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Introduction
The International Agency for Research on Cancer (IARC) 
recognizes 7 major human viruses as direct oncogenic 
agents, including human papilloma virus (HPV), hepati-
tis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr 
virus (EBV), Kaposi’s sarcoma-associated herpesvirus 
(KSHV), Merkel cell polyomavirus (MCPV), and human 
immunodeficiency virus type 1 (HIV-1) [1]. Additionally, 
cytomegalovirus (CMV) reactivation and infection are 
frequently observed in immunocompromised individuals 
such as transplant recipients or HIV-1 carriers [2], with 
mounting evidence suggesting CMV’s potential as an 
oncogenic virus [3–6].

Despite the typically robust immune response to viral 
antigens in most infected individuals, persistent or latent 
infection of oncoviruses enables to evade the immune 
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Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their 
application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis 
C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct 
or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis 
and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks 
in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, 
which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for 
patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating 
viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of 
harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer 
progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and 
discuss their implications for therapeutic advancement.
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system and induce immune tolerance through mecha-
nisms such as downregulating major histocompatibility 
complex (MHC) molecules, producing immunosuppres-
sive proteins, and directly infecting immune cells [7–9], 
which increases the risk of virus-driven or associated 
cancers (Fig.  1a). For instance, HPV, EBV and CMV 
encode viral oncoproteins that mimic or interfere with 
host regulatory mechanisms, disrupt cellular homeo-
stasis, and impact cellular proteins, such as the tumor 
suppressor proteins p53 and pRb (Table  1) [2, 10]. In 
some other cases involving either DNA or RNA viruses 
(HPV, HBV, EBV, CMV and HIV-1), the viral genome 
can integrate into the host genome, remaining dormant 
until conditions favor reactivation, thereby contribut-
ing to viral persistence and disease manifestation [11]. 
Importantly, the “hit-and-run’’ theory also posits that 
viruses induce a series of cellular changes, promoting 
normal cells to become cancer cells, after which the virus 
leaves while the cancer cells develop [12]. However, HBV 
and HCV can create a microenvironment conducive to 
tumorigenesis through chronic inflammation. Persistent 

inflammation leads to the production of cytokines and 
growth factors, that promote cell proliferation, angiogen-
esis, and genomic instability [13].

Current antiviral treatments effectively suppress viral 
replication but fail to eliminate chronic or latent infec-
tions. Eradicating viral reservoirs remains a critical thera-
peutic challenge. Beyond tumors, virus-specific adoptive 
cell therapies (ACTs) have shown promise in purging 
viral infections, suggesting a potential role in treating 
viral malignancies [14]. ACTs are particularly suited to 
viral malignancies due to the expression of targetable 
tumor-associated viral antigens exclusively in cancerous 
cells, providing an unparalleled opportunity to subvert 
such oncoproteins as tumor-specific targets. Further-
more, the current tantalizing goal is to activate immune 
cells by targeting viral antigens, rejuvenate antiviral 
effects and achieve the goal of recognizing and killing 
virus-related tumor cells.

Tremendous progress has been made in the develop-
ment of ACTs for viral malignancies, including tumor-
infiltrating lymphocyte (TIL), dendritic cell (DC), 

Fig. 1  a Viral persistent or latent infection and host cellular immunity against oncogenic infection (By Figdraw). A variety of virally oncogenic mechanisms 
determine the transformation and maintenance of the malignancy. Virus-infected cells can be recognized and eliminated by host cellular immunity. b 
Schematic diagram of ACTs on viral malignancies. Engineered TILs, DCs, CAR-T cells, TCR-T cells, and VST therapies have the potential for application to viral 
malignancies. CAR-T cells target the virally-encoded cell surface antigen through an antibody-based scFv. In contrast, TCR-T cells target a virus-derived 
peptide on MHC complex. In TIL therapy, tumor is surgically resected and T-cells are expanded from the tumor ex vivo. TILs target viral antigens as well as 
non-viral proteins. The VST therapy aims to enhance the host immune system’s ability to clear infected cells by using activated virus specific T-cells. While 
the DCs enable to induce and amplify virus-specific CTLs.
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chimeric antigen receptor (CAR)-T cell, T-cell receptor 
(TCR)-T cell, and virus-specific T-cell (VST) therapies 
(Fig. 1b), and these findings require reanalysis and reflec-
tion. Our review covers preclinical and clinical ACTs for 
the ablation of oncovirus infections and associated viral 
malignancies, highlighting the therapeutic potential of 
targeting virally encoded antigens.

HPV
High-risk HPV types (HPV16/18) are well-established 
drivers of various cancer, including cervical carcinoma 
(CC), head and neck cancer (HNC) and oropharyngeal 
cancer (OPC) [15]. This oncogenic potential is primarily 
attributed to viral integration and oncoproteins [16–19]. 
The HPV genome encodes early (E1-E7) and late (L1 and 
L2) proteins during the viral life cycle. When the HPV 
genome gets integrated, constitutive E6 and E7 expres-
sion is observed, which is critical for the transformation 
and maintenance of malignancy by interfering with cel-
lular homeostasis, inhibiting the immune response and 
inducing immune escape [20]. The pRb pathway is dis-
rupted by the E7 protein, releasing the E2F transcrip-
tion factor and leading to cell cycle dysregulation and 
unrestricted proliferation [21, 22]. E6 promotes p53 deg-
radation, thus inhibiting p53-mediated apoptosis and 

facilitating an ongoing cell cycle for viral replication [23]. 
Multiple pathways, including the Wnt/β-catenin, Bak and 
PI3K/Akt pathways promote cancer progression by inter-
fering with cell proliferation, differentiation, and apopto-
sis and inducing abnormal gene expression [24].

Even prophylactic vaccines are envisaged to protect 
immunized individuals against cancer-associated HPV 
genotypes. For established HPV infection or mainte-
nance in a latent or asymptomatic state in basal cells, 
where the HPV integrates with the host cell genome 
and no longer expresses viral L1/2 antigens, the conven-
tional preventive HPV vaccines have been demonstrated 
to be ineffective [25]. In contrast, therapeutic HPV vac-
cines focusing on HPV primary oncoproteins, specifically 
E6 and E7, represent a promising avenue for enhancing 
clinical outcomes among advanced-stage and recurrent 
patients without eliciting autoimmune or severe adverse 
events (Fig.  2a; Table  2). Notwithstanding, it is crucial 
to acknowledge that the most frequently encountered 
severe toxicities primarily manifest as hematologic com-
plications, which are anticipated sequelae of lymphocyte-
depleting conditioning regimens commonly employed in 
such therapeutic strategies.

