble immune checkpoints in cancer have emerged thanks to technological 
advancements. In this systematic review, we comprehensively summarized the recent studies on soluble immune 
checkpoints in human cancer risk prediction, outcome prediction, therapeutic applications, and potential molecular 
mechanisms, which demonstrated the promising future of soluble immune checkpoints in clinical applications. 
The clinical relevance of soluble immune checkpoints has been recognized in multiple cancers, yet the therapeutic 
applications and mechanisms remain obscure. Interpreting the impacts and mechanisms of soluble immune 
checkpoints could shed a light on the novel strategies of cancer screening, treatments, and outcome prediction.
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bladder cancer [3] patients for ICI therapy. However, lim-
ited volumes of biopsy samples and intra-tumor hetero-
geneity restrain the prediction of response to ICIs [4, 5]. 
Therefore, to identify sensitive, easily acquired and mini-
mally invasive biomarkers is urgently needed.

Soluble immune checkpoint molecules are soluble iso-
forms of immune checkpoint molecules in circulation, 
which play distinct roles during carcinogenesis. Soluble 
immune checkpoint molecules could interact with their 
receptors/ligands in tumors, thereby affecting anti-tumor 
immunity. Thus, they have been utilized as biomark-
ers for predicting disease risks, outcomes, and treat-
ment responses in various cancers. For example, soluble 
(s)PD-1/PD-L1have a potential role in the prediction of 
prognosis and treatment of pancreatic cancer (PDCA) 
[6]. In addition, sPD-L1 and sPD-1 levels could serve as 
unfavorable prognostic factors for ovarian cancer (OC), 
and sCTLA-4 is also considered as a potential biomarker 
in the diagnosis of OC [7]. Despite this, soluble immune 
checkpoint molecules remain difficult to be detected due 
to their low levels in the blood. In recent years, multiple 
technical advances have enabled us to precisely detect the 
levels of these biomarkers, like sPD-1 and sPD-L1 [8, 9]. 
Therefore, soluble immune checkpoint molecules could 

be promising biomarkers in cancer screening, prognosis 
prediction and treatment.

Here, we systematically review the recent literatures 
regarding the roles of soluble immune checkpoint mol-
ecules in cancer. We elucidate the applications of soluble 
immune checkpoint molecules in disease risk, outcome 
prediction and therapeutic potentiality in cancer, reflect-
ing current researches and prospectives. We further 
illustrate the molecular mechanisms of soluble immune 
checkpoint molecules in tumor microenvironment 
(TME), highlighting their crosstalk with key signaling 
pathways in cancer.

Soluble immune checkpoint molecules in cancer 
screening
Soluble immune checkpoint molecules are identified 
as biomarkers in cancer screening and early detection 
in multiple cancers. Soluble PD-1, PD-L1, CD28 fam-
ily of receptors, B7 ligands families, LAG3, etc. all have 
reported associations with cancer susceptibility. A sum-
mary of the information gathered on the soluble immune 
checkpoints is shown in Table 1.

Table 1 The role of soluble immune checkpoint molecules in cancer risk prediction
Soluble receptor/ligand Risk prediction The levels in various cancers
sPD-1 ↑ • Elevated in the HCC,[10] TNBC,[11] lung adenocarcinoma,[12] aggressive PCa,[13] papillary 

thyroid cancer,[14] and cHL[15] patients.
↓ • Decreased in the GC,[16] BC,[17] CRC,[18] RCC[19 and NSCLC[20] patients.

sPD-L1 ↑ • Elevated in the SCLC,[21] lung adenocarcinoma,[12] NSCLC,[22] relapsed/refractory multiple 
myeloma,[23] cartilage bone tumors,[24] aggressive PCa,[13] papillary thyroid cancer,[14] 
BC,[17] lymphoma,[25–27] cervical cancer,[28] OC,[29] endometrial cancer,[30] mesothe-
lioma,[31] pancreatic cancer,[32] and GC[33 patients.

↓ • Decreased in the patients with CRC,[18] RCC,[19] BC,[34] and OC.[35]
sPD-L2 ↑ • Increased in the NSCLC[36] and pancreatic cancer [32] patients.
sCTLA-4 & sCD28 ↑ • sCTLA-4 was elevated in the BCC,[37] GC,[38] and OC[7] patients.

↓ • sCTLA-4 and sCD28 were decreased in the BC patients [34].
sCD80 & sCD86 ↓ • sCD80 and sCD86 levels were significantly lower in the early-stage BC patients compared 

with the healthy controls [34].
Soluble B7 ligands ↑ • sB7-H4 was increased in the patients with cervical cancer than that in the cervicitis group [39].

↑ • sB7-H5 levels were increased in the GC, CRC, LC and pancreatic cancer patients [32, 40]
sBTLA ↑ • Upregulated in the PDAC[41] patients.
sHVEM ↑ • Elevated in the patients with GC and BC [42, 43]

↓ • Decreased in the patients with BC [34]
sLAG-3 ↑ • Increased in the pancreatic cancer,[41] advanced ccRCC,[44] and NSCLC[36] patients.

↓ • Decreased in the patients with BCC,[37] lymphatic leiomyoma,[45] and cervical cancer [46].
sTIM-3 ↑ • Increased in the patients with BCC,[37] NSCLC,[36] and PDAC [47].
Soluble TNF ↑ • sCD40 was significantly elevated in the GC[48] and PDAC[49] patients.

↓ • sCD40L was significantly decreased in the GC[48] patients.
↑ • sOX40 was increased in the acute T-cell leukemia [50] patients.

Some well-studied soluble immune checkpoints are listed in the above table. ↑ means the soluble immune checkpoints increased in the patients compared with the 
controls. ↓ means the soluble immune checkpoints decreased in the patients compared with the controls. BC, breast cancer; BCC, basal cell carcinoma; ccRCC, clear 
cell renal cell carcinoma; cHL, classical Hodgkin lymphoma; CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; LC, lung cancer; NSCLC, non-
small cell lung cancer; OC, ovarian cancer; PCa, prostate cancer; PDAC, pancreatic ductal adenocarcinoma; RCC, renal cell carcinoma; SCLC, small cell lung cancer; 
TNBC, triple-negative breast cancer
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Soluble PD-1
PD-1 is the most extensively studied co-inhibitory 
immune checkpoint receptor in T cells, binding to its 
ligands PD-L1 and PD-L2. PD-1 could generate soluble 
isoforms through alternative splicing, which are served as 
predictive biomarkers in cancer screening.

Elevated sPD-1 levels are significantly associated with 
increased susceptibility of cancer. A case-control study 
revealed that with a 1 pg/ml increase in sPD-1 levels, the 
risk of HBV-associated hepatocellular carcinoma (HCC) 
increased 2.02-fold in a multivariate logistic regression 
model [10]. The sPD-1 levels were significantly elevated 
in triple-negative breast cancer (TNBC) patients before 
neoadjuvant chemotherapy (NAC) compared to the 
healthy group (mean ± SD; 549.3 ± 58.76 vs. 379.2 ± 17.30 
pg/mL) [11]. Similarly, sPD-1 levels were found sig-
nificantly higher among the patients compared to the 
matched healthy donors in lung adenocarcinoma, [11] 
aggressive prostate cancer (PCa), [12] papillary thyroid 
cancer, [13] and classical Hodgkin lymphoma (cHL) [14].

