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Introduction
Transcriptomic analysis has provided fundamental 
insights into the study of gene expression in exploring 
the functions related to the process of life development, 
disease progression, and drug action, etc. Over the past 
decade, bulk RNA sequencing has shed light on biologi-
cal functions from a pooled cell population transcrip-
tomic perspective. However, it represents an average 
across the myriad of cells within a tissue, merely reflect-
ing the characteristics of cell populations or perhaps pre-
dominantly the information of the most numerous cells. 
Moreover, bulk RNA sequencing neither elucidates the 
variations of a sample at the single-cell level nor reflects 
the expression levels of rare cells.
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Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA 
sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular 
heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields 
today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional 
details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the 
forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, 
expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures 
the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal 
information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas 
of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development 
patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional 
single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize 
the current status and challenges of applying single-cell multi-omics technologies to biological research and 
clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential 
strategies to address them.
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To tackle these constraints, scRNA-seq has revolution-
ized biomedical science by single-cell expression pro-
filing. This technology enables detailed exploration of 
genetic information at the cellular level across various 
tissues and diseases, capturing the inherent heterogeneity 
within samples. Since Tang et al. pioneered sequencing 
technology on a single cell in 2009 [1], the methodology 
has undergone continuous refinement and maturation. 
These advancements have facilitated the development 
of full-length transcriptome profiling, high-throughput 
capabilities, and high-sensitivity scRNA-seq [2–4].

Although well-established scRNA-seq has achieved 
great success and wide applications in the research field, 
it has also triggered new thinking because of its limita-
tions. Cellular information extends well beyond RNA 
sequencing, encompassing the genome, epigenome, pro-
teome, metabolome, etc., along with crucial details about 
spatial relationships and dynamic alterations (Fig.  1B). 
Therefore, scientists continually explore new methods for 

single-cell analysis, providing technical support to unveil 
the secrets of cells.

Single-cell multi-omics technologies have emerged. 
They refer to the simultaneous measurement of various 
types of data in the same cell, allowing for an accurate 
and detailed depiction of the cellular state. Integrating 
single-cell transcriptomic sequencing with comprehen-
sive multi-omics data to map their inherent connections 
represents a critical and inevitable trend toward a more 
nuanced, multidimensional understanding of life devel-
opment and the mechanisms underlying diseases.

These cutting-edge methods break through the limita-
tions of the conventional scRNA-seq, offering an excit-
ing solution to explore how cellular modalities affect cell 
state and function. Single-cell T cell receptor sequencing 
(scTCR-seq) [5] and single-cell B cell receptor sequenc-
ing (scBCR-seq) [6] effectively delineate the reper-
toires of T and B cells, respectively, which can reveal 
the immune system state. Integration with single-cell 
proteomics (CITE-seq) enriches the information with 

Fig. 1 (A) Conventional scRNA-seq technologies. (B) Overview of the single-cell multi-omics scheme
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proteomics that is both similarities and discrepancies 
with the transcriptome [7]. Coupled with single-cell assay 
for transposase-accessible chromatin using sequencing 
(scATAC-seq), researchers gain insights into chromatin 
accessibility, identifying active regulatory sequences and 
potential transcription factors (TFs). Besides, decipher-
ing temporal and spatial information at the single-cell 
level is fundamental for biological research. Although 
most temporal data is inferred via computational biology 
technology or scRNA-seq atlas created at multiple time 
points, the experimental method to unveil newly syn-
thesized RNA is another way [8]. Spatial transcriptomics 
technologies merge tissue sectioning with single-cell 
sequencing to compensate for the inability of scRNA-seq 
to characterize spatial locations. It is worth mentioning 
that computational biology is necessary for integrating 
and analyzing single-cell multi-omics data. The informa-
tion content varies across different modalities. How to 
integrate and process these data is of utmost importance. 
The standard workflow to analyze the multimodal data-
sets is necessary for a broadly applicable strategy of sin-
gle-cell multi-omics. Additionally, computational biology 
methods are already widely employed to simulate related 
different dimension information.

The holistic view created by single-cell multi-omics 
technologies is crucial for understanding the complexi-
ties of biology, providing insights into cellular diversity, 
disease mechanisms, and potential therapeutic targets. 
In 2019, single-cell multimodal omics was selected as 
Method of the Year [9]. In this review, we encapsulate the 
advancements and applications of traditional scRNA-seq, 
outline various single-cell multi-omics methodologies, 
and explore their biological and clinical implications, 
while also contemplating current limitations and future 
directions.

Conventional single-cell sequencing
scRNA-seq, stepping onto the stage of history, has com-
pletely reshaped the study approach of the complexity 
and heterogeneity within individual cells. scRNA-seq 
technologies mainly involve microfluidic chips, micro-
droplets, and microwell-based approaches, which 
have been well-introduced and compared in previ-
ous articles [10, 11]. The main experimental steps of 
scRNA-seq encompass preparing single-cell suspension, 
isolating individual cells, capturing their mRNA, con-
ducting reverse transcription and nucleic acid amplifica-
tion, and building a transcriptome library (Fig. 1A).

Analysis of scRNA-seq via bioinformatics is another 
cornerstone for visualizing and understanding the under-
lying patterns and insights within the data. Tools for 
analyzing scRNA-seq data are written in a variety of pro-
gramming languages, with R and Python being the most 
prominent. R-based representative software includes 

Seurat, SingleCellExperiment, and SingleR, while 
Python-based representative software includes Scanpy, 
Loom, and AnnData. Data preprocessing involves imple-
menting data quality control, aligning sequences to ref-
erence genomes, and generating expression matrices. 
Subsequent analyses typically utilize formats like Seurat, 
SingleCellExperiment, AnnData, or Loom. The general 
analysis workflow includes (1) filtering data based on 
doublets, mitochondrial content, erythrocytes, etc., (2) 
selecting features as highly variable genes, and (3) dimen-
sion reduction, including principal component analysis 
(PCA), uniform manifold approximation and projection 
(UMAP), or t-distributed stochastic neighbor embedding 
(t-SNE). The advanced analyses aim to answer the bio-
logical questions. Clustering and annotation of cell types 
answer what kinds of cell types are there. At the gene 
level, differentially expressed genes (DEGs) and gene 
enrichment, which includes gene ontology (GO), kyoto 
encyclopedia of genes and genomes (KEGG), and gene 
set variation analysis (GSVA), aim to identify the differ-
ential genes between cell types or specimens, as well as 
to clarify their associated pathway profiles. Inferring TFs 
by single-cell regulatory network inference and cluster-
ing (SCENIC) provides the essential gene regulatory net-
work [12]. At the cell level, cell-cell communication offers 
speculation from the perspective of cellular interactions 
[13] while cell trajectory analysis incorporates the tem-
poral information (Fig.  1A) [14]. Furthermore, inferring 
copy number variations (CNVs) with inferCNV analysis 
by comparing gene expression levels in cells with those in 
a reference genome is particularly crucial in cancer biol-
ogy [15].

High cost and batch effects remain the major obstacles 
for large cohort studies on scRNA-seq.  To overcome 
these constraints, the integration of multiple samples 
for large-scale scRNA-seq analysis has become a preva-
lent practice in research. Batch effects, hampering data 
integration, may arise from different experimental con-
ditions, such as varying chips, sequencing lanes, or tim-
ing of cell processing. Integrating data from multiple 
experiments requires the use of employ algorithms such 
as Seurat’s canonical correlation analysis (CCA), mutual 
nearest neighbors (MNN), or Harmony to batch correc-
tion [16, 17].

Sample multiplexed scRNA-seq is another solution, 
establishing an efficient method for massively paral-
lel species-mixing experiments [18–22]. Currently, the 
predominant approach for this technology involves tag-
ging individual samples with DNA oligonucleotides (oli-
gos) barcodes before pooling them together, including 
lipid-tagged DNA [21], chemical cross-linking reaction 
[19], and genetic barcodes [20]. This technology is prag-
matic, multiplexing via DNA oligos and demultiplexing 
conducted via bioinformatics independently of genetic 
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background and sample origin, and is compatible with 
other omics technologies, ensuring that the unique bio-
logical characteristics of individual samples are main-
tained. Consequently, it inherently avoids batch effects 
or the loss of biological characteristics post-debatching. 
Recently, Zhao et al. reported an improved ClickTags 
method to enable the use in live-cell samples empowered 
by “click chemistry”, and eliminated the requirement for 
methanol fixation of samples (Fig.  2B). Moreover, this 
method has been successfully utilized across various 
murine cells and human samples of bladder cancer that 
have undergone freeze-thaw cycles, demonstrating its 
applicability to diverse single-cell specimens [22].

New advances in single-cell sequencing
Although high-throughput single-cell sequencing has 
revealed the gene expression characteristics within the 
majority of physiological and diseased cells, the com-
plexity of cells extends far beyond its scope. There is 
still a need to understand and decode the secrets of cells 
from multiple dimensions. With the thriving develop-
ment of biology, chemistry, bioinformatics, and other 
advanced technologies, researchers are continuously 
developing new technologies and methods for single-cell 
sequencing. Here, we summarize new advances in sin-
gle-cell sequencing, which can be major trends in future 
development.

Fig. 2 A brief method and principle of single-cell multi-omics technologies for (A) scTCR/BCR-seq, (B) ClickTag, (C) proteome, (D) microbiome, (E) me-
tabolome, (F) epigenome
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Temporal information
One major limitation of current scRNA-seq approaches 
is that they only provide static RNA expression pro-
files. In reality, cells are constantly undergoing dynamic 
changes, whether during development and differentia-
tion, disease progression, and pre- and post-treatment, 
etc. Frequently, scRNA-seq is conducted at various time 
points to gain valuable insights into the development or 
response process [23–25]. Time-resolved scRNA-seq is 
primarily studied by experimental approaches or compu-
tational tools, allowing for the inference or acquisition of 
dynamic data (Fig.  3A). This enables the study of time-
resolved scRNA-seq.

Computational method
Computational tools can endow scRNA-seq data, which 
capture only a static snapshot at a time, with inferred 
temporal information without resorting to any experi-
mental technologies. These approaches are commonly 
referred to as pseudotime analysis. Pseudotime analy-
sis, also known as trajectory inference, ranks potential 
dynamic processes in cells based on the heterogeneity 
of transcriptional expression levels. These approaches 

effectively combining computational and biological 
methods, have gained wide acceptance and popularity, 
and have become a common advanced tool in scRNA-
seq analysis. The structure of dynamic processes can be 
linear, nonlinear, or branching. Commonly used software 
includes Monocle [14], RNA velocity [26], Palantir [27], 
CytoTRACE [28], and others.

Monocle is an unsupervised algorithm designed for 
pseudotime inference analysis, capitalizing on the high 
variability in gene expression levels. The latest version, 
Monocle3, utilizes UMAP for trajectory inference [14]. 
Entropy-based pseudotime analysis is also a method. 
It leverages the concept that entropy is negatively cor-
related with cell differentiation states. Higher entropy 
values suggest a greater stemness, indicating a more 
primitive and undifferentiated state [29].

RNA velocity is a prevalent technology in scRNA-
seq analysis [26]. It operates on the principle that, dur-
ing dynamic regulatory processes, unspliced (nascent) 
mRNA always appears before spliced (mature) mRNA. 
By assessing the abundance of both unspliced and spliced 
mRNA, one can reveal indicators of dynamic changes in 
the transcriptome over time.