Fig. 2  Virally encoded antigens and relevant utilization of oncovirus-specific ACTs in viral malignancies. a HPV-specific ACTs. b HBV-specific ACTs. c HCV-
specific ACTs. d CMV-specific ACTs. e EBV-specific ACTs. f HIV-1-specific ACTs.
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HPV-specific CAR-T cells
The E7 oncoprotein localizes to the intracellular com-
partment and consequently cannot be targeted with 
antibodies or generic CAR-T cells. In the HPV-infected 
epithelium, E7 proteins are cleaved into short peptide 
fragments by proteasomes and presented on the cell 
surface by HLAs, and thus recognized and attacked by 
T-cells. We presume that CAR-T cells targeting antigen-
peptide HLA complexes have higher specificity and lower 
off-target toxicity. Novelly constructed CAR-T cells tar-
geting the E711 − 19/HLA-A*02:01 complex (E711 − 19:HLA 
CAR-T) are waited for intensively investigated. Upon 
delivery using viral vectors, extracellular vesicles or some 
targeting sequences, the intracellular single-chain anti-
bodies (scFvs) counteracting the E6 and E7 oncoproteins 
demonstrated antitumor efficacy in vitro and in vivo [26–
28]. To our knowledge, CAR-T cells targeting the oncovi-
rus-restricted surface antigen have not yet been reported.

HPV-specific TCR-T cells
TCR-T cells that recognize both surface and internal viral 
antigens demonstrate robust infiltration and persistence 
in the treatment of solid tumors. As a model for proof-
of-principle studies in epithelial cancers, the treatment 
of HPV-induced cancers using virus-specific TCR-T 
cells has been established [29]. Epitope E711 − 19-tar-
geted and HLA-A*02:01-restricted TCR transgenic T 
(E711 − 19 TCR-T) cells can specifically recognize and kill 
HPV16-positive cancerous cell lines and mediate regres-
sion of established human HPV16-positive CC in an in 
vivo model [30]. These data provide preclinical support 
for first-in-human, phase I clinical trials of such E711 − 19 
TCR-T cells. Robust tumor regression was demonstrated 
as clinical objective response rate (ORR) in 6/12 meta-
static HPV-associated epithelial cancers, including com-
plete remission (CR) of lesions and marked responses 
even in anti-PD-1 refractory patients [31].

TCR-T cells directed against E692 − 101 of HPV16 
(E692 − 101TCR-T) were validated high activity towards 
HPV16-positive HLA-A*11:01 CC cells in vitro and effi-
ciently repressed tumor growth in a murine model [32]. 
Another earlier study revealed that the avid E629 − 38TCR-
T, recognized an HLA-A*02:01-restricted epitope of 
HPV16 E6 successfully targeted HPV16-positive epithe-
lial tumor cells and caused tumor regression [33]. In a 
subsequent phase I/II study, E629 − 38TCR-T cells showed 
high levels of peripheral blood engraftment 1 month after 
treatment and induced an ORR in 2/12 patients with 
chemotherapy-refractory, metastatic HPV16-positive 
epithelial cancers [34]. Overall, TCR-T therapy based 
on E6 and E7 oncoproteins of HPV16-positive epithelial 
cancers are capable of in vivo expansion, long-term per-
sistence, and tumor regression.

HPV-specific TILs
Therapeutic TILs for successful treatment of patients 
with HPV-positive CC are directed for HPV E6 and/or 
E7 antigens [35–37]. However, that bulk of E6 and E7 
specific T-cells reside predominantly in the PD-1-ex-
pressing T-cell compartment, are rendered functionally 
inactive within the TME and display no preferential in 
vivo expansion [35, 36], suggesting that PD-1 blockade 
or proper stimulation can be exploited for unleashing 
diverse antitumor T-cell reactivities. Using a lympho-
cyte depletion chemotherapy regimen followed by aldes-
leukin administration and TIL infusion, 9 women with 
metastatic CC participated in the reported phase I/II 
clinical trial of single infusion of E6 and E7 targeted TILs 
(HPV-TILs). Ultimately, 3/9 patients experienced objec-
tive tumor responses, whereas 2/9 patients experienced 
CR 15 and 22 months after treatment [38]. In the subse-
quent phase II study, 5/18 patients with metastatic CC 
showed ORR, 2 of whom achieved CR, and 2/11 HPV-
positive noncervical cancer cohort also showed ORR. 
Even more importantly, the magnitude of HPV reactivity 
and peripheral blood repopulation with HPV-TILs are 
correlated with the clinical response [39]. These studies 
indicate that HPV-TIL therapy is feasible and can induce 
persistent CR in metastatic HPV-positive CC.

HPV-specific DC vaccines
DCs orchestrate adaptive immunity by phagocytosing 
viral antigens and presenting peptide epitopes, but only a 
limited number of peptide epitopes are capable of prim-
ing specific CTL precursors for a given HLA. More con-
cerningly, the inadequate antigen presentation on mature 
DCs is frequently observed in HPV-positive tumor 
bearing individuals [40–42]. Although cognate peptide-
loaded autologous DCs can stimulate a specific CTL 
response against HPV16 E786 − 93, such immunogenic 
peptide does not appear to be processed or presented 
by HPV16-infected cells [43]. This finding raises contro-
versy regarding the antitumor activity of HPV-specific 
CTLs and challenges our understanding of CTL epitope 
mapping.

To broaden clinical applicability, diverse strategies 
employing genetically modified DCs expressing E6/E7, 
pulsed with E6/E7 fusion proteins, infected with recom-
binant adenovirus, or hybridization with tumor cells 
have facilitated a versatile presentation of all possible 
CTL epitopes [43–45]. To this end, DC-based vaccines 
can overcome the limitations of peptide epitopes with 
respect to specific HLA-haplotypes and improve antigen 
presentation in tumor-bearing individuals. As expected, 
intramuscular administration of E7-transfected murine 
DCs substantially decreased tumorigenicity and gener-
ated strong immunity against HPV16/18 E7-expressing 
neoplasms [46]. The enhancement of immune responses 
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by cytokines and immunostimulatory gene therapy 
should prospectively potentiates antitumor activity, as 
extensively reviewed elsewhere [44, 47, 48]. However, 
the immune inhibitory effect on HPV16 E7-expressing 
DCs has been shown to be mediated by the coexpression 
of IL12 [49]. In preclinical models, local administration 
of the tumor lysate-pretreated DC vaccines, containing 
HPV16 E6/E7 oncoprotein, effectively inhibited recur-
rence or minimal residual tumors in mice [50].