However, opposite results were also reported. A 
case-control study involving 100 gastric cancer (GC) 
patients and 60 healthy donors found that sPD-1 levels 
were significantly lower in the former group, while the 
sPD-1 levels were not associated with cancer risk [15]. 
Another study showed that the mean levels of sPD-1 
were 53.07 ± 24.23 pg/mL in the healthy donors and 
47.99 ± 39.32 pg/mL in the group of colorectal cancer 
(CRC) patients [16]. Similar results were also reported in 
breast cancer (BC), [17] renal cell carcinoma (RCC), [18] 
and non-small cell lung cancer (NSCLC) [19].

Soluble PD-L1
PD-L1 and PD-L2 are major ligands of PD-1, playing sub-
stantial roles in ICI therapy. sPD-L1 could also be utilized 
as a screening biomarker for patients with various can-
cers, including HCC, GC, lung cancer (LC) and bladder 
cancer [20].

sPD-L1 has been reported to be associated with dis-
ease susceptibility in multiple cancers. In a study of 
small cell lung cancer (SCLC), the mean sPD-L1 level in 
the SCLC patients was 1.74 ± 0.82 ng/ml, while its level 
was 0.59 ± 0.33 ng/ml in the healthy control group [21]. 
In a prospective cohort study, the preoperative median 
sPD-L1 levels in the GC patients (71.69 pg/mL) were 
significantly higher than the healthy controls (35.34 pg/
mL), and the area under the curve (AUC) for GC diag-
nosis based on sPD-L1 was 0.96 (95% confidence inter-
val (CI): 0.93–0.99) [22]. sPD-L1 levels were also found 
to be significantly elevated in the patients with relapsed/
refractory multiple myeloma and bone tumors compared 
to the healthy donors [23, 24]. Similar results were also 
observed in studies of aggressive PCa, [12] papillary thy-
roid cancer, [13] BC, [17] lymphoma, [25–27] cervical 

cancer, [28] OC, [29] endometrial cancer, [30] mesothe-
lioma, [31] pancreatic cancer, [32] and NSCLC [33].

However, decreased sPD-L1 levels were found in the 
patients with CRC, [16] RCC, [18] BC, [34] and OC [35]. 
Heterogeneity among cancer sites, race disparity, retro-
spective design and different methodologies may influ-
ence the findings, a multi-center based prospective study 
could help address the role of sPD-L1 in cancer.

The CD28 family of receptors
Soluble CTLA-4 and soluble CD28
CTLA-4 competes with CD28 to bind the common 
ligands B7-1 (CD80) and B7-2 (CD86), constituting the 
most definitely characterized regulatory T cell pathway 
[36]. Therefore, CTLA-4 and CD28 soluble isoforms play 
vital roles in anti-tumor immune responses.

Several studies reported the roles of soluble CTLA-4 
and CD28 in cancer screening. One study reported 
that the median plasma levels of CTLA-4 and CD28 in 
patients with early-stage BC were both significantly 
lower than that in the healthy controls [34]. The median 
sCTLA-4 levels in metastatic melanoma patients were 
also slightly lower than that in the healthy donors, but 
the difference was not statistically significant [37]. Inter-
estingly, another case-control study demonstrated that 
the CTLA-4 levels in patients with basal cell carcinoma 
(BCC) were significantly increased compared with the 
healthy individuals, with the AUC of 0.757 (95% CI: 
0.597–0.859) for the BCC prediction model [38]. Similar 
results were also observed in GC [39].

Soluble BTLA
B and T lymphocyte attenuator (BTLA) is another sub-
stantial co-inhibitory receptor on T cells, and its ligand 
is herpesvirus entry mediator (HVEM). BTLA/HVEM 
axis is a promising target for cancer immunotherapy. 
It was reported that sBTLA levels exhibited a signifi-
cant increase in the pancreatic ductal adenocarcinoma 
(PDAC) patients compared to that in the healthy donors. 
Multivariable logistic regression model indicated that 
sBTLA was significantly associated with PDAC risk (odds 
ratio (OR) = 1.46, 95% CI: 1.01–2.17) [40].

The B7 family of ligands
The B7 family of ligands, belonging to the immunoglobu-
lin superfamily, bind to the CD28 family of receptors on 
lymphocytes and regulate immune responses through 
co-stimulatory or co-inhibitory signals [41]. B7 fam-
ily members, including B7-1/CD80, B7-2/CD86, PD-L2, 
and B7-H2 play critical roles in cell proliferation, cyto-
kine secretion and TME regulation [42]. A few studies 
focused on sCD80 and sCD86 found that the median 
levels of sCD80 (1613.27 vs. 2329.77 pg/mL) and sCD86 
(11199.42 vs. 14297.09 pg/mL) were significantly lower 
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in the early-stage BC patients compared with the healthy 
donors [34].

Interestingly, sB7-H5 levels in the GC, CRC, LC and 
PDAC patients were significantly increased compared 
with the healthy controls, which showed a diagnostic 
value for these cancers [32, 43]. In addition, a retrospec-
tive study revealed that sB7-H4 levels gradually increased 
from cervicitis to cervical cancer, and decreased after 
treatment [44].

Soluble LAG-3
Lymphocyte activation gene-3 (LAG-3) is a novel immu-
nosuppressive receptor which is abnormally expressed 
in various TMEs, and is a substantial immune check-
point molecule in tumor immune response. sLAG-3 was 
identified as a promising serum biomarker for the early 
detection of BCC, [38] and lymphatic leiomyoma [45]. 
Similarly, Li et al. found that the median sLAG-3 levels 
in patients with cervical cancer were significantly lower 
than that in the healthy controls (3.76 vs. 8.36 ng/mL), 
and low sLAG-3 level was an independent predictor of 
cervical cancer [46]. However, sLAG-3 was significantly 
positively associated with PDAC risk (OR = 1.52, 95% CI: 
1.04–2.28) in a multivariate logistic regression model 
[40]. Additionally, increased sLAG-3 levels were also 
associated with the increased susceptibility in advanced 
clear cell RCC (ccRCC) [47] and NSCLC [48].

Soluble TIM-3
T cell immunoglobulin mucin-3 (TIM-3) is a negatively 
regulated immune checkpoint protein, which inhibits 
the activation and proliferation of T cells and leads to the 
immune escape of tumor cells. Therefore, sTIM-3 could 
be used as a biomarker in cancer screening.

The median levels of sTIM-3 were significantly elevated 
in BCC patients (7978 pg/mL) compared to the healthy 
controls (1129 pg/mL), with the AUC of 0.848 (95% CI: 
0.721–0.919) in the sTIM-3 incorporated model, suggest-
ing that sTIM-3 could be an effective predictor of BCC 
susceptibility [38]. Moreover, another study showed that 
the median sTIM-3 levels were significantly elevated in 
45 PDAC patients compared with 50 non-PDAC partici-
pants (4585 vs. 2026.5 pg/mL) [47]. Similar results were 
also found in NSCLC [48]. In addition, sTIM-3, sLAG-3 
and sCD137 based signature could help improving the 
accuracy of NSCLC diagnosis [48].