Fig. 3 The principles of key technologies in the dimensions of (A) time and (B) space at the single-cell level
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Palantir is a pseudo-time algorithm based on stochas-
tic processes that, through dimensionality reduction and 
manifold analysis, effectively captures the continuity of 
cell states and models the transition from low-differen-
tiation cells to terminally differentiated cells [27]. It can 
be applied to a variety of tissue types and is particularly 
well-suited for addressing less-studied differentiation 
systems.

CytoTRACE leverages gene counting and expression 
to reconstruct cell trajectories, enabling the prediction of 
relative differentiation states of single cells based on sin-
gle-cell RNA expression data, without being constrained 
by specific time scales or the presence of continuous 
developmental processes in the data [28]. Additionally, 
CytoTRACE is independent of tissue type, species, and 
platform and can be used to predict differentiation status 
in scRNA-seq data without any prior information.

Experimental method
As mentioned above, trajectory inference for single-
cell analysis provides an avenue to explore the temporal 
information about cells. The fundamental limitation is 
that it is only a computational inference and cannot rep-
resent the actual existence of dynamic RNA processes. 
Emerging experimental technologies allow us to distin-
guish time-resolved phenomena in reality by chemical or 
biological methods (Table 1).

Metabolic RNA labeling
Metabolic RNA labeling effectively integrates with high-
throughput scRNA-seq, addressing limitations pertaining 
to RNA transcription dynamics [8]. The technology was 
initially applied at the bulk RNA level [30]. Currently, the 
most typical metabolic RNA labeling in scRNA-seq is a 
nucleoside analog called 4-thiouridine (4sU) [31, 32]. The 
brief technical principle is as follows: After tissue dissoci-
ation, the culture medium is supplementary with 4sU. In 
the process of nascent RNA synthesis, 4sU replaces uracil 
(U). Reverse transcriptase misread 4sU as cytosine (C). 
This misreading leads to incorrect pairing, where adenine 
(A), which normally pairs with U, is replaced by guanine 
(G). This ultimately results in T-to-C substitutions in the 
labeled new RNA.

Single-cell, thiol-(SH)-linked alkylation of RNA for 
metabolic labelling sequencing (scSLAM-seq) pioneered 
the application of the metabolic labeling method at the 
single-cell level [32]. This breakthrough identified DEGs 
in mouse fibroblasts infected and uninfected with cyto-
megalovirus (CMV) by distinguishing between total, old, 
and new RNA matrices. The study highlighted a critical 
insight: most DEGs are primarily detectable in new RNA, 
eluding detection in analyses of old or total RNA. Addi-
tionally, it revealed that interferon and NF-κB varied sig-
nificantly with different levels of infection, which was a 

core feature of transcription dynamics at the single-cell 
level. To address the constraint prohibiting large-scale 
scSLAM-seq, researchers developed new approaches that 
integrate high-throughput unique molecular identifier 
(UMI)-based scRNA-seq analysis with metabolic label-
ing. It has successfully enabled the acquisition of new/
old transcriptomes from thousands of single cells. It has 
been applied in transcription factor activity and cell state 
trajectories during neuronal activation [33], as well as 
the transcriptional dynamics in colorectal cancer cells 
treated with DNA-demethylating drugs [34]. We antici-
pate the potential of dynamic transcriptomics application 
in response to external stimuli (including viral infections 
and pharmacological interventions), embryonic devel-
opment, cell differentiation, tumor progression, and 
immune cell transformation is immense. So far, the appli-
cation of these technologies in vivo remains unexplored, 
despite their established utility at the bulk level [35]. It 
should be emphasized that the combination of scRNA-
seq with metabolic labeling in vivo is a feasible avenue 
that warrants further identification.

In addition to 4sU, Battich et al. presented an approach 
that utilizes 5-ethynyl-uridine (EU) and click chemistry 
to separate new and old RNA, thus providing a dynamic 
view of RNA synthesis and turnover [36]. 5-Ethynyl-
2-deoxyuridine (EdU), a thymidine analog, was applied 
for scRNA-seq and scATAC-seq dynamics [37]. Meta-
bolic labeling-based RNA velocity can accurately reca-
pitulate the dynamics of gene expression.

Fluorescent timer
The research by Gehart et al. showcased that using fluo-
rescent reporters offers a promising way to reveal real-
time-resolved scRNA-seq [38]. Neurog3 is transiently 
expressed in enteroendocrine (EE) progenitor cells. 
They engineered the integration of three independent 
proteins: NEUROG3, dTomato (red), and destabilized 
mNeonGreen (green) to study the dynamics of EE cell 
development. The differing decay rates of mNeonGreen 
and dTomato enable the measurement of the actual time 
elapsed since Neurog3 expression in individual cells, 
determined by the red: green fluorescence ratio. Integrat-
ing this approach with scRNA-seq, they have successfully 
created a real-time-resolved map, revealing the intri-
cate process of EE cell differentiation and development. 
Recently, Kirschenbaum et al. developed fluorescent-
based dynamics scRNA-seq called Zmen-seq in vivo, 
which uncovered immune dysfunctional trajectories of 
glioblastoma [39].

CRISPR/Cas9
Lineage tracing can be deduced by the patterns of muta-
tions shared between cells. The emergence of CRISPR/
Cas9 technology facilitates the deliberate introduction 
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of mutations using guide RNAs (gRNAs) [40]. These 
induced mutations can be applied to readout of lin-
eage histories at the single-cell level [41]. This advanced 
approach is used to trace cell lineage dynamics during 
embryonic development and reconstruction [42], as well 
as to track the growth and dissemination of lung tumor 
xenografts in mice [43].

Spatial information
Despite significant advancements in scRNA-seq, current 
scRNA-seq technologies require isolating cells from the 
tissues, resulting in the loss of spatial information, which 
is crucial for investigating intercellular interactions and 
functional relevance [46, 47]. In recent years, thriving 
spatial omics technologies have provided robust tools 
for analyzing spatial information of cells, with spatially 
resolved transcriptomics acknowledged as Method of 
the Year in 2020 [48]. Here, we categorize spatial omics 

technologies into three classes (Table 2) and present the 
primary technologies and principles (Fig. 3B).

Image-based in situ technologies
The image-based in situ technologies evolve from in 
situ hybridization (ISH) and in situ sequencing (ISS). 
ISH employs labeled probes to hybridize with target 
sequences in cells, thereby visualizing the locations of 
the sequences [49]. ISH-based technologies use com-
plementary fluorescent probes to hybridize with target 
sequences and detect them. Single-molecule fluorescence 
ISH (smFISH) is a high-resolution technology that uti-
lizes multiple short oligonucleotide probes coupled with 
fluorescent moieties to selectively detect transcripts 
[50], but it is limited by the throughput of detection. 
The emerging multiplexed FISH technologies address 
the limitation. Sequential FISH (seqFISH) barcodes the 
transcripts fixed within cells through multiple rounds of 
hybridization, imaging, and probe removal, allowing for 

Table 2 Primary spatial transcriptomics and spatial multi-omics technologies
Technology Resolution Single-cell? Data type detected Sample type Genes/transcripts 

detected
Refer-
ence

ISH-based
smFISH Subcellular Yes mRNA Cell 2 genes [50]
seqFISH Subcellular Yes mRNA Cell 12 genes [51]
seqFISH+ Subcellular Yes mRNA Cell 10,000 genes [53]
MERFISH Subcellular Yes mRNA Cell, tissue 

section
140genes, 1,001 genes [54]

ISS-based
ISS Subcellular Yes mRNA Cell, tissue 

section
31 transcripts [55]

FISSEQ Subcellular Yes mRNA Cell, tissue 
section

8,102 genes [56]

STARmap Subcellular Yes mRNA Tissue section 160 ∼ 1,020 genes [57]
STARmap PLUS Subcellular Yes mRNA, protein Tissue section > 20,000 genes [58]
ROI selection-based
Geo-seq Single-cell Yes mRNA FF > 80,00 genes [66]
DSP 10 μm No mRNA, protein FF, FFPE 96 genes, 1,412 genes [68]
Spatial barcode-based
ST 100 μm No mRNA FF Whole transcriptome [72]
10× Visium 55 μm No mRNA FF, FFPE Whole transcriptome [74]
Slide-seq 10 μm No mRNA FF Whole transcriptome [79]
Slide-seqV2 10 μm No mRNA FF Whole transcriptome [80]
HDST 2 μm No mRNA FF Whole transcriptome [81]
Stereo-seq 0.22 μm Yes mRNA FF Whole transcriptome [82]
Decoder-seq 10 ∼ 50 μm No mRNA FF Whole transcriptome [83]
DBiT-seq 10 ∼ 50 μm No mRNA, protein FF, FFPE Whole transcriptome [85]
spatial CITE-seq 10 ∼ 50 μm No mRNA, epitope FF Whole transcriptome [87]
spatial-ATAC-RNA-seq 10 ∼ 50 μm No Chromatin accessibil-

ity, mRNA
FF Whole transcriptome [86]

spatial-CUT&Tag-RNA-seq 10 ∼ 50 μm No Histone modifica-
tions, mRNA

FF Whole transcriptome [86]

Slide-tags < 10 μm No mRNA, Chromatin 
accessibility, TCR

FF Whole transcriptome [88]

FF, fresh frozen; FFPE, formalin-fixed paraffin-embedded
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the detection of the entire transcriptome through four 
dyes and eight rounds of hybridization [51]. Nevertheless, 
it suffers optical crowding when profiling an excessive 
number of transcripts [52]. seq-FISH + is an improved 
seqFISH, profiling 10,000 genes within individual cells by 
expanding the barcode base palette to 60 pseudo colors 
[53]. In addition, it only labels a fraction of transcripts 
during each hybridization cycle to avoid optical crowd-
ing. In another strategy, multiplexed error-robust FISH 
(MERFISH) can simultaneously image 100 to 1,000 kinds 
of RNA within individual cells by assigning combinatorial 
FISH labeling to RNA, followed by successive hybridiza-
tion and imaging [54].

ISS, first reported in 2013, utilized padlock probes to 
bind with cDNA produced by reverse transcription, 
followed by rolling-circle amplification (RCA) to pro-
duce rolling-circle products (RCP), which were in situ 
sequenced and imaged within tissues or cells [55]. Cur-
rently, fluorescent in situ sequencing (FISSEQ) and 
spatially-resolved transcript amplicon readout mapping 
(STARmap) are two representatives of ISS-based tech-
nologies. FISSEQ is an untargeted strategy that uses 
hexamer primers to reverse transcribe RNA in fixed 
cells, followed by cDNA circularization, and generates 
a sequencing library, further improving the detection 
throughput of ISS [56]. STARmap hybridizes directly to 
mRNA with a SNAIL probe and then undergoes RCA to 
obtain DNA amplicons, thereby avoiding reverse tran-
scription [57]. The distinctive feature is its capability to 
achieve in situ sequencing in three-dimensional (3D) 
intact tissue. STARmap PLUS further improves detection 
throughput and is compatible with both transcriptome 
sequencing and protein detection within the same tissue 
section, providing a more comprehensive insight into the 
biological systems [58].

The image-based in situ technologies can achieve sub-
cellular resolution [59]. When combined with single-cell 
omics technologies, they hold great potential for diverse 
applications, particularly in neuroscience. For instance, 
Shi et al. employed STARmap PLUS on 20 central ner-
vous system (CNS) tissue sections and integrated the 
resulting data with the published scRNA-seq atlas, 
achieving molecular cell typing of the CNS [60]. Yao et 
al. integrated MERFISH and scRNA-seq to construct a 
transcriptomic and spatial atlas of the mouse whole brain 
and built a platform to visualize these data, providing 
precious resources for deciphering the complexity of the 
mammalian brain [61]. Additionally, the combinations 
can be applied in hematology [62], stem cell research 
[63], and developmental biology [64].