In a pilot clinical study of 15 CC patients, HPV E7 anti-
gen-loaded autologous DCs (E7-DCs) induced a specific 
antibody response in 3/11 evaluated patients and a spe-
cific cellular immune response in 4/11 patients. Unfor-
tunately, neither histopathological regression nor viral 
clearance of treated patients was observed, attributed to 
HLA expression loss [51]. Moreover, even with a sharp 
decrease in L1 expression and a limited cellular immune 
response against the L1 antigen in cervical lesions with 
established HPV16 infection, DCs pulsed with major 
L1 capsid protein-based HPV16-like particles (VLPs, 
L1-DCs) can elicit strong specific CTLs and lyse HPV16-
infected autologous tumor cells [52]. Evidence also sug-
gests that CTLs induced by VLP vaccination can target 
cells expressing low L1 protein levels [53, 54]. Collec-
tively, ongoing optimization of DC-based cancer vaccines 
is essential given their current therapeutic limitations in 
HPV-related cancers.

HBV
HBV is a hepatocyte specific and enveloped DNA virus. 
The HBV genome contains four partially overlapping 
open reading frames (ORFs), namely the preS/S region, 
preC/C region, P region, and X region. According to 
the different starting codon positions, preS/S can be 
divided into three different structural domains, includ-
ing preS1/S, preS2/S, and S, which are responsible for 
the large protein (LHB), medium protein (MHB), and 
small protein (SHB) of the envelope protein hepatitis B 
surface antigen (HBsAg), respectively. Upon entry into 
hepatocytes, the virus releases its relaxed circular DNA 
(rcDNA), which is then transported to the nucleus where 
it forms covalently closed circular DNA (cccDNA). 
Transcription of cccDNA generates pregenomic RNA 
(pgRNA), which serves as a template for both viral 
genome replication and the translation of viral proteins. 
Newly synthesized pgRNA is encapsidated along with the 
viral polymerase to form nucleocapsids. Within nucleo-
capsids, the reverse transcription process generates 
rcDNA, which can either replenish the cccDNA pool or 
be enveloped and released as mature virions [55]. This 
replication cycle perpetuates HBV infection and contrib-
utes to its persistence in the host. Owing to the reverse 
transcription process of HBV, its DNA can be integrated 
into the chromosome of the targeted cell, resulting in 

genomic instability, direct insertional mutagenesis and 
abnormal expression of oncogenes and tumor suppressor 
genes [56].

Persistent HBV infection predisposes to the initiation 
and development of hepatocellular carcinoma (HCC) 
through necro-inflammation and direct carcinogenic 
effects. The prevalent HBV-related HCC (HBV-HCC) is 
mostly characterised by HBV-DNA integrations, even 
in cases serologically negative for HBV antigens [57]. 
Additionally, the immunosuppressive TME facilitates 
virus escape and chronic HBV (CHB) progression. The 
oncogenic process is multifaceted, involving intervention 
in various signal pathways through microRNAs, com-
promised immune responses, increased chromosomal 
alterations, endoplasmic reticulum (ER)-stress toward 
hepatocellular transformation, epigenetic dysregulation 
of tumor suppressor genes, and overexpression of fetal 
liver/hepatic progenitor cell genes [58, 59]. In terms of 
a plethora of oncogenic factors, prolonged expression of 
the viral HBV x antigen (HBxAg) and aberrant preS1/S2 
envelope proteins dysregulate cell transcription and pro-
liferation, making liver cells sensitive to carcinogenic fac-
tors [60–62].

Currently available therapies, including prophylactic 
vaccine and antiviral treatment, effectively control HBV 
infection or replication but do not achieve clearance 
for intermediate and advanced HCC. Functional cure, 
defined by HBsAg loss, does not equate to viral eradica-
tion in CHB patients, as residual cccDNA or HBV-DNA 
integrations encoding HBsAg can lead to disease relapse 
in HBV carriers [63]. Purging cccDNA in hepatocytes 
through deamination-induced decay following antiviral 
therapy is a major therapeutic goal in CHB [55]. ACTs 
remain pivotal in the management of infection and in 
the prevention of HBV-HCC relapse (Fig.  2b; Table  3), 
although exploitation of HBV antigens as tumor-specific 
targets for ACTs has been criticized due to their incon-
sistent expression in HCC. Additionally, risk assessment 
must address two considerations: the adequacy of cellular 
immunity to achieve durative and complete HBV clear-
ance in CHB patients subjected to prolonged exposure 
to HBV antigens; assessing whether the robust cytotoxic 
effects of ACTs might precipitate severe hepatotoxicity 
and acute liver damage.

HBV-specific CAR-T cells
HBsAg remains positive in both CHB and HBV-HCC 
with integrated viral genomes. Targeting HBV sur-
face proteins therefore seems promising. SHB and 
LHB specific CAR-T cells demonstrated recognition of 
soluble HBsAg and HBsAg-positive hepatocytes, elic-
iting secretion of IFNγ and IL-2 and selective eliminat-
ing of cccDNA-positive cells. More abundance of SHB 
on the surface of HBV-induced cancer facilitates the ER 
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membrane targeting of HBsAg and steady ER-plasma 
membrane exchange [14, 64]. Concordantly, SHB-CAR-
T cells exhibited faster activation and greater cytokine 
secretion than LHB-CAR-T cells [65].

In HBV-transgenic mice lacking cccDNA forma-
tion, but possessing a functional immune system, large 
amounts of circulating viral antigens do not inactivate 
transferred HBsAg-CAR-T cells or lead to uncontrolled 
immune-mediated damage in vivo. But rather HBsAg-
CAR-T cells would recognize all the extracellular and 
secreted HBsAg proteins (SHB, MHB, and LHB proteins, 
combined as HBsAg) and demonstrate efficacy against 
HBV-infected hepatocytes [66]. Reduced HBsAg-CAR-
T cell persistence alongside increased viral parameters 
were observed after initial and sequential transfer into 
HBV-transgenic mice, suggesting potential causes, such 
as T-cell exhaustion or overactivation via antigen binding 
or Fc receptor interaction with the CAR [66, 67]. Notably, 
through irradiation and tolerization of immunocompe-
tent mice, fully human SHB-CAR-T cell transfer persisted 
at high numbers and induced a sustained antiviral effect 
[67]. Accordingly, interactions with the different arms of 
the endogenous immune system, bystander immune cell 
activation, and combination therapies are warranted for 
combating virally induced HCC.