The TNF superfamily
The tumor necrosis factor (TNF) superfamily currently 
comprises 19 ligands and 29 receptors, some of which 
are expressed on immune cells and participate in the 
development of tumor-specific immune responses. These 
molecules also have splicing variants, resulting in soluble 
isomers that can be traced in body fluids like serum. For 

example, sGITR, sGITRL, sCD27 and sCD40 were signif-
icantly decreased in the patients with early-stage BC [34].

In a prospective and exploratory cohort study, sCD40 
levels were significantly elevated in the elderly GC 
patients compared with the healthy elderly individuals, 
whereas sCD40L levels were significantly decreased [49]. 
sCD40 was also considered as a non-invasive biomarker 
for PDAC diagnosis (AUC = 0.795) [49]. In addition, ele-
vated plasma levels of sOX40 could be used as biomark-
ers for the diagnosis of acute T-cell leukemia [50].

sHVEM is the soluble isoform of dual immune check-
point HVEM. One study revealed a significant increase of 
sHVEM levels in the BC patients (mean ± SD; 4612 ± 2329 
vs. 2946 ± 1857 pg/mL) and GC patients (mean ± SD; 
4528 ± 1915 vs. 2946 ± 1857 pg/mL) compared to the 
control group, although this change of sHVEM levels in 
the CRC patients was not statistically significant [51]. 
Similar results were obtained in another GC study, where 
sHVEM levels of GC patients were significantly higher 
than the non-ulcer dyspepsia patients [52]. By contrast, 
the early-stage BC patients in another study had rela-
tively lower sHVEM levels compared with the healthy 
individuals (1866.92 vs. 2290.19 pg/mL) [34].

Other soluble immune checkpoints
Several soluble immune checkpoint molecules under 
investigation, like sGARP, sMIC-A, sIDO, sICOS, sCD33, 
and sTLR-2, showed levels significantly variated in the 
cancer patients, but their potential of prediction in can-
cer screening still await further exploration [34, 53, 54, 
55, 56, 57].

Soluble immune checkpoint molecules in cancer 
outcomes prediction
Soluble immune checkpoint molecules are associated 
with cancer outcomes, including survival, recurrence, 
and response to treatment. Understanding the predic-
tive performance of these soluble immune checkpoints 
on cancer outcomes is conducive to screening the most 
suitable treatments for patients and monitoring disease 
development.

Soluble PD-1
sPD-1 was reported associating with the prognosis of 
multiple cancers, though the conclusions of some studies 
remain controversial.

Studies showed that higher baseline sPD-1 levels were 
associated with poorer prognosis in the patients with 
diffuse large B cell lymphoma, [58] OC, [7] PDAC, [59, 
60] PCa, [55] ccRCC, [18, 61] and CRC [16]. In a multi-
center prospective study of 439 GC patients treated with 
nivolumab, [62] higher sPD-1 levels were associated with 
the worse overall survival (OS). Melanoma patients with 
higher baseline sPD-1 levels also experienced the worse 



Page 5 of 20Chen et al. Biomarker Research           (2024) 12:95 

OS after ICI therapy [63]. For HCC patients who under-
went liver transplantation, Hwang et al. found that higher 
sPD-1 level was an independent risk factor of recurrence 
[64]. Patients with TNBC in complete or partial remis-
sion to NAC had significantly decreased sPD-1 levels 
compared to the patients who did not respond well [65]. 
And increased sPD-1 levels after anti-PD-1 antibody 
therapy were also found correlating with the accelerated 
progression of solid tumors [66].

However, other studies demonstrated that sPD-1 could 
be a favorable prognostic factor for patients with cancers. 
A Japanese study reported that higher sPD-1 levels were 
associated with the improved OS in patients with NSCLC 
receiving anti-PD-1 immunotherapy, [67] which was con-
sistent with another prospective study [68] and a case-
control study [69]. Higher sPD-1 levels were also shown 
to be associated with the better OS in patients with naso-
pharyngeal carcinoma (NPC) after definitive intensity-
modulated radiotherapy, [70] and in GC patients after 
gastrectomy [71]. In a study of HCC, [72] researchers 
found that sPD-1 was a favorable independent predic-
tive factor for disease-free survival (DFS) (hazard ratio 
(HR) = 0.32, 95% CI: 0.14–0.74) and OS (HR = 0.54, 95% 
CI: 0.30–0.98). Metastatic melanoma patients treated 
with ICIs were revealed to have increased sPD-1 levels 
which was correlated to superior progression-free sur-
vival (PFS) [73]. And other researchers also found the 
association between higher baseline sPD-1 levels and 

better PFS in metastatic ccRCC patients treated with 
nivolumab [74]. In a study of advanced head & neck can-
cer (HNC), patients with higher baseline sPD-1 levels 
responded better to anti-PD-1 treatment than patients 
with lower concentrations, and these patients experi-
enced prolonged PFS [68].

The intriguing role of sPD-1 in survival prediction 
of multiple cancers may derived from the interaction 
between sPD-1 and its ligands in TME. sPD-1 could 
compete with membrane-bound PD-1 from binding with 
PD-L1 in vivo, which in turn enhance the anti-tumor 
immunity [75, 76]. In contrast, sPD-1 could also impair 
the T cell proliferation and IL2 production through com-
bining with PD-L1 on dendritic cells in vitro [77]. The 
complicated interaction between PD-1 and its ligands 
resulted in the alteration of anti-tumor immunity, sub-
sequently affect the survival of cancer patients. However, 
the mechanisms underlying remain obscure for inconsis-
tent findings between in vivo and in vitro studies, more 
investigation is warranted to illustrate the mechanisms.

Soluble PD-L1 and soluble PD-L2
Soluble PD-L1
As one of the most well-studied soluble immune check-
point ligands, sPD-L1 was considered an unfavor-
able prognostic factor in a wide variety of cancers by 
most studies. To briefly summarize current studies on 

Fig. 1 sPD-L1 level was associated with impeded anti-tumor immunity and poor outcomes in multiple cancers. The sPD-L1 could bind with the PD-1 
receptor on T cells, thereby inducing T cell exhaustion and inhibiting T cell functions, eventually leading to immune evasion. Elevated levels of sPD-L1 are 
reported to be associated with the poor outcomes in multiple cancers
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sPD-L1, we depicted Fig. 1 to show its impact on cancer 
prognosis.