ROI selection-based technologies
These technologies employ specific methodologies to 
precisely select regions of interest (ROIs) from tissue 

sections for subsequent analysis. Laser capture micro-
dissection (LCM) is a typical technology capable of cap-
turing ROIs at resolutions ranging from cell-population 
to single-cell via laser cutting [65]. Geographical posi-
tion sequencing (Geo-seq), an integration of LCM and 
scRNA-seq, enables the construction of 3D transcrip-
tome atlases, thereby revealing cellular heterogeneity and 
spatial disparities [66]. Additionally, the integration of 
high-content imaging, LCM, and multiplexed mass spec-
trometry can extend single-cell proteomics to intact tis-
sue, significantly improving biological insight [67]. These 
studies suggest that LCM is a promising technology for 
isolating ROIs within tissues for multi-omics analysis.

GeoMx digital spatial profiler (DSP), a commercially 
available technology, is capable of spatially profiling RNA 
or proteins within the ROIs [68]. It uses a photocleavable 
(PC) linker to connect oligo sequence (DSP barcodes) 
with RNA probe or antibody in fixed tissue, selecting 
ROIs, and releasing barcodes with UV for sequencing. 
This technology has been used to dissect the heterogene-
ity of glomerular transcriptional profiler missed by LCM 
in collapsing glomerulopathy [69], as well as to identify 
biomarkers associated with immune checkpoint inhibitor 
(ICI) resistance in non-small cell lung cancer (NSCLC) 
[70]. However, these technologies are limited by through-
put, as each ROI requires individual collection and 
processing.

Spatial barcode-based technologies
The core of spatial barcode-based technologies is cap-
turing transcripts within tissues or cells using spatial 
barcodes (DNA oligos) array on glass slides [71]. Sub-
sequently, library preparation and next-generation 
sequencing (NGS) are performed.

Spatial transcriptomics (ST) was a milestone achieve-
ment, carrying epochal significance for spatially resolved 
transcriptomics [72]. It innovatively captured polyad-
enylated RNA on spot-equipped slides, with each spot 
containing unique spatial barcodes, ensuring that each 
transcript was precisely mapped back to its respec-
tive spot through the spatial barcode [73]. ST was first 
applied in adult mouse olfactory bulb and human breast 
cancer, achieving RNA sequencing while preserving two-
dimensional spatial information. 10× Genomic improved 
it and released 10× Visium, which possessed a higher 
spatial resolution [74]. It has been commercialized and 
extensively employed across diverse fields such as devel-
opmental biology [75], cancer biology [76], as well as 
neuroscience [77, 78]. For instance, Olaniru et al. applied 
the integration of scRNA-seq with 10× Visium to the 
developing human fetal pancreases, analyzing the differ-
entiation and maturation processes of various cell types 
[75]. Galeano Niño et al. applied 10× Visium to oral squa-
mous cell carcinoma and colorectal cancer, identifying 
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the identity and in situ position of the microbial commu-
nities within the tumors [76]. Hasel et al. integrated bulk 
RNA-seq, and scRNA-seq with 10× Visium, uncovering 
spatiotemporal heterogeneity in the response of different 
astrocyte subsets to inflammation in the brain [78]. These 
applications suggest that 10× Visium is a highly promis-
ing technology for dissecting spatial information.

Slide-seq captures transcripts on a slide equipped 
with random 10-µm DNA-barcoded beads and gains the 
positions of barcodes via in situ indexing, enabling spa-
tial transcriptomic analysis at a near-cellular resolution 
[79]. Stickels et al. optimized Slide-seq and reported the 
highly sensitive Slide-seqV2, leading to a tenfold increase 
in RNA capture efficiency [80]. High-definition spatial 
transcriptomics (HDST) utilizes a split-pool approach 
to generate a dense and barcoded bead array, capturing 
RNA at a 2-µm resolution [81]. Recently developed spa-
tial enhanced resolution omics-sequencing (Stereo-seq) 
utilized a randomly barcoded DNA nanoball patterned 
array chip to achieve single-cell resolution and has been 
employed to delineate the spatiotemporal transcriptomic 
landscape of mouse organ development [82].

However, the aforementioned spatial barcode-based 
technologies suffer several constraints, such as multi-
cellular resolution, low sensitivity, and the necessity for 
sequencing to obtain positional indexing. To address 
these constraints, Cao et al. presented a dendrimeric 
DNA coordinate barcoding design for spatial RNA 
sequencing (Decoder-seq) [83]. The central innovation 
was to employ a microfluidics-assisted combinational 
barcoding approach to create high-density spatial bar-
code arrays on a 3D dendrimeric nanosubstrate, enabling 
cost-effective, highly sensitive, near-cellular resolution 
spatial transcriptomics research. They utilized it to spa-
tially resolve the distribution of low-expressed olfactory 
receptor genes and accurately depict the spatial single-
cell landscape of the hippocampus.

Recently, spatially resolved multi-omics has been rec-
ognized as one of the noteworthy technologies in 2023 
[84]. Fan’s group pioneered spatial multi-omics technol-
ogy. They innovatively employed two orthogonal chips 
equipped with parallel microfluidic channels to deliver 
DNA barcodes to tissue sections, developing the first 
spatial multi-omics technology, deterministic barcod-
ing in tissue for spatial omics sequencing (DBiT-seq), 
enabling simultaneous detection of the whole tran-
scriptome and 22 proteins [85]. Furthermore, the group 
extended this approach to spatial ATAC-RNA-seq and 
spatial assay of cleavage under targets and tagmentation 
and RNA sequencing (spatial CUT&Tag-RNA-seq) [86], 
which achieve co-profile of epigenome and transcrip-
tome, as well as spatial co-indexing of transcriptomes 
and epitopes for multi-omics mapping by highly parallel 
sequencing (spatial CITE-seq) [87], which is capable of 

co-mapping transcriptome and epitope. A very recently 
developed technology, Slide-tags, can label single nuclei 
with spatial barcodes and isolate them for multi-omics 
analysis [88]. Altogether, these spatial multi-omics tech-
nologies provide more comprehensive biological infor-
mation, deepening our understanding of the intricate 
spatial and molecular interactions in the field of life sci-
ence and biomedical research.

Genome
Although genomes are generally considered to be sta-
ble, there is still a small possibility of genetic mutations 
occurring with each DNA replication. Single-cell whole-
genome sequencing (scWGS) is capable of elucidating 
genomic heterogeneity and can therefore be utilized to 
analyze genomic mutations in single cells. This technol-
ogy involves the isolation of individual cells or nuclei fol-
lowed by whole-genome amplification (WGA), library 
preparation, and sequencing [89]. It has been applied to 
uncover somatic mutations in multiple cell types, such 
as human bronchial epithelial cells [90], and B lympho-
cytes [91], offering novel insights into the pathogenesis of 
diseases.

Single nucleotide polymorphism (SNP), a common 
form of genetic variation, is caused by the transition, 
transversion, insertion, or deletion of individual bases. 
Expression quantitative trait loci (eQTL) analysis can 
profile genetic variations (especially SNP) that affect 
gene expression, offering enhanced insights into the 
relationship between genetic variants and gene regula-
tion [92, 93]. The integration of scRNA-seq with eQTL 
was first reported in 2018 [94]. Kang et al. utilized mul-
tiplexed droplet scRNA-seq to profile eight immune cell 
populations from 23 donors and subsequently conducted 
eQTL analysis, identifying 32 cis-eQTLs, 22 of which 
were cell-specific. Recently, Ding et al. constructed the 
first integrated human sceQTL database, which com-
prises ∼ 16 million SNPs and ∼ 0.69 million sceQTLs [95], 
providing a valuable resource for disease susceptibility 
gene discovery.

In addition, multiple multi-omics technologies for inte-
grative analysis of genome and transcriptome have been 
developed, among which genome and transcriptome 
sequencing (G&T-seq) [96] and gDNA-mRNA sequenc-
ing (DR-seq) [97] stand out as two representative tech-
nologies. G&T-seq utilizes oligo-dT-coated beads to 
isolate mRNA and DNA, which are subsequently ampli-
fied and subjected to whole transcriptome sequencing 
and WGS, respectively. Whereas DR-seq employs a pre-
amplification-and-separation strategy to decouple DNA 
and mRNA molecular analytes, thereby avoiding physical 
nucleic acid separation before amplification. Therefore, 
compared with G&T-seq, DR-seq has a lower cross-con-
tamination rate and a higher recovery rate. Collectively, 
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these technologies hold vast potential for deciphering 
genetic variations and their impacts on gene expression.

Epigenome
Epigenomics aims to explore how chemical modifica-
tions and spatial structure alterations of the genome 
affect gene function and expression regulation. Decipher-
ing the epigenomic features such as DNA methylation, 
chromatin accessibility and histone modifications at the 
single-cell level allows us to study cell lineages and differ-
entiation states [98].

In eukaryotes, the most common DNA methylation 
occurs on the fifth carbon atom of C within the CpG 
island, yielding 5-methylcytosine (5-mC). Bisulfite con-
version is the gold standard for DNA methylation anal-
ysis [99]. The primary principle is that methylated C in 
DNA remains unchanged after treatment with bisulfite, 
whereas unmethylated C is converted to U [100]. After 
PCR amplification and high-throughput sequencing, the 
bases that methylated can be ascertained by compari-
son with reference sequences. Single-cell DNA methyla-
tion sequencing based on bisulfite conversion and NGS 
can be categorized into single-cell reduced representa-
tion bisulfite sequencing (scRRBS) [101] and single-cell 
whole-genome bisulfite sequencing (scWGBS) [102], 
which achieve single-base resolution. These technologies 
play crucial roles in investigating cell differentiation and 
development. The first single-cell multi-omics technology 
achieving co-profile of the DNA methylome and tran-
scriptome is single-cell methylome and transcriptome 
sequencing (scM&T-seq) [103], which utilizes G&T-seq 
to separate and amplify genomic DNA and mRNA from 
the same single cell and applies scBS-seq [104] to gener-
ate DNA methylation data. In addition, single-cell triple 
omics sequencing (scTrio-seq), which co-profiles the 
genome, DNA methylome, and transcriptome through 
scRRBS and WGS, has been applied to 25 cancer cells 
and identified two distinct subsets [105]. However, one 
constraint of these technologies is that bisulfite conver-
sion involves intense chemical reactions that can lead 
to significant DNA degradation and consequent loss of 
information.

Chromatin accessibility, a key epigenetic feature, plays 
a pivotal role in regulating gene expression by allowing 
transcriptional machinery to interact with regulatory ele-
ments, thereby facilitating the initiation or suppression 
of gene transcription in open chromatin regions [106]. 
Recently a variety of technologies have been developed 
to interrogate chromatin accessibility [107–109], whereas 
ATAC-seq barges to the forefront as a landmark break-
through that utilizes the Tn5 transposase to fragment 
open chromatin and labels the genome with sequencing 
adaptors [110]. Subsequently, the labeled genome under-
goes PCR amplification and sequencing (Fig.  2F). Two 

methods of scATAC-seq were developed in 2015, which 
enabled the exploration of chromatin accessibility at the 
single-cell level. The first one utilized a programmable 
microfluidics platform to capture single cells, followed 
by Tn5 transposase tagmentation and library amplifica-
tion with cell-identifying barcoded primes [111]. The 
other one utilized an integrative method combining com-
binatorial cell indexing with ATAC-seq to analyze chro-
matin accessibility within over 15,000 cells [112]. 10× 
Genomics developed a Chromium platform and applied 
it to scATAC-seq, which combined Tn5 transposase tag-
mentation within bulk nuclei and single-nuclei isolation 
through the droplet system [113]. Currently, the integra-
tion of scRNA-seq and scATAC-seq has been applied to 
explore the regulation of human developmental hemato-
poiesis [114], as well as to find potential therapeutic tar-
gets for clear cell renal cell carcinoma [115].