Further preclinical exploration of CAR-T cells as HBV 
immunotherapy in models with authentic infections 
harboring episomal HBV cccDNA is warranted. Murine 
HBsAg-CAR-T cells transferred into HBV-infected 
humanized liver chimeric mice accumulate in the liver, 
significantly reducing plasma HBsAg and HBV-DNA 
levels compared with those in controls [68]. Notably, 
HBsAg-CAR-T cells did not kill HBV-positive cell lines in 
cytotoxicity assays, indicating noncytopathic viral clear-
ance. Upon triple knockdown of exhaustion markers 
(PD-1, Tim-3, and Lag-3), CAR-T cells, which target the 
preS1 domain of HBsAg and exhibit the tumor-reactive 
marker CD39+ (preS1-CAR-T), potently inhibit tumor 
growth and increase IFNγ secretion in a patient-derived 
xenograft (PDX) mouse model [69].

HBV specific TCR-T cells
HBV-specific TCR-T cells utilize TCR sequences sourced 
from endogenous T-cells of patients with self-limited 
HBV infection or are exogenously engineered to recog-
nize HBV antigens presented by infected cells [70, 71]. In 
some cases, HBV-HCC negative for HBV antigens may 
contain translationally active HBV-DNA integrations, 
generating functional T-cell epitopes recognized by and 
activate HBV-specific T-cells [72].

High-affinity HBsAg- and HBV core antigen (HBcAg)-
specific TCRs in resting and activated T-cells from 
healthy donors and CHB patients can transform these 
cells into polyfunctional effector cells, which exhibit 

antiviral efficacy with limited liver injury through direct 
cytotoxicity [73]. Whilst a single transfer of TCR-T cells 
into HBV-infected, humanized mice eliminated HBV 
infection and suppressed virological markers without 
damaging non-infected cells [73]. Additionally, TCR-T 
therapy has shown promising results in maintaining 
memory T-cell function, which is crucial for long-term 
immune surveillance against HBV reactivation and the 
occurrence of HBV-HCC. Intriguing, resting T-cells 
reprogrammed by HBV-specific TCR reduced HBV rep-
lication in humanized immunodeficient mice without 
lysing HBV-infected hepatoma cells and simultaneously 
have comparable IFNγ levels and lower perforin and 
granzyme levels [74].

In the first-in-man proof-of-concept clinical trials of 
TCR-T cells, the HCC-specific antigen HBsAg was tar-
geted by adoptively transferred HBV-specific TCR-T 
cells in a compassionate setting for HBV-HCC patients 
with extrahepatic metastasis after liver transplant. Ret-
rovirally transduced TCR-T cells (HBsAg183 − 191-TCR-T), 
which are designed to target HLA-A*02:01/HBsAg183 − 191 
complexes, dramatically reduced HBsAg levels by 
approximately 10-fold in concomitance with TCR-T cell 
expansion, albeit with limited survival due to metastatic 
disease progression [75–77]. These findings underscore 
the potential efficacy of TCR-T cells targeting HBV anti-
gens in inducing sustained immune control over HBV-
related tumors.

In both preclinical and clinical settings, multiple infu-
sions of short-lived mRNA-based HBV-specific TCR-T 
(HBV-TCR-T) cells for HBV-HCC individuals exhibited 
clinically relevant suppression of HCC and a reduction 
or stabilization of circulating HBsAg and HBV DNA 
levels, indicating on-target effects [72, 78–81]. The tran-
scribed mRNA can be intuitively safe because of the tran-
sient self-limiting inflammatory reaction and a dearth of 
transgene integration into the host genome. However, 
the results from a phase I trial in a compassionate setting 
for patients with HCC recurrence post-liver transplant 
revealed that HBsAg- or HBcAg-directed TCR-T cells 
engineered by concomitant electroporation of mRNAs 
encoding specific TCRs have no superior anti-tumor 
efficacy [80]. From our perspective, the aforementioned 
status has implications for armoring more robust and 
drug-resistant TCR-T cells to overcome the immunosup-
pressive TME.

HBV-specific DC vaccines
DC-based vaccines loaded with HBV-specific antigens 
represent a promising immunotherapeutic strategy to 
restore antiviral immunity crucial for controlling CHB 
and HBV-HCC [82]. DCs loaded with HLA-restricted 
peptides such as HBcAg18 − 27 and HBsAg335 − 343 have 
demonstrated efficacy in priming specific CTLs ex vivo 
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and in humanized mice. Stimulation of PBMCs or TILs 
from CHB patients with these peptide-loaded DCs 
resulted in significant HBV-specific CTL responses, 
including IFNγ secretion, CD107 expression upon 
restimulation, reduction in systemic viral load, and lysis 
of HBV antigen-expressing hepatocytes [83].

Elegant work has validated the safety and efficacy of 
antigen-pulsed DCs in a large cohort of CHB patients. 
DCs derived from CHB patients and pulsed with HBsAg 
or HBcAg effectively induced CTL responses, reversed 
immune tolerance in CHB, promoted DC maturation, 
cytokine production, and enhanced CTL activation [84–
86]. Since CD14-HBsAg complexes were detected in vitro 
and in the serum of HBV infected patients. It’s proposed 
that HBsAg activates DCs through CD14-dependent 
mechanisms [87], crucial for initiating effective HBV-
specific immune responses.

Moreover, DCs loaded with HBV subviral particles 
(HBVsvp) offer an innovative approach to activate HBV-
specific CTLs, bypassing dysfunctional DCs and T-cells 
in CHB patients, thereby inducing Th1 polarization and 
strong cytolytic activity [88]. Phase I trials utilizing autol-
ogous DCs pulsed with irradiated tumor stem cells (DC-
TC) have shown initial safety in patients with cirrhosis 
and HBV infection, suggesting potential therapeutic 
benefits [89]. Collectively, these findings underscore the 
promise of DC-based vaccines as a therapeutic avenue 
against HBV-associated HCC.