First, studies revealed that baseline sPD-L1 level was 
an independent adverse predictor of OS for multiple can-
cers [78–81]. In prospective studies of NSCLC patients 
treated with ICIs, patients with higher levels of circulat-
ing sPD-L1 had poorer OS [67, 82]. Also, patients with 
higher sPD-L1 levels had shorter OS than patients with 
lower levels in a retrospective study of 120 advanced 
NSCLC patients, [83] and similar conclusions were 
strongly agreed in several meta-analyses [84–87]. A 
worse OS was observed in mesothelioma patients with 
higher baseline sPD-L1 levels [31]. In a cohort of 219 
NPC patients, higher sPD-L1 levels appeared to be asso-
ciated with poorer OS [88]. The relationship between 
higher baseline sPD-L1 levels and shorter OS had been 
revealed in many other types of cancers, including esoph-
ageal cancer, [89, 90],  GC, [22, 62, 91, 92, 93, 94] HCC, 
[72, 95, 96, 97, 98, 99, 100] biliary tract cancer, [101] 
RCC, [18, 102] upper tract urothelial carcinoma, [103] 
lymphoma, [104–107] OC, [7, 108] CRC, [109, 110] soft 
tissue sarcoma (STS),[111, 112] glioma, [113, 114] and 
PDAC [59, 115].

Second, higher baseline sPD-L1 levels could also be 
a biomarker of poor PFS, DFS, or time to progress in 
cancer patients [79–81]. For example, preoperative cir-
culating sPD-L1 levels were negatively correlated with 
recurrence-free survival (RFS) [109] and DFS [110] in 
the CRC patients. A high level of plasma sPD-L1 could 
be an independent unfavorable prognostic factor of PFS 
in the patients with metastatic ccRCC [61]. STS patients 
with higher sPD-L1 levels from the PEMBROSARC bas-
ket study tended to experience shorter PFS [111]. Similar 
results were observed in other cancers, like LC, [67, 69, 
82, 83, 84, 85, 86, 87116117] HNC, [88, 118] esophageal 
cancer, [89, 90] GC, [62, 91, 92, 93, 119] HCC, [72, 95, 96, 
97, 99] OC, [7] lymphoma, [104–106] glioma, [114] and 
PDAC [115].

Third, cancer patients with poorer response to treat-
ments tended to have higher baseline sPD-L1 levels 
than those who had ideal response. For instance, the 
serum levels of sPD-L1 were significantly higher in ICIs 
non-responsive HNC patients than that in the respond-
ers [100]. In a cohort of esophageal cancer patients 
treated with anti-PD-1/PD-L1 monotherapy, patients 
with higher baseline sPD-L1 levels displayed a remark-
ably increased disease control rate versus that of the 
lower subgroup [90]. As for the metastatic RCC patients 
treated with PD-1 inhibitor nivolumab, however, higher 
baseline sPD-L1 levels were correlated to higher rate of 
progressive disease [102, 120]. For chemotherapy-treated 
patients with lymphoma, both lower basal sPD-L1 levels 
[25, 106] and the reduction of sPD-L1 levels after treat-
ment [107] were associated with higher response rate. 

Patients with LC,[87, 116, 121, 122] or other solid tumors 
[80, 90, 123] who have higher baseline sPD-L1 levels also 
tend to experience adverse clinical response. Meanwhile, 
sPD-L1 levels could also be used as a risk biomarker for 
the occurrence of cancer metastasis in patients with 
CRC, [16, 124] upper tract urothelial carcinoma, [103] 
STS, [112] NPC, [88] and ccRCC [18].

However, a few studies indicated that higher baseline 
sPD-L1 levels were associated with the better treatment 
response or the longer PFS and OS in patients with can-
cer, such as lymphoma, [27] metastatic ccRCC, [74] and 
NSCLC [125].

In addition to baseline levels, dynamic changes of sPD-
L1 levels during treatment were also reported associating 
with the prognosis of multiple cancers. In general, the 
reduction of sPD-L1 levels during treatment was pre-
dictive of better prognosis for a variety of cancers, [126] 
including GC, [91] metastatic ccRCC, [120] biliary tract 
cancer, [101] TNBC, [65] lymphoma,[26, 107, 127] pan-
creatic cancer, [115] CRC, [109] and NSCLC, [67] regard-
less to treatment modalities. However, other studies 
suggested that the decrease of sPD-L1 levels was associ-
ated with the poor prognosis in patients with LC, [21, 69] 
or mesothelioma [31].

Interestingly, sPD-L1 could also be combined with 
other biomarkers to enhance the accuracy of prognosis 
prediction in cancer. For instance, the combinations of 
sPD-L1 with PD-L1 in tumor cells [128] or PD-L1 positiv-
ity in tumor tissues [18] were more beneficial in assessing 
the postoperative prognosis and the OS of patients with 
NSCLC or ccRCC. sPD-L1 could also be combined with 
sPD-1,[69, 125, 129] sCTLA-4, [110] Epstein-Barr virus 
DNA, [88] CCL5, [90] and Glasgow prognostic score [62] 
to better predict cancer outcomes.

Therefore, sPD-L1 is a promising biomarker in predict-
ing outcomes and treatment responses in cancer patients, 
though more prospective, independent validated studies 
are still warranted.

Soluble PD-L2
PD-L2 was another substantial ligand of PD-1, whose 
clinical significance remains obscure. Soluble PD-L2 was 
reported in several studies as prognostic biomarker in 
multiple cancers.

Higher baseline sPD-L2 levels were associated with the 
better clinical response to dendritic cell vaccine therapy 
in patients with advanced melanoma [130]. It was also 
associated with the higher risk of biochemical recur-
rence and progression in PCa patients [55]. A multicenter 
study revealed a significant positive correlation between 
baseline sPD-L2 levels and the occurrence of immune-
related adverse events (irAEs) in cancer patients receiv-
ing immunotherapy [131].
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Increased levels of sPD-L2 were significantly asso-
ciated with higher risk of recurrence in patients with 
ccRCC [47] (HR = 2.51, 95%CI: 1.46–4.34) and higher risk 
of invasive disease in a cohort of NSCLC [132] patients 
(OR = 4.23, 95% CI: 1.20–17.70). And when combined 
with other variables like sCD27, the prediction perfor-
mance of sPD-L2 was greatly improved [132].

The CD28 family of receptors
Soluble CTLA-4 and CD28
sCTLA-4 and sCD28 could be prognostic predictors 
for multiple cancers. Higher levels of baseline sCTLA-4 
were associated with the shorter PFS in patients with 
cHL (HR = 4.30, 95%CI: 1.54–13.26) [133] or glioma 
(HR = 2.52, 95%CI: 1.01–6.28) [134]. Another cohort 
study suggested that both sCD28 and sCTLA-4 levels 
were predictors of biochemical recurrence in the PCa 
patients [55]. Similarly, higher sCTLA-4 levels at baseline 
were also significantly associated with the worse OS, DFS 
or disease progression in patients with GC, [62] CRC, 
[110] or HNC [135]. Besides baseline levels, dynamic 
changes of sCTLA-4 and sCD28 were also found associ-
ating with OS in the patients with HBV-related advanced 
HCC in a multicenter study [136]. Interestingly, for the 
HCC patients treated with radiofrequency ablation, 
higher baseline sCTLA-4 levels were linked to the shorter 
DFS of local recurrence (HR = 2.43, 95%CI: 1.03–5.75) but 
longer RFS of intrahepatic metastasis (HR = 0.19, 95%CI: 
0.05–0.81), which showed the dual roles of sCTLA-4 in 
immune responses. And this performance of sCTLA-4 
could be improved when combined with baseline alpha-
fetoprotein levels [137].