Histone modifications are chemical modifications that 
occur at specific sites on histone molecules, thereby 
affecting chromatin structure stability and gene expres-
sion regulation [116]. Chromatin immunoprecipitation 
sequencing (ChIP-seq) is a common method to pro-
file histone modifications [117]. Single-cell ChIP-seq 
(scChIP-seq) tags nucleosomes with barcodes via a drop-
let microfluidic platform before conventional ChIP-seq, 
and it was employed to interrogate the chromatin land-
scapes of breast cancer [118]. However, ChIP-seq has a 
high demand for experimental samples. To address the 
obstacle, Kaya-Okur et al. introduced CUT&Tag, which 
utilizes Protein A-Tn5 transposase to cleave the DNA 
sequences bound by targeted protein and integrates 
sequencing adapters with the cleaved sequences [119]. 
On this basis, single-cell CUT&Tag (scCUT&Tag) inte-
grated CUT&Tag with 10× Genomics scATAC-seq pro-
tocol, enabling the investigation of histone modifications 
at single-cell resolution [120]. It was applied to explore 
the histone modification features of regulatory elements 
and gene bodies in the central nervous system cells of 
mice. Recently, some multi-omics technologies have 
been developed, such as Paired-Tag [121] and combined 
assay of transcriptome and enriched chromatin binding 
(CoTECH) [122], which utilize a combinatorial barcod-
ing strategy, achieving co-profile of histone modifications 
and transcriptome in single cells.

Cellular protein and epitope
Single-cell proteomics is a more nascent field. Tran-
scriptomic features may not exhibit a comprehensive 
snapshot of cellular heterogeneity since similar gene 
expression profiles may be identifiable in other modali-
ties that are simultaneously measured. Indeed, the tran-
scriptomes and proteomes represent distinct molecular 
modalities, such as post-translational modifications that 
cannot be captured by transcriptomics. It’s crucial to 
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simultaneously identify the transcriptome and protein 
abundance at the single-cell level. Mass spectrometry-
based single-cell proteomics (scMS), achieving a detec-
tion depth of about 1,500 ∼ 2,500 proteins, is the most 
successful and extensively discussed in this review [123]. 
Furthermore, imaging-based approaches address the 
issue of spatial distribution [123]. Integrated with the 
burgeoning scRNA-seq technology, spatial resolution 
scMS was applied to explore pivotal modalities of the 
skin dermal fibroblast cells [124]. The challenge of quan-
tifying proteins in sequencing is addressed by leveraging 
the binding of specific antibodies linked to oligonucle-
otide for translation and amplification, thus overcoming 
the limitations of existing RNA-seq methods, which are 
unable to directly measure proteins. Cellular indexing of 
transcriptomes and epitopes by sequencing (CITE-seq), 
one of the most widely used methods that sequence cellu-
lar surface protein abundance via oligonucleotide-conju-
gated antibodies, combining protein-level and RNA-level 
insights within single-cell analyses (Fig.  2C) [125, 126]. 
Furthermore, they developed the applicable strategy of 
integrated multi-omics single-cell data to adjust for the 
varying multi-omics quantifications. They constructed a 
comprehensive atlas on the circulating human immune 
system based on the multimodal definition [7]. Trzu-
pek et al. discovered a novel subset of T regulatory cells 
(Tregs) with significantly upregulated CD80 and CD86, 
as revealed by antibodies-based sequencing. Moreover, 
their data indicated a low correlation between RNA and 
protein levels [127].

Proteins and other epitopes in cells are constantly 
dynamic changes in spatiotemporal processes, thus add-
ing information about proteins or other epitopes to 
scRNA-seq can accelerate the understanding of cellular 
states and functions. Recently, Glycan epitopes on the 
surface have been described as the specific cell states and 
types, some studies have also focused on it [128–130]. 
SUrface-protein Glycan And RNA-seq (SUGAR-seq) 
revealed unique surface glycan profiles in tumor-infil-
trating lymphocytes (TILs) [128]. Yu et al. have revealed 
that N-acetyllactosamine (LacNAc), a glycans related to 
immune receptor signaling, serves as a distinct indicator 
for discerning the glycolytic activity and effector function 
of CD8+ T cells [129].

A series of research has proved that cellular epitope 
information can reveal the phenotypes that could not be 
detected by scRNA-seq alone. Although existing technol-
ogies empowered scRNA-seq analysis by providing rich 
surface protein and epitope resources, it seems difficult 
to establish high-throughput single-cell proteomics in 
parallel [131].

Immune Repertoire
Immune repertoire (IR) encompasses the diversity of T/B 
cells in a particular environment, indicative of the capac-
ity of the immune system to respond to external stimuli at 
a particular moment. T/B cells, as the primary cell popu-
lations in the specific immune system, are at central focus 
in immunological research, where deciphering their char-
acteristics and functions remains key to delineating the 
immune microenvironment. scTCR-seq and scBCR-seq 
enable the determination of the full-length or comple-
mentarity-determining region 3 (CDR3) gene sequences 
related to TCR and BCR, respectively, at the single-cell 
level. It complements the limitation that scRNA-seq only 
obtains the transcriptome landscape, providing deep 
insights into the behavior of T/B cell populations, and 
enabling researchers to understand and possibly manipu-
late these responses for therapeutic purposes. The main 
directions of application are TME research, the evalua-
tion and monitoring of immune/infectious diseases, and 
TCR, BCR, and antibody screening.

TCR
It is well-known that T cells recognize the peptide-loaded 
major histocompatibility complex (pMHC) presented by 
antigen-presenting cells via the TCRs, thereby trigger-
ing the subsequent immune response to kill cancerous 
or infectious cells [132]. Deciphering TCR repertoire in 
varying situations is the foundation for understanding 
mechanisms, diagnostics, and developing new vaccines.

TCR is composed of α chain (TRA) and β chain (TRB), 
which are produced by combinatorial rearrangement of 
gene segments: variable (V), diversity (D) (exclusive to the 
β chain), joining (J), and constant (C). This recombina-
tion process results in a vast diversity of TCR repertoire, 
predominantly determined by the hypervariable CDR3 
[133]. Given that the probability of identical rearrange-
ments occurring in the absence of selection pressure is 
extremely low, TCR sequencing has been identified as a 
valuable indicator for antigen-driven clonal expansion, 
reflecting antigen specificity and response.

The history of high-throughput TCR sequencing has 
been introduced thoroughly in this review [134]. The 
most widespread application involves simultaneous 
scRNA-seq and scTCR-seq.  In this method, cDNA is 
partly used for the enrichment of TCR, while the other 
is utilized to construct gene profiles (Fig. 2A). This tech-
nology has been extensively commercially adopted by 
multiple companies. In RNA, TRA, and TRB sequencing, 
sequences shared with the same barcode are computa-
tionally inferred as a pair. However, a current limitation 
of this technology is the possibility of missing a chain 
and incorrectly matching with more than two TCR 
sequences.
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A series of heavyweight studies on the TILs have exhib-
ited the T cell and TCR clonotype diversity, constructing 
the landscape of T cell heterogeneity and dynamics in the 
TME [135–137].

In routine analysis, the primary objective is to map 
and analyze the diversity of clonotypes or CDR3. Addi-
tionally, clonotype overlap represents another critical 
dimension, empowering the characterization of TCR 
sequences shared across different tissues or tracking of 
key clonotypes during therapeutic interventions. From 
the excellent work of Zhang’s group, they pioneered the 
development of multiple indicators such as single T cell 
analysis by RNA sequencing and TCR tracking (STAR-
TRAC) (for clonal expansion, tissue migration, and state 
transition), Ro/e, and OR (for tissue distribution) to assess 
the status of TCR [135–137].

It is crucial to explore the differentiation of TCRs in cell 
types/ tissues/ conditions. Chen et al. developed TCRdb, 
a comprehensive TCR database, that aids in identify-
ing the states and functions of specific sequences [138]. 
Another significant challenge is unraveling the binding 
between TCR-pMHC in the context of infectious diseases 
or tumors. Advanced bioinformatic algorithms accelerate 
research breakthroughs in this field. Among these tools, 
NetMHCpan stands out in predicting the binding affin-
ity between peptides and MHC-I/II, respectively [139]. 
Additionally, Gao et al. have developed a computational 
tool to predict TCR-peptide binding via a machine learn-
ing method [140].

In all, scTCR-seq and associated analyses enhance the 
exploration and application of TCR sequencing. They 
facilitate the exploration of mechanisms, helping cancer 
early-stage diagnosis, treatment selection, and progno-
sis prediction, and designing engineering therapeutic 
strategies.

BCR
Similar to TCR, BCR consists of immunoglobulin heavy 
chains and light chains  , the diversity of it is produced by 
gene rearrangement of V(D)J gene. Based on its struc-
ture, BCR plays a central role in the adaptive immune 
response by recognizing specific antigens, which trig-
ger B cell activation, subsequently producing antibod-
ies [141]. Around a decade ago, paired scBCR-seq was 
introduced [142, 143]. scBCR-seq allows for a thorough 
analysis of BCR repertoires, providing crucial informa-
tion about their diversity and function at the single-cell 
level. More recently, Ian et al. challenged limited infor-
mation about BCR-seq to antigen specificity and devel-
oped LInking B-cell Receptor to Antigen specificity 
through sequencing (LIBRA-seq) to confirm for HIV-
and influenza-specific antibodies [6]. Combined with 
scRNA-seq, scBCR-seq was applied for producing cell 
atlas [144], identifying different neutralizing antibodies 

[145], conducting vaccine studies [146], etc., and proved 
invaluable in studies investigating the dynamics of the 
immune system. From a clinical perspective, it helps 
diagnose and monitor tumor immunology [144], infec-
tious diseases [145, 147], autoimmune diseases, and 
immunodeficiencies.

Microbiome
Microbiome refers to the collection of microorganisms 
living in a particular environment. The main technolo-
gies in the microbiome field are metagenomic sequenc-
ing and 16 S rRNA sequencing [148–150], updating our 
understanding of microbial community on a more micro-
scopic level (Fig.  2D). Recently an advanced technology 
called barcoding bacteria for identification and quanti-
fication (BarBIQ), achieved precise single-base in 16  S 
rRNA sequencing through the use of unique barcodes 
and a droplet-based approach [151]. Microbiomes can 
be assessed at the single-cell level, addressing the issue 
where traditional methods may obscure the simultane-
ous measurement of cell counts for each type of bacteria. 
In the context of scRNA-seq, although it has become a 
transformative technology for profiling gene expression 
levels in thousands of eukaryotic cells, challenges such as 
the low volume of RNA, no polyadenylate tail in bacterial 
RNA, and resistant cell wall have long hindered the adap-
tation of scRNA-seq technology to microbes. To over-
come these obstacles, Kuchina et al. introduced microbial 
split-pool ligation transcriptomics (microSPLiT), a tech-
nology that can identify the scarce subpopulations of 
cells down to a minuscule proportion of 0.142%, which 
was crucial for revealing rare cellular states that are sig-
nificant from a physiological perspective [152]. Similarly, 
BacDrop was developed for bacterial scRNA-seq, identi-
fying bacterial types and quantifying the number of spe-
cific types of cells [153]. Besides, Microbe-seq applied 
microfluidic-droplet operation and bioinformatic analy-
sis to obtain the genomes of numerous microbes with 
single-cell resolution, and most single-amplified genomes 
had a purity of over 95% [154].