HCV
HCV belongs to the Flaviviridae family and has a single 
positive-sense RNA (+ ssRNA), which codifies for an ico-
sahedral nucleocapsid composed of C protein and enve-
lope glycoproteins (E1 and E2), as well as non-structural 
proteins (NS1, NS2, NS3, NS4A/4B, NS5A/NS5B). The 
molecular mechanisms underlying HCV-HCC primarily 
revolves around a complex interplay of viral proteins with 
cellular pathways, leading to dysregulated cellular func-
tions, genomic instability, and tumor transformation [90, 
91].

HCV reaches its peak titers several weeks before 
the onset of detectable humoral or cellular immune 
responses and the initiation of liver disease. In western 
countries and Japan, chronic HCV infection is the pri-
mary cause of HCC. Wherein the highly variable HCV 
genomes under the selective pressure of host immune 
response are major risk factors for HCC development 
and impede the effectiveness of prophylactic and thera-
peutic treatments [92–94]. With the advent of potent 
antivirals targeting the viral life cycle: the NS3/4A pro-
tease, the NS5A protein and the RNA-dependent RNA 
polymerase NS5B protein, the incidence of HCV-HCC 
has substantially decreased [95]. Nevertheless, in cases 
where the HCV titer remains relatively low during 

chronic infections, we should armor immune cells and 
pre-empt T-cell exhaustion or anergy to clear HCV infec-
tion. HCV specific ACTs are list in Table 4 (Fig. 2c).

HCV-specific CAR-T cells
The highly variable HCV E2 glycoprotein (HCV-E2) is a 
major target of the host immune response. Anti-HCV-
E2 CARs were designed based on a previously described 
broadly cross-reactive and cross-neutralising human 
monoclonal antibody (mAb), directed against conserved 
HCV-E2 epitopes [96]. The cytotoxic ability of anti-HCV-
E2 CARs-grafted T (HCV-E2-CAR-T) cells was evalu-
ated in vitro against HCV-E2-transfected cells as well as 
hepatocytes infected with HCV. In a proof-of-concept 
study, retrovirus-transduced HCV-E2-CAR-T were 
endowed with specific antigen recognition accompanied 
by degranulation and secretion of proinflammatory and 
antiviral cytokines [97].

Introducing the HCV NS3 protease (HCV-NS3) 
between the scFv and hinge domain allowed for pro-
tease-regulated CAR circuits, enabling precise control 
over CAR-T cell activation during cancer therapy. In the 
absence of HCV-NS3 inhibitor, NS3 displays the proteo-
lytic process, disrupts the CAR structure and prevents 
the activation signals. Conversely, administering prote-
ase inhibitors inhibited NS3 cleavage, preserving CAR 
integrity and facilitating T-cell activation [98, 99]. The 
anti-tumor potency and reversibility of drug-regulated 
CAR-T cells targeting tumor-associated antigens (TAA) 
were evaluated in solid and hematological tumors [100, 
101]. As such, future investigations may explore CARs 
targeting HCV antigens, potentially leveraging clinically 
approved HCV-NS3 antiviral protease inhibitors to syn-
ergistically combat HCV-HCC.

HCV-specific TCR-T cells
Two specific HCV TCRs that mounted a polyfunctional 
response to the cognate HLA-A2-restricted NS31073 − 1081 
and NS51992 − 2000 peptide, and enabled to eliminate 
human hepatoma cells with persistent HCV RNA replica-
tion [102]. The expanded study revealed that NS3-specific 
TCR-T cells were prone to induce the antigen-specific 
cytolysis of target cells, while NS5-specific TCR-T cells 
favored a non-cytotoxic mechanism [103, 104], mirroring 
some marked differences in avidity and functional profile 
between HCV-specific TCR-T in tumor cell lines. High-
avidity NS3-specific TCR-T cells rapidly activated apop-
totic signaling pathways, causing hepatotoxicity, whereas 
the low-avidity NS5-specific TCR-T cells promoted the 
proliferative and metabolic pathways as the extended 
survival of HCV target cells [104]. At this juncture we 
surmised that, high-avidity TCR-T cells demonstrate 
superior antiviral activity, while low-affinity TCR-T cells 
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are considered more suitable for chronic viral infections 
due to less immune pathology.

HCV-specific DC vaccines
Considering the modest immunogenicity of HCV-E2 
glycoprotein, modification of HCV-E2 is warranted to 
applicably potentiate DC function and elicit a robust 
protective immune response [105]. Moreover, the effec-
tiveness of the DC vaccines loaded with two selected 
HCV-E2 peptides have been validated to activate pep-
tide-specific cellular immune activation and induce 
significant levels of anti-viral cytokines and antibodies 
[106]. As a proof of concept, vaccination with HCV-NS3-
expressing DCs (NS3-DCs) in mice played a predispos-
ing role in T-cell activation, cross-presenting capability of 
DCs in the draining lymph nodes, and clearance of NS3-
positive hepatocytes from the livers [107]. DC vaccines, 
particularly when reinforced by interactions with other 
immune cells, hold promise for enhancing protective 
immunity against HCV [108].

Human CMV
The prevalent human CMV, also known as human 
herpesvirus 5 (HHV-5), is characterized by a double-
stranded linear DNA genome of approximately 235  kb 
encoding over 200 genes and is implicated in various 
exoderm-derived malignancies [109–111]. A previous 
consensus has been reached on the coexistence of CMV 
and immunocompromised hosts, but the mechanism 
has not been fully elucidated [112]. More concerningly, 
CMV can increase cellular proliferation, angiogenesis, 
and immune evasion, thus enabling several hallmarks 
of cancer. Intriguingly, anti-CMV VST cells accumulate 
in extremely high numbers and serve as “bystanders” of 
the tumor. To harness CMV-specific immunity against 
malignancies, diverse strategies have been devised 
to redirect VSTs towards eradicating cancerous cells 
(Fig. 2d; Table 5) [113].