Other members of the CD28 family
Besides sCTLA-4 and sCD28, soluble forms of other 
CD28 family members could also be served as biomark-
ers for cancer outcomes.

In a cohort of solid tumor treated with ICIs, research-
ers found that the patients with higher levels of base-
line sBTLA had worse OS [138]. Likewise, PCa patients 
with higher baseline sBTLA levels had the higher risk 
of progression [55]. Similar correlations were also dem-
onstrated in the patients with PDAC, [59] chronic lym-
phocytic leukemia, [139] ccRCC, [47] and advanced 
HCC [136, 140]. A multicenter observational study of 81 
NSCLC patients [141] showed that elevated sICOS lev-
els during treatment were linked to the improved OS and 
PFS.

The B7 family of ligands
As ligands of the CD28 family, the B7 family proteins play 
a crucial role in regulating T cell activation and toler-
ance through co-stimulatory and co-inhibitory pathways, 
thereby extensively involve in tumor immune evasion. 

Their soluble forms could be promising predictive factors 
of cancer outcomes.

Higher baseline levels of sCD80 were associated 
with the worse OS and PFS in patients with STS, [142] 
NSCLC, [143] and PCa [55]. In addition, studies showed 
that dynamic changes of sCD80 during treatment were 
associated with the OS of patients with HBV-related 
advanced HCC, [136] and the risk of invasive disease of 
NSCLC [132]. Higher level of sCD86 could be an inde-
pendent predictor of poorer OS in the patients with 
multiple myeloma [144]. And both higher levels of sB7-
H3 and sB7-H4 at baseline were found to be associated 
with the better OS (sB7-H3: HR = 0.33, 95%CI: 0.14–0.78; 
sB7-H4: HR = 0.42, 95%CI: 0.19–0.94) and PFS (sB7-H3: 
HR = 0.32, 95%CI: 0.17–0.64; sB7-H4: HR = 0.32, 95%CI: 
0.16–0.64) in the patients with NSCLC [117].

Soluble LAG-3
Baseline sLAG-3 levels are associated with patients’ 
outcomes in multiple cancers, and dynamic changes of 
sLAG-3 levels could be applied in disease monitoring.

Baseline sLAG-3 levels were associated with poor 
response to immunotherapy in the patients of advanced 
PDAC, [60] and melanoma [130]. Moreover, studies 
showed that the increase of sLAG-3 during treatment 
might predict the worse OS and the clinical responses of 
patients with HBV-related advanced HCC treated with 
icariin, [136] and the patients with locally advanced cer-
vical cancer after concurrent chemoradiotherapy [145]. 
Also, a significant positive correlation between basal cir-
culating levels of sLAG-3 and the occurrence of irAEs in 
cancer patients receiving immunotherapy was reported 
in a multicenter study [131].

Soluble TIM-3
sTIM-3 could also be a biomarker for cancer outcomes. 
Higher baseline sTIM-3 levels were associated with 
higher recurrence risk of the ccRCC patients [47] and 
worse OS of the PDAC patients [146]. Despite this, 
changes of sTIM-3 levels during treatment could also 
be an unfavorable sign of the OS in patients with HCC 
[136] or the development of relapses to chimeric antigen 
receptor T-cell therapy in patients with mantle cell lym-
phoma (MCL) [127].

The TNF superfamily
Both soluble TNF receptors and ligands were reported as 
biomarkers of cancer outcomes and adverse reactions to 
cancer treatments.

For the patients with advanced HCC, dynamic changes 
of sTNF-α receptor I during Lenvatinib treatment were 
associated with the response to Lenvatinib treatment 
[147]. Elevated levels of baseline and post-treatment 
sTNF-R1 and sTNF-R2 were correlated with decreased 
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OS in the patients with advanced urothelial carcinoma 
who treated with ICIs [148]. Higher levels of s4-1BB at 
baseline could also predict the poorer OS in patients 
with metastatic uveal melanoma [149] and the occur-
rence of irAEs in other type of cancers [131]. Baseline 
levels of s4-1BB might predict the risk of MCL patients’ 
recurrence [127] and the aggressiveness of NSCLC, [132] 
as well as the clinical response to 4-1BB agonist therapy 
[150].

Increased sCD27 levels were significantly associ-
ated with the higher risk of invasive disease in a NSCLC 
cohort [132]. In contrast, another study indicated that 
higher levels of sCD27 after ICI therapy could pre-
dict clinical benefit in the patients with advanced solid 
tumors [151]. Higher baseline levels of sHVEM might 
also indicate the higher risk of biochemical recurrence 
and progression in PCa patients [55]. In addition, higher 
baseline levels of sOX40, [152] sCD30, [148] sCD40, [153, 
154] and sGITR [55] were associated with worse progno-
sis in cancer patients.

Being a soluble form of dual immune checkpoint 
HVEM, the basal circulating levels of sHVEM were posi-
tively correlated with the toxicity of irAEs for cancer 
patients receiving immunotherapy [131]. A multicenter 
study revealed a significant positive correlation between 
baseline sCD27 levels and the occurrence of irAEs [131].

On the other hand, as for the soluble forms of the TNF 
ligands, lower sCD95L levels in the OC patients could be 
independent poor prognostic factors for the risk of recur-
rence (HR = 2.63, 95% CI: 1.16–5.95) [155]. And higher 
sCD70 levels at baseline were found to be associated with 
better response and PFS in the NSCLC patients [68]. 
However, higher levels of sCD254 might be a marker of 
worse clinical response in the metastatic RCC patients 
treated with nivolumab [156].

Other soluble immune checkpoints
Other soluble immune checkpoints were also reported 
associating with cancer outcomes by researchers. For 
instance, higher soluble intercellular adhesion molecule 
1 (sICAM-1) levels were associated with better PFS and 
OS in many types of cancers [123]. Despite this, higher 
baseline sICAM-1 levels could predict worse tumor-free 
survival in the HCC patients treated with radical hepa-
tectomy, especially when combined with alpha-fetopro-
tein indicators [157].

In addition, although under-studied, higher base-
line levels of many other soluble immune checkpoints 
including sIDO, [55, 60] sMIC-A,[57, 158] sCD8, [159] 
sCD73,[160, 161] sCD163, [148] and soluble urokinase 
plasminogen activator receptor [162] were found to be 
associated with poor prognosis in the patients with vari-
ous types of cancers. Furthermore, Yoshida et al. found 
that an increase in sCD226 during chemotherapy might 

predict worse treatment response in the patients with 
esophageal cancer [163].

Signatures of soluble immune checkpoints
Interestingly, there are studies on solid tumors,[151, 164] 
locally advanced rectal cancer, [165] and PDAC, [40] 
focusing on the integration of multiple soluble immune 
checkpoints as composite signature. And these compre-
hensive predictive models tended to have a higher pre-
dictive value than a single molecule.

In summary, we summarized the role of some crucial 
soluble immune checkpoint molecules in cancer progno-
sis prediction (Table 2).