The intratumor microbiome has emerged as a novel 
and rapidly evolving research frontier, with the discovery 
of microorganisms in various cancer types, including in 
some organs traditionally considered to be sterile, pri-
marily in gastrointestinal cancers [155–157]. However, 
the subtle relationship between them and cancer remains 
unclear, sequencing technologies may be an effective 
solution. Galeano et al. introduced invasion-adhesion-
directed expression sequencing (INVADEseq) targeting 
a conserved area of the bacterial 16  S rRNA, enabling 
the effective creation of cDNA libraries containing bac-
terial transcripts derived from human cells associated 
with bacteria. The technology is crucial to uncovering the 
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complexity of microbiota interactions within tumor tis-
sues [158, 159].

Another interesting bioinformatical approach called 
Single-cell Analysis of Host-Microbiome Interactions 
(SAHMI) [160], is quite fascinating as it systematically 
extracts real microbial signals and quantifies microbiome 
profiles directly from mammalian host sequencing data. 
SAHMI advances a similar method into the realm of sin-
gle-cell analysis, enabling the identification of microbial 
species related to specific cell types and uncovering the 
relationship between microbial and transcriptome pro-
files, facilitating a deeper investigation into their contri-
bution to intercellular communication networks [160].

Metabolome
Metabolome focuses on the biochemical reactions within 
cells, encompassing the collection of all metabolites of 
tissue in a specific physiological period and metabolic 
features (Fig.  2E). The field of single-cell metabolo-
mics marks a pivotal era in unraveling the complexities 
of cellular processes at the individual cell level. Mass 
spectrometry (MS) [161–164] and nuclear magnetic 
resonance (NMR) spectroscopy [165] are widely utilized 
technologies for metabolomics analysis. Recent advance-
ments have enabled the analysis of single-cell metabo-
lomics and even at the level of single-organelle [166]. A 
comprehensive overview of the history and advances of 
metabolomic methodologies is provided in this review 
[167], but this review refrains from further elaboration. 
Importantly, it remains a challenge to combine metabo-
lomics with other single-cell multi-omics technolo-
gies given the limited sample size of single cells and the 
destructive quality of analyses and sequencing. In this 
respect, advanced technologies that possess the poten-
tial to integrate with other omics-based technologies are 
warranted.

Cell-cell interactions (CCIs)
With the advancement of bioinformatic analysis, tools 
developed based on scRNA-seq for inferring cell-cell 
communications, such as CellChat [168], CellPhoneDB 
[13], NicheNet [169], and CellCall [170], have become 
mainstreams. However, these methods of inferring CCIs 
through algorithms are influenced by parameters and do 
not necessarily represent actual occurrences. The appli-
cation of chemical biology tools in medical research is 
expanding, with proximity labeling technologies that may 
become game changers for reflecting real-world CCIs 
[171–174]. A groundbreaking research reported that 
FucoID, a chemical biology tool for capturing tumor anti-
gen-specific T cells through dendritic cell interactions 
using fucosyltransferase (FT) [171]. Based on this, they 
further developed an advanced platform for T cell-cancer 
cell and B cell-dendritic cell (DC) interactions adapted 

for complex systems [173]. This promising technology 
has been effectively integrated with RNA-seq and flow 
cytometry. Its combination with sing-cell technology is 
bound to reflect CCIs from a real perspective and could 
offer real insight into the exploration of tumor-reactive 
TCR.

Perspective in application in biological research
Currently, single-cell multi-omics technologies are rap-
idly evolving, offering robust tools for depicting intricate 
cellular landscapes. They have been applied to a diversity 
of fields including, but not limited to, cell atlas construc-
tion, developmental biology, pathways identification, and 
novel targets discovery, with remarkable achievements 
(Fig. 4).

Cell atlases construction
Constructing cell atlases is a common function of single-
cell multi-omics technologies. Cell atlases, as one of the 
seven noteworthy technologies in 2024 [175], can display 
detailed information about various cell types within dif-
ferent organisms, allowing for the characterization of cel-
lular diversity [176], the analysis of cellular heterogeneity 
[177], as well as the discovery of novel cell types [178]. 
In recent years, the great advances in single-cell multi-
omics technologies have enabled scientists to character-
ize various molecular information within individual cells, 
deepening our understanding of different cell types.

The largest cell-atlas initiative, the Human Cell Atlas 
was launched in 2017, aiming to integrate single-cell 
omic data into comprehensive atlases, thereby enhancing 
our understanding of cell development, physiology, and 
CCIs [74]. Currently, with the joint efforts of scientists, 
cell atlases of a wide range of organs and disease tissues 
have been constructed [179, 180]. By comparing the cell 
atlases of healthy and diseased states, we can uncover 
the mechanisms underlying diseases and advance their 
diagnosis and treatment [181]. In addition, single-cell 
multi-omics technologies can be applied to construct cell 
atlases of organoids for fundamental research as dem-
onstrated in research that constructed a human brain 
organoid development atlas by co-profiling of transcrip-
tome and chromatin accessibility to investigate the regu-
lation of cell fate decisions [182]. Therefore, constructing 
comprehensive cell atlases with single-cell multi-omics 
technologies will have profound impacts on biological 
research and human health.

Developmental biology
A principal application of single-cell multi-omics tech-
nologies in developmental biology is lineage tracing, 
which aims to track the progeny of individual cells to 
investigate cellular differentiation trajectories [183, 184]. 
Compared with traditional methods to study cell lineage 
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with heritable tags or naturally occurring somatic muta-
tions [185], single-cell multi-omics technologies provide 
powerful tools for delineating comprehensive lineage 
relationships and diverse cellular states. A newly devel-
oped multi-omics technology, single-cell Regulatory 
multi-omics with Deep Mitochondrial mutation profil-
ing (ReDeeM), utilizes naturally occurring mitochondrial 
DNA mutations as barcodes for lineage tracing while 
analyzing transcriptome and chromatin accessibility 
[186]. It was employed to construct a phylogenetic tree 

of human hematopoiesis, revealing the clonal architec-
ture, functional heterogeneity, and age-related changes 
of hematopoietic stem cells. Another single-cell lineage-
tracing technology, Camallia-seq, enables integrative 
analysis of chromatin accessibility, DNA methylation, 
transcriptome, as well as cell lineage information, bring-
ing new insights into how cell fate decisions are regulated 
and how cell identities are maintained under different 
modalities [187].

Fig. 4 Applications of single-cell multi-omics in biological research and clinical practice
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Additionally, single-cell multi-omics technologies have 
been employed for multiple stages of embryonic develop-
ment, including preimplantation [188, 189], implantation 
[190], gastrulation [191], and early organogenesis [192], 
to explore cell fate decisions of embryonic development 
from multiple dimensions, thereby providing a paradigm 
to decipher the molecular programs of tissue architec-
ture and cellular organization [193]. To comprehensively 
understand embryonic development, it is essential to 
explore the spatial information of cells, as it is one of 
the key factors determining cellular identity. Integrated 
analysis of single-cell and spatial transcriptomics can be 
applied to embryonic development, as in a study that 
precisely characterized human embryonic limb develop-
ment over time and space [194].

Altogether, with rapid advances in lineage tracing, sin-
gle-cell multi-omics, and spatial transcriptomics, we will 
address fundamental questions of developmental biology, 
achieving a better understanding of cell differentiation 
and development.

Pathways identification
The currently thriving single-cell multi-omics tech-
nologies are applied to identifying signaling pathways 
required for cellular function, shedding light on the 
mechanisms of multiple key pathological processes 
[195–199]. Fan et al. performed an integrative analysis 
of cervical squamous cell carcinoma (CSCC) utilizing 
scRNA-seq, Stereo-seq, and spatial proteomics, iden-
tifying eight meta-programs (MP) [195]. Notably, they 
revealed that MP6 tumor cells interact with cancer-
associated fibroblasts (CAFs) to shape an immune exclu-
sionary microenvironment via the FABP5-mediated 
transforming growth factor β (TGFβ) pathway. Han et 
al. applied scRNA-seq and scATAC-seq to characterize 
neuroendocrine prostate cancer (NEPC) cells, identify-
ing the KIT pathway, which can be activated by FOXA2 
to maintain cancer cell proliferation [196]. Inhibition 
of KIT can be a potential strategy for the treatment of 
NEPC. In addition, integrated analysis of epigenomics 
and transcriptomics was applied to investigate the tran-
scriptional dynamics of the fibrotic kidney, revealing that 
the TF Nfix could regulate the expression of the apopto-
sis-related gene Ifi27 [198]. The Nfix-Ifi27 pathway was 
also identified, which can cause kidney fibrosis by pro-
moting apoptosis. Therefore, leveraging single-cell multi-
omics technologies to identify signaling pathways offers 
crucial insights into the mechanisms of diseases, opening 
up promising avenues for the development of innovative 
therapeutic strategies.

Novel targets discovery
The single-cell multi-omics technologies can inte-
grate information at multiple levels to construct a 

comprehensive gene regulatory network and elucidate 
the regulatory and causal relationships between various 
molecules, thus holding great potential in discovering 
novel targets [200]. Olatoke et al. performed an integra-
tive scRNA-seq/single-nucleus ATAC sequencing (snA-
TAC-seq) analysis on lymphangioleiomyomatosis (LAM) 
to construct a HOX-PBX gene regulatory network that 
controlled the survival of LAM cells, thereby providing 
potential therapeutic targets for LAM [201]. Pozniak et 
al. integrated single-cell transcriptomics with spatial 
transcriptomics and proteomics to investigate mela-
noma, revealing a TCF4-dependent regulatory network, 
which orchestrated multiple transcriptional programs 
leading to immunotherapy resistance [202]. Targeting 
TCF4 can enhance the sensitivity of melanoma to ICI 
and targeted therapy. In another study, scRNA-seq and 
ST were applied to characterize the cellular composition 
and spatial structure of multiple primary lung cancers 
(MPLCs), finding that TNFRSF18 was highly expressed 
in T&NK cells within tumor tissues [203]. TNFRSF18 has 
been demonstrated to be associated with non-response 
to anti-PD-1 therapy in lung cancer [204]. Thus, it is 
anticipated that single-cell multi-omics and spatial tech-
nologies will create a more comprehensive framework, 
providing unprecedented opportunities to discover novel 
targets for disease intervention.

Perspective in applications in clinical practice
The advent of single-cell multi-omics technologies has 
added breadth and depth to understanding a battery of 
complex diseases and their pathology including neuro-
logical disease, immune disorders, oncology, and others. 
Within this section, we delve into the applications of sin-
gle-cell multi-omics across diverse fields, underscoring 
its transformative impact on clinical practice.

Tumor immunology
Cancer therapies are continually being developed and 
optimized, most of which can remodel the TME. As 
knowledge of the immune system improves, new immu-
notherapies, represented by ICIs and adoptive cell ther-
apy (ACT), are emerging. The capability of single-cell 
multi-omics technologies to uncover the intricate inter-
actions between the diverse cells and cancer cells sheds 
light on the heterogeneity and complexity of TME, posi-
tioning them as promising tools in the exploration of 
cancer treatment strategies.