CAR-redirected CMV-specific cytotoxic T-cells (CMV-CAR-T)
The immunodominant CMV antigens, namely the pp65, 
IE1, and IE2 proteins, evoke physiological CMV-specific 
T-cells [114]. These T-cells can be isolated and/or rein-
vigorated using ex vivo CMV-peptide stimulation prior 
to CAR transduction, followed by in vivo expansion 
through a CMV vaccine boost [115–117]. CD19-CAR-T 
cell therapy faces limitations such as inadequate engraft-
ment, differentiation, exhaustion, prolonged B cell apla-
sia, and increased susceptibility to CMV infections [118]. 
In contrast, CMV-CD19-CAR-T cells integrate anti-
CD19 effector functions with potent anti-CMV activity, 
exhibiting superior proliferation, survival, and in vivo 
antitumor efficacy compared to conventional CD19-
CAR-T cells [115]. Moreover, in a phase I dose-escalation Ta
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trial of progressive glioblastoma (GBM) patients without 
prior lymphodepletion, Ahmed et al. evaluated the feasi-
bility and safety of CMV-Her2-CAR-T cells and reported 
a promising median overall survival (OS) of 11.1 months 
from the first T-cell infusion and 24.5 months from diag-
nosis [119]. Overall, compared to generic CAR-T cells, 
CMV-CAR-T cells have shown superior proliferation, 
survival, and in vivo antitumor efficacy. They are well tol-
erated with only minor adverse events (Table 5).

TCR-engineered CMV-specific cytotoxic T-cells (CMV-TCR-T)
To prevent CMV reactivation after haploidentical periph-
eral blood SCT (PBSCT), a phase I clinical trial assessed 
the safety and efficacy of CMV-specific T-cells engi-
neered to recognize HLA-restricted peptides from the 
CMV pp65 protein [120]. Another clinical trial investi-
gated ex vivo expanded CMV-specific T-cells in recur-
rent GBM patients and reported a median OS of 4.4–13.4 
months and a median progression-free survival (PFS) 
of approximately 8.1 months. However, in vitro analysis 
did not reveal significant changes in CMV-specific T-cell 
polyfunctionality [121].

Manufacturing CMV-TCR-T cells appears to be more 
challenging than CMV-CAR-T cells due to the down-
regulation of endogenous TCR expression upon forced 
expression of the artificial TCR. Redirected by the minor 
histocompatibility antigens (HA), HA-TCR-transferred 
CMV-specific T (HA-CMV-TCR-T) cells exerted dually 
potent antileukemic as well as anti-CMV reactivity, 
showing comparable TCR-specific cytolytic activity to 
generic TCR-engineered T-cells [122]. Notwithstand-
ing, a follow-up study disclosed that repetitive stimula-
tion skews CMV-TCR-T cells to predominantly express 
the triggered TCR [123]. In a phase I clinical trial, CMV-
TCR-T cells were safely infused into 5/9 patients, but the 
overall efficacy of this treatment approach was too low to 
warrant further clinical development [124].

CMV-specific CAR-T cells
At the early stage of the CMV replication cycle, CAR-T 
(gB-CAR-T) cells directed against glycoprotein B (gB) 
accessible on the surface of infected cells can mediate 
antiviral effector functions, such as cytokine production 
and cytolysis [125]. However, a set of viral antiapoptotic 
factors directly abrogate T-cell cytotoxicity at later stages 
of the replication cycle. These gB-CAR-T cells were not 
tested in vivo because of the low degree of sequence sim-
ilarity of gB protein between murine and human CMV, 
thus, recombinant mouse CMV expressing human CMV-
gB is obligatory.

CMV-specific DC vaccines
A multiperformance recombinant adenovirus coexpress-
ing the CMV immediate early gene (CMV-IE) enables the 

selective infection of DCs in vivo (CMV-IE-DCs), which 
induce T-cell activation to kill cancerous cells and pro-
long survival in CMV-IE-implanted murine glioma mod-
els [126]. Owing to the attenuated ability of CMV-specific 
T-cells in patients to generate multiple cytokines and 
chemokines, a pilot trial in which 22 patients with GBM 
received CMV pp65 RNA-loaded-DCs to augment the 
polyfunctionality of CMV pp65-specific T-cells revealed 
that polyfunctional T-cell responses are potential bio-
markers for effective antitumor immunotherapy [116]. 
Encouragingly, three separate clinical trials have demon-
strated that DC vaccines targeting the CMV pp65 protein 
(CMV-pp65-DCs) confer long-term survival benefits to 
nearly 1/3 of GBM patients, showing no tumor recur-
rence five years posttreatment [127]. Enhanced insights 
into tumor etiology and immune principles underscore 
the unique advantages of virus-targeted DC vaccines in 
specific tumor immunotherapies.

EBV
EBV belongs to human herpesvirus 4 (HHV-4) of the 
herpesvirus family and features a 175 kb double-stranded 
DNA genome encoding over 85 proteins. EBV enters 
epithelial, B, NK/T cells through a variety of membrane 
proteins, including gp350, gB, gH, gL and gp42 [128]. 
EBV has been definitively linked to a variety of lymphoid 
and epithelial cell malignancies, including B/T/NK cell 
lymphomas, nasopharyngeal carcinoma (NPC), gastric 
carcinoma and lung carcinoma due to the immune cell 
exhaustion and dysregulation [129, 130]. Upon primary 
infection, the immune-evasive EBV establishes latency 
and allows the viral genome to persist in the lymphatic 
system by driving the expansion of infected B cells [131]. 
EBV-infected B cells selectively express latent viral pro-
teins: EBV nuclear antigen (EBNA) and latent membrane 
proteins (LMPs). As signaling proteins, LMPs promote 
the overexpression of some TAAs in B cells and upregu-
late costimulatory ligands to jointly activate T-cells [132]. 
As importantly, continuous EBNA1 expression is crucial 
for maintaining EBV genome replication in EBV-positive 
tumors, whereas EBNA3 is upregulated in EBV-induced 
lymphoma and can induce potent anti-EBV-specific 
CTLs. In addition, compared with those in the con-
trol lymphocytes of healthy individuals, EBNA1 and 
EBNA3 mRNA levels in EBV-induced lymphoma cells 
are increased by thousands of folds [133]. Accordingly, 
these latent EBV proteins are viable targets for cellular 
immunotherapies to clear EBV-infected targets (Fig.  2e; 
Table 6).