Therapeutic applications of soluble immune 
checkpoint molecules in cancer
We illustrated the successful applications of soluble 
immune checkpoints as biomarkers of cancer outcomes 
and therapeutic responses in multiple cancers. Further, 
soluble immune checkpoints could also serve as treat-
ment targets or therapeutic modalities in cancer patients.

The potential therapeutic value of soluble immune 
checkpoints
On the one hand, soluble immune checkpoints can be 
potential therapeutic targets. A study revealed that the 
CRC patients who had scarce tumor-infiltrating lympho-
cytes (TILs) in tumor had significantly higher sOX40 lev-
els compared to the patients with TILs, suggesting that 
targeting sOX40 might hold promise for immunotherapy 
[166]. Likewise, a recent study demonstrated that tar-
geting sMIC alongside non-blocking antibodies could 
provide dual co-stimulation to antigen-specific CD8+ T 
cells through NKG2D and CD28, thereby improving the 
anti-tumor immunity [167]. Subsequently, researchers 
demonstrated combining anti-PD-L1 ICIs with antibody 
targeting sMIC significantly improved the survival rate 
of mice compared to monotherapy, suggesting potential 
therapeutic implications for patients with MIC+/sMIC+ 
metastatic melanoma [168].

On the other hand, changing the levels of soluble 
immune checkpoints and blocking the interactions 
between soluble immune checkpint proteins and mem-
brane receptors or ligands have potential therapeutic 
values for cancers. For example, therapeutic plasma 
exchange in the melanoma patients could enhance the 
efficacy of immunotherapy by reducing the levels of sPD-
L1 and extracellular vesicles PD-L1 [169, 170]. Moreover, 
a recent study demonstrated that the small molecule 
inhibitors CH-4 and its analogue CH-4.7 could effectively 
inhibit the PD-1/sPD-L1 interaction, thereby enhancing 
anti-tumor immunity in the T cell acute lymphoblastic 
leukemia model [171]. Similarly, the vaccinia virus M2 
protein, capable of binding to CD80/CD86 and inhibiting 
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Table 2 The role of soluble immune checkpoint molecules in cancer prognosis prediction
Soluble receptor/ligand Prognosis 

prediction
Outcomes/prognosis

sPD-1 - Higher baseline levels associated with the poorer prognosis in patients with OC,[7] TNBC,[11] 
CRC,[18] ccRCC,[19, 64] PCa,[58] diffuse large B cell lymphoma,[61] PDAC,[62, 63] GC,[65] 
melanoma,[66] and HCC [67].

+ Higher baseline levels associated with the better prognosis in patients with GC,[73] advanced 
HNC,[70] NSCLC,[69–71] NPC,[72] HCC,[74] melanoma,[75] and ccRCC [76].

sPD-L1 - Higher baseline levels associated with the poorer prognosis in patients with OC,[7, 110] 
RCC,[19, 104] GC,[33, 65, 93–96, 121] lymphoma,[25, 106–109] mesothelioma,[31] PDAC,[62, 
117] metastatic ccRCC,[64, 104, 122] LC,[69, 71, 84–89, 118, 119, 123, 124] HCC,[74, 97–102] 
NPC,90] HNC,[90, 102, 120] esophageal cancer, [91, 92] biliary tract cancer,[103] upper tract 
urothelial carcinoma,[105] CRC,[111, 112] STS, [113, 114] and glioma [115, 116].

+ Higher baseline levels associated with the better survival or treatment response in patients 
with lymphoma,[27] ccRCC,[76] and NSCLC [127].

- The reduction of levels during treatment was predictive of the better prognosis for TNBC,[11] 
lymphoma,[26, 109, 129] NSCLC,[69] GC,[93] biliary tract cancer,[103] CRC,[111] PDAC,[117] 
and ccRCC [122].

+ The decrease of levels during treatment associated with the poorer prognosis in patients 
with LC, [21, 71] and mesothelioma [31].

sPD-L2 - Increased levels associated with the poorer prognosis in ccRCC [44] patients and NSCLC 
patients [134].

+ Higher baseline levels associated with the better clinical response in advanced melanoma 
patients, [132] and PCa[58] patients.

sCTLA-4 - Higher levels of sCTLA4 were associated with the shorter PFS in patients with cHL [135] and 
glioma [136] and the worse prognosis in patients with PCa, [58] GC,[65] CRC,[112] or NC [137].

sCD28 - Higher level was a risk predictor of biochemical recurrence in the PCa patients [58].
sBTLA - Higher levels associated with the worse prognosis in patients with ccRCC, [44] PCa,[58] 

PDAC,[62] advanced HCC,[138, 142] and chronic lymphocytic leukemia [141].
sICOS + Elevated levels during treatment linked to the better OS and PFS in NSCLC patients [143].
B7 ligands - Higher baseline levels of sCD80 associated with the worse OS and PFS in patients with STS, 

[144] NSCLC,[134, 145] and PCa [58].
Higher sCD86 level was a predictor of the poorer OS in patients with multiple myeloma [146].

+ Higher baseline levels of sB7-H3 and sB7-H4 associated with the better OS and PFS in NSCLC 
patients [119].

sLAG-3 - Higher baseline levels associated with the poorer prognosis in patients with advanced 
PDAC,[63] or melanoma [132].
The increase of levels during treatment associated with the worse prognosis in patients with 
advanced HCC [138] or locally advanced cervical cancer [147].

sTIM-3 - Higher levels associated with the worse prognosis in patients with ccRCC, [44] or PDAC [47].
The increase of levels after treatment associated with worse prognosis in patients with 
advanced HCC,[138] and MCL [129].

s4-1BB - Higher baseline levels predicted the poor prognosis in patients with metastatic uveal mela-
noma,[150] and the risk of MCL patients’ recurrence, [129] the aggressiveness of NSCLC [134].

sCD27 - Higher baseline levels associated with the poor prognosis in patients with HBV-related HCC 
[138] or metastatic uveal melanoma [150].
Increased levels associated with the higher risk of invasiveness in NSCLC patients [134].

+ Higher levels after ICIs therapy predicted clinical benefit in the patients with advanced solid 
tumors [152].

sHVEM - Higher baseline levels indicated the higher risk of biochemical recurrence and progression in 
PCa patients [58].

Some well-studied soluble immune checkpoints are listed in the above table. + means higher levels of soluble immune checkpoints associated with the poorer 
prognosis; - means higher levels of soluble immune checkpoints associated with the better prognosis. ccRCC, clear cell renal cell carcinoma; cHL, classical Hodgkin 
lymphoma; CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; HNC, head and neck cancer; ICIs, immune checkpoint inhibitors; LC, lung 
cancer; MCL, mantle cell lymphoma; NPC, nasopharyngeal carcinoma; NSCLC, non-small cell lung cancer; OC, ovarian cancer; OS, overall survival; PCa, prostate 
cancer; PDAC, pancreatic ductal adenocarcinoma; PFS, progression-free survival; RCC, renal cell carcinoma; STS, soft tissue sarcoma; TNBC, triple-negative breast 
cancer
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their interactions with soluble CD28/CTLA-4, while 
promoting the binding of sPD-L1 and sCD80, exhibited 
potential as a novel immunosuppressive agent [172].