ICIs
How do T cells react during ICI therapy? Paired scRNA-
seq and scTCR-seq might provide deep profiling. One 
study from ICI therapy for NSCLC, deciphered tumor-
specific T cell clonotype feature, regional distribution, 
and temporal persistence during ICI therapy [205]. 
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Another study from Qiu et al. utilized scRNA-seq, par-
alleled with scTCR/BCR-seq to elucidate the treatment 
response of Epstein-Barr virus (EBV)-associated gas-
tric cancer. Notably, re-emerged clonotypes in ISG-
15+CD8+ T cells after treatment among EBV (+) patients 
were detected and associated with effector T population 
expressing CXCL13 in responsive EBV (+) tumor, indi-
cating their significant importance in tumor immunoche-
motherapy response [25]. David Y. Oh et al. assessed the 
transcriptome characteristics of T cells and paired TCR 
from human bladder tumors. Unexpectedly, the typical 
CD8+ T cell states were unchanged in tumor and normal 
tissues, while cytotoxic CD4+ T cells showed the oppo-
site. They also managed to predict the therapeutic effect 
of anti-PD-L1 in bladder cancer patients based on CD4 
signature score [206]. A study combined scRNA-seq, 
TCR-seq, and ATAC-seq for integrated analysis, suggest-
ing that TdLN-TTSM cells are primary memory T cells 
that respond to ICI treatment, representing adoptive 
these cells a promising immunotherapy approach [207].

ACT
With the development of engineered T cells, ACT thera-
pies, represented by T cell receptor-T cell (TCR-T), Chi-
meric antigens receptor-T cell (CAR-T), and TILs have 
reshaped the landscape of tumor treatment. Tumor-
specific TCRs can recognize tumor-specific antigens, 
which provides a solid foundation for the development of 
TCR-T therapy. Recent research found CXCL13, CD200, 
and ENTPD1 as unique markers for tumor antigen-spe-
cific T cells using scRNA-seq and scTCR-seq.  On this 
basis, developed tumor antigen-specific TCR-T cell ther-
apies have shown significant therapeutic efficacy in autol-
ogous patient-derived xenograft (PDX) tumors [208]. 
Because of the unclear molecular mechanisms of resis-
tance to CAR-T therapy in acute lymphoblastic leukemia 
(ALL), Bai et al. integrated scRNA-seq and CITE-seq to 
compare responders and CD19-positive relapse patients, 
during which they confirmed lack of TH2 functional-
ity might be the cause of relapse in CAR-T treatment 
[209]. In addition, the researchers conducted a single-cell 
multi-omics (RNA, TCR, and CITE-seq) study in TILs 
from NSCLC patients to establish a neoantigen-targeted 
T-cell signature characterized by the frequency of clono-
types along with the levels of CD39 protein and CXCL13 
RNA. Utilizing this signature, they were able to detect 
neoantigen-reactive TCRs with a success rate [210].

Host-microbe interactions
A series of thrilling advancements in the interaction 
between the human body and microorganisms have fully 
illustrated the protective or pathogenic effects of bacte-
ria, scRNA-seq undoubtedly is the promising method 
to answer the open questions [211]. Integrated 16  S 

rRNA-seq and scRNA-seq analysis have been widely 
utilized in microbiota gastric cancer [212], pancreatic 
injury [213], cholangiocarcinoma [214], etc., explor-
ing the potential relationship between microbe and host 
cell types by complementing the composition of micro-
bial communities and host cell and genetic informa-
tion. A groundbreaking study integrated 16 S rRNA and 
scRNA-seq to reveal that Streptococcus anginosus pro-
motes gastric tumorigenesis [215]. Jia et al. integrated 
16  S rRNA-seq with single-cell transcriptomics, TCR-
seq, and ATAC-seq to reveal that IPA activates progen-
itor-exhausted CD8+ T cells through H3K27 acetylation 
modification [216]. It is worth mentioning that Chai et 
al. employed the Kraken method [217, 218] to process 
scRNA-seq to obtain the bacterial population corre-
sponding to specific cell types [214].

Infectious diseases
In the realm of infectious diseases, the technologies shed 
light on host-pathogen dynamics, immune responses, and 
advanced therapeutic strategies, especially in COVID-19 
[145, 146, 219–223]. Su et al. employed single-cell multi-
omics (RNA, CITE, TCR/BCR, etc.) to observe unique 
dynamics in the behavior of specific CD8+ T cells during 
the recuperation phase from COVID-19, among patients 
suffering from gastrointestinal sequelae [219]. Besides, 
the method is of great significance for the development 
and evaluation of vaccines. Through scRNA/TCR/BCR-
seq, Peng et al. systematically profiled the immune land-
scape after vaccinating lipid nanoparticle-mRNA [146]. 
A study focused on the breakthrough infection and pan-
variant antivirals, and they successfully identified elite 
neutralizing antibodies (nAbs) repertoire using scRNA/
BCR-seq of B cells, which showed strong neutralizing 
activity targeting numerous variants [145]. In addition, it 
has been found that the crosstalk of specific T cells and B 
cells following COVID-19 vaccine treatment [220, 221].

Cardiovascular disease
An in-depth exploration of cardiac disease using single-
cell technologies contributing to predicting disease, 
therapeutic target discovery, and stratifying patients 
[224–226]. The work from Kanemaru et al. employed 
sc-RNA-seq, single-nucleus RNA sequencing (snRNA-
seq), snATAC-seq, and spatial transcriptomics, paving 
the way for the anatomy and immunology of the heart 
[227]. Delgobo et al. focused on the transgenic T cell 
receptor (TCR-M) cells and myocardial infarction (MI). 
Using scRNA/TCR-seq, they elucidated TCR-M cells 
expressing Treg markers like Foxp3, Il2ra, and Ctla4 
and suppressed cardiac immune responses post-MI and 
improved cardiac function [228]. A hypertrophy study 
applied multiple-dimensional approaches including epi-
genetic and morphological analysis to the mechanism of 
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pressure overload [229]. In addition, a study employed 
CyTOF, scRNA-seq, and CITE-seq to decipher the 
immune landscapes in the plaques of atherosclerosis (AS) 
and uncover immune alterations related to clinical car-
diovascular events, suggesting potential avenues for AS 
treatment [230].

Neurological and brain disease
The high complexity of brain cells requires advanced 
single-cell multi-omics technologies to resolve the basic 
gene regulation both in healthy and neuropsychiat-
ric brain tissues [231]. A 2024 review comprehensively 
compiled studies on Alzheimer’s disease (AD) using 
transcriptomics, metabolomics, and other advanced 
technologies, summarizing mechanisms and targets of 
sex differences in AD progression [232]. Notaras et al. 
performed an integrative analysis of transcriptome and 
proteome on schizophrenia organoids to identify two 
disease-associated factors (BRN2 and PTN). Both BRN2 
and PTN promoted neurogenesis, while PTN also inhib-
ited apoptosis. Besides, the depletion of BRN2 and PTN 
can lead to schizophrenia through different mechanisms 
[233]. In addition, Ji et al. demonstrated that Glutamin-
ase 1 deficiency in forebrain neurons can lead to autism 
spectrum disorder-like behaviors by single-cell multi-
omics analysis [234].

As mentioned earlier, the combination of single-cell 
sequencing and spatial transcriptomics holds vast prom-
ise for the study of brain diseases. Li et al. employed 
scRNA-seq and spatial transcriptomics to identify two 
distinct microglial subclusters (ICAM and IPAM). ICAM 
was related to ischemia, exhibiting pro-inflammatory 
characteristics. In contrast, IPAM, associated with the 
ischemic penumbra, with inflammation-alleviating and 
neuroprotective features. Thus, they reported that target-
ing specific microglial subclusters is a promising thera-
peutic strategy for ischemic stroke [24]. Similarly, Han 
et al. combined scRNA-seq with spatial transcriptomics 
to identify LGALS9-CD44 as a crucial pathway after 
ischemic injury. LGALS9 and CD44 exhibited opposite 
effects, in which upregulation of LGALS9 favored recov-
ery from post-ischemic injury, whereas knockdown of 
CD44 diminished the therapeutic effect of LGALS9 [235]. 
These applications suggest that single-cell multi-omics 
technologies are eminently prospective for investigat-
ing neuropsychiatric disorders as well as brain injuries, 
providing unprecedented opportunities to decipher the 
complexity of the brain.

In addition to the applications above  (Table 3), we 
anticipated that single-cell multi-omics and paired bioin-
formatics tools would provide a fundamental framework 
for the research on a variety of complex diseases or bio-
logical processes, including autoimmune diseases [236], 
aging [237], spermatogenesis [238], and others [239, 240].

The challenges of single-cell multi-omics
Single-cell multi-omics technologies, widely applied in 
both biological research and clinical practice, have been 
bolstered by advancements in experimental protocols 
and data analysis, as well as by a growing consensus on 
their significance. Despite these improvements, they still 
face hurdles that impede their widespread applications. 
These challenges and obstacles delineate the future devel-
opment and trajectory of single-cell multi-omics. The fol-
lowing limitations and issues must be taken into account 
when performing single-cell multi-omics analyses.

Firstly, the high cost and strict sample requirements 
of single-cell technologies discourage many researchers 
[131]. Developing high-throughput, cost-effective, sam-
ple-friendly, convenient single-cell multi-omics technolo-
gies is a crucial issue, particularly for the application in 
clinical practice. The high cost of single-cell multi-omics 
restricts the measurement of large-scale cohorts, lead-
ing to data that is more often utilized for discovering 
new insights rather than for validation, which is com-
monly achieved by bulk RNA sequencing [25]. Another 
challenge is the strict requirement for sample quality. 
Fresh tissue samples are deemed appropriate for single-
cell sequencing, whereas freeze-thaw samples are gen-
erally recommended for snRNA-seq [242, 243]. Besides, 
the quantity and viability of the cell suspension are also 
important factors in obtaining high-quality single-cell 
data and detecting all cell types in the tissue.

The emerging single-cell multi-omics broadens the 
multidimensionality beyond transcriptomes and raises 
more profound questions. Developing robust and 
advanced computational methods to integrate and ana-
lyze multi-dimensional single-cell data is a pressing chal-
lenge to be addressed for the maturation of single-cell 
multi-omics [7]. Importantly, these strategies need to 
consolidate the data across diverse dimensions and man-
age potentially significant differences in individual omics 
data, enhancing the understanding of cellular function 
and state. In some contexts, inconsistencies in informa-
tion can occur among omics data, although the measure-
ment is conducted simultaneously within the same cells 
[7, 129].