EBV-specific CTLs
EBV-specific CTLs face challenges due to EBV’s vari-
able viral gene expression and multiple evasion mecha-
nisms, complicating epitope selection. During the latent 
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phase, EBV-specific CTLs are often infrequent, relatively 
immature, and anergic, potentially allowing tumor cells 
to evade immune surveillance. Previous studies have 
demonstrated that expanding LMP1/EBNA1-specific 
CTLs by coculturing with irradiated autologous PBMCs 
infected with an adenoviral vector encoding EBNA1 and 
multiple CTL epitopes from LMP1 and LMP2 (AdE1-
LMPpoly), followed by reinfusion into EBV-positive 
recurrent and metastatic NPC patients, effectively con-
trolled tumor progression with a median OS of 17.2 
months [134]. However, preparative lymphodepleting 
chemotherapy prior to administering higher doses of 
EBV-specific CTLs did not improve clinical outcomes 
in patients with EBV-associated NPC [135]. In addition, 
LMP specific CTL was expanded using autologous DCs 
and EBV-transformed B-lymphoblastoid cell lines trans-
duced with an adenoviral vector expressing LMP, which 
could induce durable CR in lymphoma patients at a 
median of 3.1 years after CTL infusion. Within 2 months 
after CTL infusion, epitope spread can be detected in 
patients who achieve clinical responses [136]. To enrich 
BARF1-specific CTLs for NPC treatment, EBV lytic cycle 
inducers can be used to upregulate the BARF1 oncogene 
in LCLs to promote more pronounced immunogenic 
properties [137, 138], suggesting new strategies to bolster 
EBV-targeting immunotherapy.

Initial preparation of EBV-specific CTLs involved stim-
ulating PBMCs with autologous EBV-transformed LCLs, 
followed by transduction with E1-deficient adenovirus. 
These E1-transgenic CTLs released oncolytic adenovirus 
at tumor sites, leading to tumor regression upon expo-
sure to HLA-matched, EBV-infected cells [139]. Recent 
research highlights the potential of ectopically expressed 
LMP1 in tumor B cells to prime autologous CD4+ T-cells 
(LMP1-CD4+ T) against a wide array of endogenous 
tumor antigens, including TAAs and neoantigens, sug-
gesting efficient treatment for B cell malignancies [132]. 
These groundbreaking studies underscore the necessity 
of reevaluating conventional paradigms in both viral and 
tumor immunity.

EBV-specific DC vaccines
Although autologous DCs transduced with an adenovi-
rus encoding truncated LMP1 (ΔLMP1) and full-length 
LMP2 (Ad-ΔLMP1-LMP2-DCs) enable to activate 
LMP1/2-specific T-cells in vitro, no increase in the fre-
quency of peripheral LMP1/2-specific T- cells was 
detected in advanced NPC patients. Meanwhile, they 
induced delayed-type hypersensitivity responses but 
did not result in significant toxicity [140]. Consider-
ing its limited efficacy, future research should priori-
tize the administration of more potent DC vaccines to 
patients with lower tumor burdens. In a pilot study of 29 
subjects, intradermal injection of LMP2-DCs using an 

adenovirus expressing LMP2 (Ad-LMP2) achieved a five-
year survival rate of 94.4% in NPC responders, indicating 
enhanced responses to LMP2 peptide pools [141].

EBV specific CAR-T cells
Compared to CTL treatment regimens, the development 
of EBV-specific CAR-T is somewhat slower. CAR-T cells 
engineered with the scFv specific to the extracellular 
domain of LMP1 (LMP1-CAR-T) were activated in co-
culture with LMP1-overexpressing NPC cells, leading to 
production of IFNɣ and IL-2. Intra-tumoral injection of 
LMP-CAR-T cells in a xenograft mouse model reduced 
tumor growth [142]. Moreover, a clinical trial is currently 
underway (NCT02980315) to evaluate LMP1-CAR-T 
cells for treating EBV-associated malignant tumors.

The lytic envelope gp350 is prominently expressed on 
the surface of cells during EBV lytic reactivation and 
persists in subsets of latently infected cells. A proof-of-
concept preclinical study revealed that gp350-targeting 
CAR-T cells (gp350-CAR-T) exerted cytotoxic effects 
against EBV-positive tumor cells and hindered EBV-asso-
ciated lymphoproliferation and lymphomagenesis in a 
fully humanized mouse model [143, 144]. However, using 
TCR alpha chain (TRAC) locus-knock-in, off-the-shelf 
edited gp350-CAR-T cells showed limited efficacy against 
lymphoma due to weak and variable gp350 expression 
[145], highlighting EBV’s immune evasion mechanisms 
that can affect CAR-T cell characteristics and efficacy.

EBV-specific TCR-T cells
The TCR specific to LMP1 (LMP1-TCR) provoked high 
levels of cytokine secretion and cytolytic activity, display-
ing explosive ex vivo proliferation upon antigen activa-
tion, and inhibited tumor growth in a xenogeneic model 
[146]. Ongoing efforts aim to generate more robust EBV 
TCRs by incorporating a CD28 domain preceding CD3, 
which augments antigen-specific IFNγ production with-
out compromising the cytotoxic response [147]. Clinical 
trials investigating LMP2-specific TCR-T cells are ongo-
ing (NCT04509726, NCT03925896). Despite promis-
ing results, the effectiveness of adoptive immunotherapy 
for EBV-associated cancers remains constrained by 
limited targetable EBV antigens and their suboptimal 
immunogenicity.

HIV-1
HIV-1 latent reservoirs are established days after infec-
tion and persist through clonal expansion of infected 
cells. Individuals living with HIV-1 face heightened risks 
of developing T-cell lymphoma and B-cell non-Hodgkin’s 
lymphoma (B-NHL), predominantly diffuse large B-cell 
lymphoma (DLBCL) and Burkitt’s lymphoma [148]. 
Pathogenesis studies highlight multifaceted mechanisms 
encompassing oncogenic proteins, immune system 
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dysregulation, genetic predisposition, and other factors. 
Despite antiretroviral therapy (ART) effectively suppress-
ing active viral replication, it fails to eliminate integrated 
latent viruses, necessitating lifelong treatment. Strategies 
to target HIV-1 latent reservoirs and associated lympho-
mas propose cytolytic immunotherapies as adjunctive to 
ART (Table 7; Fig. 2f ).