Soluble immune checkpoints as therapeutic modalities
Monotherapy
Soluble immune checkpoints may serve a similar function 
to membrane antibodies, and are therefore anticipated 
to be utilized in the treatment of cancer. For example, 
sPD-1 demonstrates a functional efficiency comparable 
to that of anti-PD-1 or anti-PD-L1 monoclonal antibod-
ies (mAb), interfering the interaction between PD-L1 or 
PD-L2 ligands and their cognate receptor, membrane-
bound PD-1 (mPD-1) on the surface of T lymphocytes. 
Therefore, sPD-1 could serve as an alternative “antibody” 
to mAb-based immunotherapy and promised prefer-
able anti-tumor immune effects in OC [173] and BC 
[75] models. In addition, a study revealed that L3C7c, a 
high-affinity variant of human sPD-L1, could improve 
the ability of T cells to inhibit melanoma growth and 
showed promise as a new-generation tumor immuno-
therapy agent based on PD-1/PD-L1 axis blockade [174]. 
Similarly, sCD80 could also increase tumor-infiltrating T 
cells and significantly prolong the survival time of tumor-
bearing mice [175]. Targeting alternative splicing also 
has the potential to be a novel cancer immunotherapy. 
Inhibiting serine arginine-rich splicing factor (SRSF1 and 
SRSF3) could regulate alternative splicing of PD-1 to gen-
erate sPD-1, thereby preventing T cell exhaustion [176, 
177]. In conclusion, soluble immune checkpoints might 
be a novel therapy for cancer treatment.

Combined therapy
Construction of recombinant vector
Oncolytic viruses are an excellent platform for devel-
oping effective strategies in cancer immunotherapy. 
However, several challenges remain in the use of viro-
immunotherapy for cancer. Therefore, some research-
ers combine viruses with soluble immune proteins to 
efficiently overcome several major hurdles. For example, 
NDV/Anh-TRAIL, a recombinant Newcastle disease 
virus (NDV) Anhinga strain capable of secreting soluble 
TNF-related apoptosis-inducing ligand (TRAIL), showed 
potential as a candidate drug for glioma treatment [178]. 
In China, Wei and his colleagues generated a recom-
binant adenovirus expressing a soluble fusion protein, 
sPD1/CD137L, which was effective in suppressing tumor 
growth and improving survival in the HCC mouse model 
[179].

Furthermore, soluble recombinant 4-1BBL pro-
tein generated by fusing the extracellular domains of 
murine 4-1BBL to a modified version of streptavidin, 
could inhibit the development of lung tumors induced 
by tobacco carcinogens in mice [180]. Similarly, a 

recombinant vector pMCSG7-hsTNF-R2 was con-
structed to generate human soluble TNF-R2 recom-
binant protein, which was expected to be used as an 
immunotherapy drug for TNF-R2+ cancer in an in vitro 
bioactivity evaluation [181].

Combined with other therapeutic strategies
First, several challenges remain in the use of immuno-
therapy for cancer, such as poor immune cell infiltration, 
insufficient co-activation signals, and negative regula-
tion of immune checkpoints. Combine soluble immune 
checkpoints with immunotherapy might improve anti-
tumor immunity. Recent studies mostly focused on com-
bination with CAR T-cell immunotherapy. For example, 
Zhang et al. established modified CAR-T cells called 
sPD-1 CAR-T cells, which could secrete sPD-1 and had 
higher cytotoxicity against CD19+ PD-L1+ tumor cells 
in vitro compared with conventional CAR-T cells. The 
sPD-1 CAR-T cells could effectively reduce tumor bur-
den and prolong the survival time of mice [182]. Simi-
larly, researchers of another study engineered CAR T 
cells to secrete the soluble trimeric 4-1BBL fused to 
anti-PD-1 single-chain fragment variable region (αPD1-
41BBL), and the CAR19.αPD1-41BBL T cell-treated mice 
displayed significant improved tumor growth control and 
OS [183]. Also, Xia et al. designed HER2-specific sPD-
1-CAR-NK cells for BC treatment. These bio-engineered 
NK cells could transport sPD-1 specifically into cancer 
cells with high HER2 expression, thereby enhancing the 
anti-tumor effect of HER2-CAR-NK cells [184].

Second, soluble immune checkpoints could also be 
combined with other therapeutic strategies. In a study 
combined sPD-1-mediated immune checkpoint therapy 
with chlorin e6-assisted sonodynamic therapy, Tan et 
al. generated nanobubbles loaded simultaneously with 
sPD-1 and chlorin e6. Compared with monotherapy, 
the combined therapy showed the best immunotherapy 
effect on HCC [185]. Besides, targeting alternative splic-
ing combined with adoptive cellular immunotherapy 
could enhance the levels of sPD-1 and reverse T cell 
exhaustion by disrupting mPD-1/PD-L1 interaction in 
effector T cells [186].

The above treatments were mostly tested in mice or 
cell lines. Encouragingly, there are already human clini-
cal trials exploring the safety and efficacy of soluble 
immune checkpoints in combination with other thera-
pies. Researchers in a study combined sLAG-3 with the 
PD-1 antagonist pembrolizumab to treat patients with 
metastatic melanoma and the results showed strong anti-
tumor activity [187]. Later, Hans et al. combined sLAG-3 
with paclitaxel in a treatment for metastatic HR+ BC 
patients and displayed a numerically improvement in OS, 
though not statistically significant [188].
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Overall, we also summarized the applications of some 
crucial soluble immune checkpoint molecules in cancer 
treatment (Table 3).

Molecular mechanisms of soluble immune 
checkpoint molecules in cancer development
Soluble immune checkpoints can be produced by sev-
eral molecular mechanisms: (1) ectodomains cleaved by 
proteolysis and excreted to extracellular space by enzyme 
release, (2) selective mRNA splicing, and (3) released as 
components of extracellular vesicles.189 These mecha-
nisms prompt them to alter the body’s immunity through 
a plethora of mechanisms, which have an impact on the 
development of tumors. The interaction between soluble 
immune checkpoint molecules and membrane-bound 
immune checkpoints receptors/ligands in TME could 
significantly impact anti-tumor immunity and cancer 
outcomes. To make it clear, we depicted the interactions 
of mentioned soluble checkpoints and their membrane 
ligands/receptors in Fig.  2. Elucidating the fundamental 
mechanisms governing soluble immune checkpoints and 
their membrane counterparts in cancer could facilitate 
their utilization in guiding cancer therapeutic strategies.