Key information missing or mismatch due to the tech-
nology is another issue. Sequencing depth directly affects 
the quality of the data obtained, and choosing the appro-
priate sequencing depth in scRNA-seq is crucial [244]. 
Deeper sequencing provides a more comprehensive gene 
expression profile, while insufficient sequencing depth 
may result in the loss of crucial information, impact-
ing the annotation of cell types and the interpretation of 
their functions. Besides, some cellular heterogeneities 
may be not well presented in the transcriptome, and fail 
to define the state of the cell. High-throughput single-
cell proteomics methods may work, which are not yet 



Page 19 of 28Wu et al. Biomarker Research          (2024) 12:110 

Te
ch

no
lo

gy
D

is
ea

se
s

So
ur

ce
 

m
at

er
ia

l
M

ai
n 

fin
di

ng
s

Re
fe

r-
en

ce
Ce

ll 
at

la
se

s c
on

st
ru

ct
io

n
sc

RN
A-

se
q,

 sp
at

ia
l t

ra
ns

cr
ip

to
m

ic
s

/
H

um
an

Th
e 

st
ud

y 
hi

gh
lig

ht
ed

 th
e 

tr
an

sf
or

m
at

iv
e 

po
te

nt
ia

l o
f s

in
gl

e-
ce

ll 
an

d 
sp

at
ia

l g
en

om
ic

s i
n 

un
de

rs
ta

nd
in

g 
di

se
as

e 
m

ec
ha

ni
sm

s, 
an

d 
di

ag
no

sin
g,

 a
nd

 tr
ea

tin
g 

va
rio

us
 c

on
di

tio
ns

.
[1

81
]

sc
RN

A-
se

q,
 sc

AT
AC

-s
eq

/
H

um
an

 
or

ga
no

id
s

Co
ns

tr
uc

tin
g 

a 
hu

m
an

 b
ra

in
 o

rg
an

oi
d 

de
ve

lo
pm

en
t a

tla
s t

o 
in

ve
st

ig
at

e 
th

e 
re

gu
la

tio
n 

of
 c

el
l f

at
e 

de
ci

sio
ns

.
[1

82
]

sc
RN

A-
se

q,
 sc

TC
R-

se
q

O
va

ria
n 

ca
nc

er
 (O

C)
H

um
an

A 
sin

gl
e-

ce
ll 

la
nd

sc
ap

e 
of

 th
e 

O
C 

ec
os

ys
te

m
 w

as
 d

ep
ic

te
d 

an
d 

re
ve

al
ed

 th
e 

he
te

ro
ge

ne
ity

 o
f f

un
ct

io
na

l p
he

no
-

ty
pe

s a
nd

 d
ev

el
op

m
en

ta
l o

rig
in

s o
f m

ac
ro

ph
ag

es
 in

 tu
m

or
 ti

ss
ue

s a
nd

 a
sc

ite
s.

[2
41

]

D
ev

el
op

m
en

ta
l b

io
lo

gy
Ca

m
al

lia
-s

eq
/

M
ou

se
A 

ne
w

 te
ch

no
lo

gy
, C

am
al

lia
-s

eq
, e

na
bl

ed
 in

te
gr

at
iv

e 
an

al
ys

is 
of

 c
hr

om
at

in
 a

cc
es

sib
ili

ty
, D

N
A 

m
et

hy
la

tio
n,

 tr
an

-
sc

rip
to

m
e,

 a
s w

el
l a

s c
el

l l
in

ea
ge

 in
fo

rm
at

io
n,

 b
rin

gi
ng

 n
ew

 in
sig

ht
s i

nt
o 

ho
w

 c
el

l f
at

e 
de

ci
sio

ns
 a

re
 re

gu
la

te
d 

an
d 

ho
w

 c
el

l i
de

nt
iti

es
 a

re
 m

ai
nt

ai
ne

d 
un

de
r d

iff
er

en
t m

od
al

iti
es

.

[1
87

]

sc
RN

A-
se

q,
 sp

at
ia

l t
ra

ns
cr

ip
to

m
ic

s
/

H
um

an
 a

nd
 

m
ou

se
Pr

ec
ise

ly
 c

ha
ra

ct
er

iz
in

g 
hu

m
an

 e
m

br
yo

ni
c 

lim
b 

de
ve

lo
pm

en
t o

ve
r t

im
e 

an
d 

sp
ac

e.
[1

94
]

Pa
th

w
ay

s i
de

nt
ifi

ca
tio

n
sc

RN
A-

se
q,

 sp
at

ia
l t

ra
ns

cr
ip

to
m

ic
s, 

sp
at

ia
l p

ro
te

om
ic

s
Ce

rv
ic

al
 sq

ua
m

ou
s c

el
l 

ca
rc

in
om

a 
(C

SC
C)

H
um

an
M

P6
 tu

m
or

 c
el

ls 
in

te
ra

ct
 w

ith
 C

AF
s t

o 
sh

ap
e 

an
 im

m
un

e 
ex

cl
us

io
na

ry
 m

ic
ro

en
vi

ro
nm

en
t v

ia
 th

e 
FA

BP
5-

m
ed

ia
t-

ed
 T

G
Fβ

 p
at

hw
ay

.
[1

95
]

sc
RN

A-
se

q,
 sc

AT
AC

-s
eq

N
eu

ro
en

do
cr

in
e 

pr
os

-
ta

te
 c

an
ce

r (
N

EP
C)

H
um

an
 a

nd
 

m
ou

se
FO

XA
2 

is 
a 

cr
iti

ca
l d

riv
er

 o
f t

he
 a

de
no

-t
o-

ne
ur

oe
nd

oc
rin

e 
lin

ea
ge

 tr
an

sit
io

n 
in

 p
ro

st
at

e 
ca

nc
er

 th
at

 c
an

 a
ct

iv
at

e 
th

e 
KI

T 
pa

th
w

ay
 to

 m
ai

nt
ai

n 
ca

nc
er

 c
el

l p
ro

lif
er

at
io

n.
[1

96
]

sc
RN

A-
se

q,
 sn

AT
AC

-s
eq

Ki
dn

ey
 D

ise
as

e
H

um
an

 a
nd

 
m

ou
se

Th
e 

N
fix

-Ifi
27

 p
at

hw
ay

 c
an

 c
au

se
 k

id
ne

y 
fib

ro
sis

 b
y 

pr
om

ot
in

g 
ap

op
to

sis
.

[1
98

]

N
ov

el
 ta

rg
et

s d
isc

ov
er

y
sc

RN
A-

se
q,

 sn
AT

AC
-s

eq
Ly

m
ph

an
gi

ol
ei

om
yo

-
m

at
os

is 
(L

AM
)

H
um

an
 a

nd
 

m
ou

se
A 

H
O

X-
PB

X 
ge

ne
 re

gu
la

to
ry

 n
et

w
or

k 
co

nt
ro

lle
d 

th
e 

su
rv

iv
al

 o
f L

AM
 c

el
ls.

[2
01

]

sc
RN

A-
se

q,
 sp

at
ia

l t
ra

ns
cr

ip
to

m
ic

s, 
sp

at
ia

l p
ro

te
om

ic
s

M
et

as
ta

tic
 m

el
an

om
a 

(M
M

)
H

um
an

A 
TC

F4
-d

ep
en

de
nt

 re
gu

la
to

ry
 n

et
w

or
k 

or
ch

es
tr

at
ed

 m
ul

tip
le

 tr
an

sc
rip

tio
na

l p
ro

gr
am

s l
ea

di
ng

 to
 im

m
un

o-
th

er
ap

y 
re

sis
ta

nc
e.

[2
02

]

sc
RN

A-
se

q,
 sp

at
ia

l t
ra

ns
cr

ip
to

m
ic

s
M

ul
tip

le
 p

rim
ar

y 
lu

ng
 

ca
nc

er
s (

M
PL

Cs
)

H
um

an
TN

FR
SF

18
, a

ss
oc

ia
te

d 
w

ith
 n

on
-re

sp
on

se
 to

 a
nt

i-P
D

-1
 th

er
ap

y 
w

as
 h

ig
hl

y 
ex

pr
es

se
d 

in
 T

&N
K 

ce
lls

 w
ith

in
 M

PL
Cs

.
[2

03
]

IC
Is

sc
RN

A-
se

q,
 sc

TC
R-

se
q,

 sc
BC

R-
se

q
Ep

st
ei

n-
Ba

rr
 v

iru
s-

as
so

ci
at

ed
 g

as
tr

ic
 

ca
nc

er
 (E

BV
 +

 G
C)

H
um

an
Re

-e
m

er
ge

d 
cl

on
ot

yp
es

 in
 IS

G
-1

5+
CD

8+
 T

 c
el

ls 
af

te
r t

re
at

m
en

t a
m

on
g 

EB
V 

(+
) p

at
ie

nt
s w

er
e 

de
te

ct
ed

 a
nd

 a
s-

so
ci

at
ed

 w
ith

 e
ffe

ct
or

 T
 p

op
ul

at
io

n 
ex

pr
es

sin
g 

CX
CL

13
 in

 re
sp

on
siv

e 
EB

V 
(+

) t
um

or
, i

nd
ic

at
in

g 
th

ei
r s

ig
ni

fic
an

t 
im

po
rt

an
ce

 in
 tu

m
or

 im
m

un
oc

he
m

ot
he

ra
py

 re
sp

on
se

.

[2
5]

sc
RN

A-
se

q,
 T

CR
-s

eq
Lo

ca
liz

ed
 b

la
dd

er
 tr

an
-

sit
io

na
l c

el
l c

ar
ci

no
m

a 
(T

CC
)

H
um

an
Id

en
tif

yi
ng

 d
ist

in
ct

 C
D

4+
 a

nd
 C

D
8+

 T
 c

el
l s

ta
te

s w
ith

in
 b

la
dd

er
 tu

m
or

s a
nd

 h
ig

hl
ig

ht
in

g 
th

e 
pr

es
en

ce
 o

f c
yt

o-
to

xi
c 

CD
4+

 T
 c

el
ls 

an
d 

va
rio

us
 C

D
8+

 T
 c

el
l s

ub
se

ts
.

[2
06

]

sc
RN

A-
se

q,
 A

CA
T-

se
q

H
ep

at
oc

el
lu

la
r c

ar
ci

-
no

m
a 

(H
CC

)
H

um
an

 a
nd

 
m

ou
se

Td
LN

-T
TS

M
 c

el
ls 

w
er

e 
pr

im
ar

y 
m

em
or

y 
T 

ce
lls

 th
at

 re
sp

on
d 

to
 IC

I t
re

at
m

en
t, 

re
pr

es
en

tin
g 

th
e 

ad
op

tiv
e 

tr
an

sf
er

 
of

 th
es

e 
ce

lls
 a

s a
 p

ro
m

isi
ng

 im
m

un
ot

he
ra

py
 a

pp
ro

ac
h.

[2
07

]

AC
T

sc
RN

A-
se

q,
 C

IT
E-

se
q

B-
ce

ll 
Ac

ut
e 

Ly
m

-
ph

ob
la

st
ic

 L
eu

ke
m

ia
 

(B
-A

LL
)

H
um

an
La

ck
 o

f T
H

2 
fu

nc
tio

na
lit

y 
m

ig
ht

 b
e 

th
e 

ca
us

e 
of

 re
la

ps
e 

in
 C

AR
-T

 tr
ea

tm
en

t.
[2

09
]

Ta
bl

e 
3 

Ap
pl

ic
at

io
ns

 in
 b

io
lo

gi
ca

l r
es

ea
rc

h 
an

d 
cl

in
ic

al
 p

ra
ct

ic
e



Page 20 of 28Wu et al. Biomarker Research          (2024) 12:110 

Te
ch

no
lo

gy
D

is
ea

se
s

So
ur

ce
 

m
at

er
ia

l
M

ai
n 

fin
di

ng
s

Re
fe

r-
en

ce
TC

R-
se

q,
 C

IT
E-

se
q

N
on

-s
m

al
l c

el
l l

un
g 

ca
nc

er
 (N

SC
LC

)
H

um
an

A 
ph

en
ot

yp
ic

 si
gn

at
ur

e 
ba

se
d 

on
 C

D
39

 a
nd

 C
XC

L1
3 

id
en

tifi
ed

 n
eo

an
tig

en
-re

ac
tiv

e 
T 

ce
lls

 in
 fr

es
h 

N
SC

LC
.

[2
10

]

H
os

t-
m

ic
ro

be
 in

te
ra

ct
io

ns
16

 S
 rR

N
A 

se
qu

en
ci

ng
, s

cR
N

A-
se

q
In

tr
ah

ep
at

ic
 c

ho
la

n-
gi

oc
ar

ci
no

m
a 

(IC
C)

H
um

an
P. 

fu
ng

or
um

 in
hi

bi
te

d 
tu

m
or

 g
ro

w
th

 th
ro

ug
h 

al
an

in
e,

 a
sp

ar
ta

te
, a

nd
 g

lu
ta

m
at

e 
m

et
ab

ol
ism

.
[2

14
]

16
 S

 rR
N

A 
se

qu
en

ci
ng

, s
cR

N
A-

se
q

G
as

tr
ic

 c
an

ce
r (

G
C)

M
ou

se
St

re
pt

oc
oc

cu
s a

ng
in

os
us

 p
ro

m
ot

ed
 g

as
tr

ic
 tu

m
or

ig
en

es
is.

[2
15

]
sc

RN
A-

se
q,

 T
CR

-s
eq

Pa
n-

ca
nc

er
H

um
an

 a
nd

 
m

ou
se

Th
e 

co
m

m
en

sa
l b

ac
te

riu
m

 L
ac

to
ba

ci
llu

s j
oh

ns
on

ii 
en

ha
nc

ed
 th

e 
effi

ca
cy

 o
f I

CI
 th

er
ap

y 
by

 m
od

ul
at

in
g 

th
e 

st
em

-
ne

ss
 o

f C
D

8+
 T

 c
el

ls.
[2

16
]

In
fe

ct
io

us
 d

ise
as

es
sc

RN
A-

se
q,

 sc
BC

R-
se

q
SA

RS
-C

oV
-2

H
um

an
D

isc
ov

er
y 

an
d 

ch
ar

ac
te

riz
at

io
n 

of
 p

ot
en

t n
eu

tr
al

iz
in

g 
an

tib
od

ie
s f

ro
m

 in
di

vi
du

al
s w

ith
 O

m
ic

ro
n 

br
ea

kt
hr

ou
gh

 
in

fe
ct

io
ns

.
[1

45
]

sc
RN

A-
se

q,
 B

CR
-s

eq
, T

CR
-s

eq
SA

RS
-C

oV
-2

M
ou

se
A 

sy
st

em
at

ic
al

 d
ep

ic
tio

n 
of

 th
e 

im
m

un
e 

la
nd

sc
ap

e 
af

te
r v

ac
ci

na
tin

g 
lip

id
 n

an
op

ar
tic

le
-m

RN
A.

[1
46

]
sc

RN
A-

se
q,

 sc
CI

TE
-s

eq
, s

cT
CR

-s
eq

, 
pl

as
m

a 
pr

ot
eo

m
ic

s, 
m

et
ab

ol
om

ic
s

SA
RS

-C
oV

-2
H

um
an

O
bs

er
vi

ng
 u

ni
qu

e 
dy

na
m

ic
s i

n 
th

e 
be

ha
vi

or
 o

f s
pe

ci
fic

 C
D

8+
 T

 c
el

ls 
du

rin
g 

th
e 

re
cu

pe
ra

tio
n 

ph
as

e 
fro

m
 C

O
VI

D
-

19
, a

m
on

g 
pa

tie
nt

s s
uff

er
in

g 
fro

m
 g

as
tr

oi
nt

es
tin

al
 se

qu
el

ae
.

[2
19

]

Ca
rd

io
va

sc
ul

ar
 d

ise
as

e
sc

-R
N

A-
se

q,
 sn

RN
A-

se
q,

 sn
AT

AC
-s

eq
, 

sp
at

ia
l t

ra
ns

cr
ip

to
m

ic
s

/
H

um
an

Co
ns

tr
uc

tin
g 

th
e 

hu
m

an
 c

ar
di

ac
 la

nd
sc

ap
e 

an
d 

pa
vi

ng
 th

e 
w

ay
 fo

r t
he

 a
na

to
m

y 
an

d 
im

m
un

ol
og

y 
of

 th
e 

he
ar

t.
[2

27
]

sc
RN

A-
se

q,
 sc

TC
R-

se
q

M
yo

ca
rd

ia
l i

nf
ar

ct
io

n 
(M

I)
H

um
an

 a
nd

 
m

ou
se

TC
R-

M
 c

el
ls 

ex
pr

es
sin

g 
Tr

eg
 m

ar
ke

rs
 li

ke
 F

ox
p3

, I
l2

ra
, a

nd
 C

tla
4 

su
pp

re
ss

ed
 c

ar
di

ac
 im

m
un

e 
re

sp
on

se
s p

os
t-

M
I 

an
d 

im
pr

ov
ed

 c
ar

di
ac

 fu
nc

tio
n.

[2
28

]

sc
RN

A-
se

q,
 C

IT
E-

se
q

At
he

ro
sc

le
ro

sis
 (A

S)
H

um
an

D
ec

ip
he

rin
g 

th
e 

im
m

un
e 

la
nd

sc
ap

es
 in

 th
e 

pl
aq

ue
s o

f A
S 

an
d 

un
co

ve
rin

g 
im

m
un

e 
al

te
ra

tio
ns

 re
la

te
d 

to
 c

lin
ic

al
 

ca
rd

io
va

sc
ul

ar
 e

ve
nt

s.
[2

30
]

N
eu

ro
lo

gi
ca

l a
nd

 b
ra

in
 d

ise
as

e
sc

RN
A-

Se
q,

 p
ro

te
om

ic
s

Sc
hi

zo
ph

re
ni

a
H

um
an

 
or

ga
no

id
s

Id
en

tif
yi

ng
 tw

o 
di

se
as

e-
as

so
ci

at
ed

 fa
ct

or
s, 

BR
N

2 
an

d 
PT

N
, w

hi
ch

 p
ro

m
ot

ed
 n

eu
ro

ge
ne

sis
, w

ith
 P

TN
 a

lso
 in

hi
b-

ite
d 

ap
op

to
sis

.
[2

33
]

sc
RN

A-
se

q,
 sp

at
ia

l t
ra

ns
cr

ip
to

m
ic

s
Isc

he
m

ic
 st

ro
ke

M
ou

se
Tw

o 
m

ic
ro

gl
ia

l s
ub

cl
us

te
rs

, i
sc

he
m

ic
 c

or
e-

as
so

ci
at

ed
 m

ic
ro

gl
ia

 (I
CA

M
) a

nd
 is

ch
em

ic
 p

en
um

br
a-

as
so

ci
at

ed
 m

i-
cr

og
lia

 (I
PA

M
) w

er
e 

id
en

tifi
ed

 in
 th

e 
br

ai
ns

 o
f m

ic
e 

su
bj

ec
te

d 
to

 m
id

dl
e 

ce
re

br
al

 a
rt

er
y 

oc
cl

us
io

n 
(M

CA
O

).
[2

4]

sc
RN

A-
se

q,
 sp

at
ia

l t
ra

ns
cr

ip
to

m
ic

s
Isc

he
m

ic
 S

tr
ok

e
M

ou
se

LG
AL

S9
-C

D
44

 is
 a

 c
ru

ci
al

 p
at

hw
ay

 a
fte

r i
sc

he
m

ic
 in

ju
ry

. L
G

AL
S9

 a
nd

 C
D

44
 e

xh
ib

ite
d 

op
po

sit
e 

eff
ec

ts
, i

n 
w

hi
ch

 
up

re
gu

la
tio

n 
of

 L
G

AL
S9

 fa
vo

re
d 

re
co

ve
ry

 fr
om

 p
os

t-
isc

he
m

ic
 in

ju
ry

, w
he

re
as

 k
no

ck
do

w
n 

of
 C

D
44

 d
im

in
ish

ed
 

th
e 

th
er

ap
eu

tic
 e

ffe
ct

 o
f L

G
AL

S9
.

[2
35

]

Ta
bl

e 
3 

(c
on

tin
ue

d)

 



Page 21 of 28Wu et al. Biomarker Research          (2024) 12:110 

established [131]. Capturing the immune repertoire also 
faces inherent technical limitations. Instances such as 
measuring only TRA or TRB, or erroneous matching to 
more than two chains, do occur [25]. Addressing how to 
effectively handle these data requires more uniform rules. 
Besides, there are various causes for clonal expansion, 
including the pressure of tumor neoantigens or infec-
tious diseases. Determining whether clonal expansion is 
due to a specific factor, like tumor antigen pressure, is a 
topic worth exploring. This may necessitate the creation 
of a dedicated immune repertoire database or the use of 
biochemistry methods to bidirectionally decode TCR and 
pMHC, among other approaches.

Doublet refers to two cells encapsulated into one reac-
tion volume [245], which may confound downstream 
analysis, including atlas construction, DEG analysis, and 
cell trajectory inference. The emergence of the doublet 
is especially evident when a large amount of cell volume 
is put in. Developing a suitable means of assessing the 
removal of double cells can prevent many strange prob-
lems from arising [245, 246].

Altogether, overcoming these challenges to integrate 
high-quality, multimodal single-cell multi-omics data is 
essential. Understanding the patterns of normal tissue 
function and disease progression from a single-cell per-
spective is inseparable from these problems being solved.

Conclusions
Single-cell sequencing provides unprecedented resolu-
tion to identify multicellular connectivity and hetero-
geneity. Multi-omics technologies have empowered 
the scRNA-seq to break through the original limita-
tions associated with relying solely on transcriptome 
gene expression profiles. Integrated with transcriptome, 
genome, metabolome, proteome, TCR/BCR, epigenome, 
etc., and broadening the axes of timescale and spatial 
information, multidimensional information provides 
a comprehensive snapshot of cell types and states. In 
the present review, we discuss the established cutting-
edge single-cell multi-omics technologies over the past 
decades. Additionally, burgeoning computational biology 
technologies are another major step toward uncovering 
and deciphering the secrets within the multidimensional 
datasets. These bioinformatics tools link the datasets 
from different modalities elucidate the function within 
different cell types, and provide a wide range of informa-
tion through mathematical modeling and artificial intel-
ligence methods. From the view of clinical practice, we 
highlight the applications in tumor immunology, thera-
peutic technologies, and drug treatments. Especially for 
the discovery of new cell populations and new targets, as 
well as evaluation and interpretation of drugs and thera-
peutics, such as PD1 and CAR-T, are elucidated.

Collectively, single-cell multi-omics methods have 
essentially expanded the tools to discover the rich 
resources and understand the inner workings of biologi-
cal processes at the single-cell level. Given that future 
multi-omics studies will aid in addressing numerous bio-
logical research and clinical practices, the technologies 
will become the standard toolkit for studies on molecular 
cell biology.
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sequencing
SAHMI  Single-cell Analysis of Host-Microbiome 

Interactions
MS  Mass spectrometry
NMR  Nuclear magnetic resonance
CCIs  Cell-cell interactions
FT  Fucosyltransferase
DC  Dendritic cell
ReDeeM  Regulatory multi-omics with Deep 

Mitochondrial mutation profiling
CSCC  Cervical squamous cell carcinoma
MP  Meta-program
CAF  Cancer-associated fibroblast
TGFβ  Transforming growth factor β
NEPC  Neuroendocrine prostate cancer
snATAC-seq  Single-nucleus ATAC sequencing
LAM  Lymphangioleiomyomatosis
MPLCs  Multiple primary lung cancers
ACT  Adoptive cell therapy
EBV  Epstein‒Barr virus
TCR-T  T cell receptor-T cell
CAR-T  Chimeric antigens receptor-T cell
PDX  Patient-derived xenograft
ALL  Acute lymphoblastic leukemia
nAb  Neutralizing antibody
MI  Myocardial infarction
snRNA-seq  Single-nucleus RNA sequencing

AS  Atherosclerosis
AD  Alzheimer’s disease
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