First, soluble forms of co-suppressive immune check-
points have different effects on cancer development. 
On the one hand, they could bind to the corresponding 
membrane-bound ligands/receptors, thereby hindering 
the inhibitory effect of membrane-bound ligands/recep-
tors on immune cells, ultimately inhibiting tumor growth. 
For instance, sPD-1, retaining the function of full-length 
PD-1, is able to bind to mPD-1 ligands and thereby 
blocking their interaction with mPD-1 and increasing the 
effector function of T cells and NK cells [75, 189]. Simi-
larly, sPD-L1 can act as a receptor antagonist, reversing T 
cell inhibition mediated by mPD-L1 [190]. Also, the solu-
ble form of Siglec-5 (sSiglec-5) was found to intensify the 
cytotoxicity of T cells to cancer cells [191]. On the other 

hand, soluble forms of co-suppressive immune check-
points could also inhibit the function of immune cells, 
thereby promoting cancer development. For example, in 
cHL cell lines, sPD-1 could induce PD-L1 reverse signal-
ing, which was associated with inhibition of the mitogen-
activated protein kinase (MAPK) pathway and reduced 
mitochondrial oxygen consumption, thereby promoting 
tumor growth, proliferation, and metabolism of cHL [14]. 
sPD-L1 has a similar inhibition to mPD-L1 on T effector 
cells in in vitro assays, which could induce regulatory B 
cell differentiation and inhibit peripheral T cells [192–
194]. sCTLA-4 was also found to have immunosuppres-
sive abilities like CTLA-4 [195]. Specifically, sCTLA-4 
could restrict CD8+ T cells to a non-cytotoxic state and 
attenuate T cell activation, thereby inhibiting anti-tumor 
immunity and promoting tumor growth [196]. In BCC, 
sCD200 in TME could inhibit MAPK pathway signaling, 
resulting in the almost non-existence of tumor-infiltrat-
ing NK cells and further promoting tumor development 
[197].

Second, soluble forms of co-stimulatory immune 
checkpoints could also play different roles during car-
cinogenesis. Firstly, they could bind to corresponding 
membrane-bound ligands/receptors, thereby hinder-
ing the membrane-bound ligands/receptors from acti-
vating immune cells and ultimately promoting tumor 
growth. For instance, tumor-derived sMIC-A could bind 
to membrane-bound NKG2D receptors, thereby block-
ing the activation of NKG2D pathways, inhibiting the 
cytotoxicity of NK and T cells against tumor cells [57, 
168]. Similarly, sCD160 could also exert immunosup-
pressive activity by binding to HLA molecules or HVEMs 
on target cells, thereby inhibiting the cytotoxicity of NK 
cells [198]. Secondly, soluble forms of co-stimulatory 
immune checkpoints could also promote the efficacy of 
immune cells, thereby inhibiting tumor development. 
For example, sCD80 could maintain T cell activity by 

Table 3 The applications of soluble immune checkpoint molecules in cancer treatment
Soluble receptor/ligand The role in cancer treatment
sPD-1 • sPD-1 could serve as an alternative “antibody” to mAb-based immunotherapy [77, 173]

• sPD-1 could also be combined with sonodynamic therapy,[185] CAR-T, [182] and CAR-NK cells therapy [184].
sPD-L1 • CH-4 and its analogue CH-4.7, [171] therapeutic plasma exchange, [169, 170] and L3C7c[174] could effec-

tively interfere the PD-1/sPD-L1 interaction, leading to anti-tumor immunity.
sCD80 & sCD86 • sCD80 could increase tumor-infiltrating T cells and significantly prolong the survival time of tumor-bearing 

mice [175].
• The Vaccinia virus M2 protein binding to CD80/CD86, exhibited the potential as a novel immunosuppressive 
agent [172].

sMIC • Targeting sMIC could improve anti-tumor immunity [167].
• Combining with anti-PD-L1 ICIs suggested potential therapeutic implications for the patients with MIC+/
sMIC+ metastatic melanoma [168].

Soluble TNF • Targeting sOX40 might hold promise for immunotherapy in CRC [166].
• Soluble recombinant 4-1BBL protein was shown to inhibit the development of lung tumors [180].
• Human soluble TNF-R2 recombinant protein was expected to be used as an immunotherapy drug for TNF-
R2+ cancer [181].

CRC, colorectal cancer.



Page 12 of 20Chen et al. Biomarker Research           (2024) 12:95 

simultaneously blocking PD-1 and binding to CD28. The 
activated T cells could increase the production of IFNγ 
and IL-2, which in turn boosting anti-tumor immunity 
via TCR and CD28 signaling [175].

As surface molecules on cancer cells or immune cells, 
membrane-bound immune checkpoints act through 
trans or cis interactions to modulate immune responses, 
depending on factors like expressing cells, relative 

expression levels, action forms, and downstream cells 
[199]. For example, trans-interaction of PD-L1 or PD-L2 
with PD-1 on T cells can lead to inhibition of signal-
ing, while the cis-interaction of PD-L1-CD80 can play a 
positive role in anti-tumor immunity. In contrast, soluble 
immune checkpoints could not only exhibit similar func-
tional effects to membrane-bound immune checkpoints, 
but also have complicated impacts on the immune 

Fig. 2 The intricate interaction between soluble immune checkpoints and their membrane-bound receptors / ligands in TME. Soluble immune check-
points could bind with their receptors or ligands in immune cells or tumor cells, thereby affecting the anti-tumor immunity in TME
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system due to their unique forms. Therefore, a compre-
hensive understanding of the roles of soluble immune 
checkpoints in TME is conducive to the development of 
immunotherapy in future.

Conclusion and prospective
Soluble immune checkpoint molecules have been a 
hotspot of research due to their pivotal roles of regulating 
immune responses in TME. In this review, we systemati-
cally reviewed the literatures regarding the major soluble 
immune checkpoint molecules in cancer screening, out-
come prediction, and potential molecular mechanisms. 
Soluble immune checkpoint molecules could be easily 

detected in blood and tissues in multiple cancers, and 
they could be critical factors reflecting the risk of cancer 
susceptibility, prognosis, and the sensitivity to the treat-
ment. Their interaction with corresponding receptor/
ligand in the membrane of cells in TME also indicated 
potential therapeutic targets and molecular mechanisms 
(Fig. 3).

Researches on soluble immune checkpoints in cancer 
are still expanding. sPD-1 and sPD-L1 could be the main-
stream biomarkers of immunotherapy as well as the ther-
apeutic targets interfering PD-1/PD-L1 binding in TME, 
though the molecular mechanisms remain unclear due 
to complicated splice/cleavage of the proteins. Further 

Fig. 3 Soluble immune checkpoints in cancer risk prediction, outcomes prediction, therapeutic application, and molecular mechanism. Soluble immune 
checkpoints could be used as biomarkers for cancer surveillance strategies and targets for checkpoint blockade therapies, while also facilitating cancer 
immunotherapy and the exploration of immune mechanisms
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studies are also warranted to explore the predictive sig-
nificance of other soluble immune checkpoints in cancer, 
like sLAG3 and sTIM3. Soluble immune proteins hold 
great promise for cancer treatment, either as monother-
apy analogous to the function of monoclonal antibodies 
or in combination with other therapies to enhance over-
all antitumor activity and provide better treatment for 
patients. Therefore, more prospective clinical trials are 
required to provide more evidence of clinical applications 
of these soluble immune checkpoint molecules. In light 
of these explorations, we propose that soluble immune 
checkpoint molecules could be promising biomark-
ers and targets for cancer patients in the era of precise 
medicine.
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TNBC  Triple-negative breast cancer
TNF  Tumor necrosis factor
TRAIL  TNF-related apoptosis-inducing ligand
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