HIV-1-specific CAR-T
The huge success of CAR-T therapy for B cell leukemias 
is rooted in pioneering preclinical and clinical study of 
HIV-1 infection. Furthermore, CAR-T cell has been rec-
ommended for the clinical therapy for HIV-1-positive 
lymphoma patients [149, 150]. In a randomised phase 
II clinical trial, first-generation CAR-T cells using CD4 
ectodomain (CD4-CAR-T) to target the HIV-1 gp120 
expressed on the surface of HIV-1-infected cells, noted a 
trend toward viral-load rebound and long-term engraft-
ment in patients [151]. Given that CD4 and CCR5 are 
primary coreceptors of HIV-1 infection, CD4-CAR-T 
cells are susceptible to HIV-1 infection. For that reason, 
broadly neutralizing antibodies (bNAbs) against HIV-1 
are engineered in the CAR construct (bNAb-derived 
CAR-T) cells showed a higher neutralizing capacity for 
different HIV-1 strains and circumvented HIV-1 infec-
tion [152]. Furthermore, bNAb-derived CAR-T cells 
with the deletion of CCR5 exhibited superior viral rep-
lication control compared to counterparts lacking this 
modification [153]. Nevertheless, emergence of resistant 
viral variants through spontaneous mutations poses a 
challenge to sustained efficacy, necessitating ongoing 
refinement. Innovative approaches like DuoCAR-T cells, 
targeting multiple binding sites on gp120 and the extra-
cellular region of gp41, exhibited promising efficacy in 
eliminating HIV-1 in preclinical models of humanized 
mice with intrasplenic infection, presenting a multifac-
eted strategy against globally prevalent HIV-1 strains 
[154, 155].

Other HIV-1-specific ACTs
Anti-HIV-1 TCR-T cells manifested robust, antigen-spe-
cific polyfunctional cytokine profiles upon encountering 
antigens, but ineffectively controlled HIV-1. Conversely, 
CAR-T cells demonstrated accelerated recognition and 
elimination of HIV-1-infected targets relative to TCR-T 
cells, attributed to their ability to activate Caspase 3 and 
induce apoptosis in HIV-1-infected cells [156]. Therefore, 
it is hypothesized that the speed of target recognition and 
killing determines the efficacy of engineered T-cell thera-
pies for infectious HIV-1.

Therapeutic DC-based vaccines pulsed with heat 
inactivated autologous HIV-1 (HIV-1-DC) have shown 
feasibility, safety, and well-tolerated outcomes in clini-
cal settings [157]. Additionally, DCs electroporated 

with mRNA encoding Tat, Rev, and Nef (DC-TRN) sig-
nificantly modulated NK cell and HIV-1-specific T-cell 
responses, leading to substantial reductions in plasma 
HIV-1 viral loads following interruption of antiretroviral 
therapy [158, 159]. These findings underscore the poten-
tial of DC-based approaches in augmenting immune 
responses crucial for controlling HIV-1 infection and 
HIV-1-defined cancers.

Other oncoviruses in viral malignancies
KSHV is etiologically linked to Kaposi’s sarcoma and 
primary effusion lymphoma, where both latency and 
lytic reactivation phases contribute to the pathogenesis 
of KSHV-associated malignancies [10, 160]. Notably, 
KSHV’s immune evasion strategies, mediated by genes 
like KSHV K3 and K5 encoding membrane-tethered E3 
ubiquitin ligases, interfere with MHC expression, thereby 
evading immune surveillance by T and NK cells. This 
evasion mechanism could be exploited in the develop-
ment of off-the-shelf allogeneic CAR-T cells. Incorpo-
rating K3 or K5 into CAR constructs has been shown to 
decrease the recognition and cytotoxicity against alloge-
neic T-cells in both culture and animal models [161].

Akin to MCPV, the elevated prevalence and viral load 
of polyomavirus JC (JCPV) within tumor tissues strongly 
suggest an active role in tumorigenesis rather than a 
bystander effect [162–164]. Furthermore, some lympho-
mas are characterized as virus-associated cancers due to 
the high incidence of viruses such as HIV-1, EBV, KSHV, 
HCV, HBV, and others, all of which exert pathogenic 
effects [90, 165]. Cooperative interactions between dif-
ferent oncoviruses represent an additional contributory 
mechanism in viral malignancies [165].

Conclusions and perspective
Preclinical and clinical studies have sought to utilize a 
flood of innovation ACTs for the prophylaxis and treat-
ment of virus infection in both refractory and advanced 
malignancies [63, 166–168]. Capitalizing on the etio-
logical link between viral malignancies and oncoviruses, 
we have summarized the relevant literature on the use 
of virus-specific ACTs to avoid or ablate viral malig-
nances, and this information may also provide guidance 
for the selection of effective oncovirus-encoded antigens 
(Fig. 2a-f ). This therapeutic approach is often combined 
with vaccinations, immune checkpoint inhibitors, sys-
temic aldesleukin, virotherapy, and support by organ 
transplantation. Notably, virus-specific ACT mediated 
antitumor effects were observed even in heavily pre-
treated patients. These immune antitumor effects may 
be even more clinically evident when used as a first-
line treatment at the early stage of virus infection, since 
an intense immunosuppressive TME that is typically 
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encountered in refractory cancer patients may not be 
present.

The bottleneck of ACTs for treating viral malignancies 
lies in several factors, including inadequate expansion 
and persistence of adoptive cells, MHC downregula-
tion, suppressive TME, and targetable viral antigen level. 
Traditional strategies for solid tumor treatment aimed 
at increasing the trafficking, infiltration, and persistence 
of highly active adoptive cells are also applicable to the 
treatment of viral malignancies. Specially T-cells can be 
engineered with costimulatory signaling, immune check-
point inhibitors, CMV/EBV TCR coexpression, and tissue 
homing ligands, which have demonstrated several advan-
tages over the prototype, including enhanced expansion, 
persistence, antiviral activities. One major challenge is 
effectiveness of this therapy in recognizing and targeting 
infected cells. This is largely dependent on the ability of 
the transferred T-cells to interact with MHC molecules 
presenting viral antigens on the surface of infected cells. 
Another crucial issue is the TME within the infected tis-
sue, which can create an inhibitory environment that 
hinders the function of the transferred cells. This may 
include factors such as immune suppressive cells, cyto-
kines, and a lack of adequate nutrients for T-cells to 
proliferate and function optimally. Furthermore, the 
availability and selection of appropriate viral antigens 
for targeting also play a significant role in ACT success. 
In addition, an important direction for future research 
involves targeting multiple highly conserved sites of more 
than one viral antigen and utilizing a variety of thera-
peutic targets to overcome the viral escape mechanisms. 
Identifying highly immunogenic and conserved antigens 
that elicit a strong T-cell response is essential for effec-
tively clearing the viral infection. Overall, overcoming 
these obstacles requires a comprehensive understanding 
of the immune response to viral infections and the devel-
opment of strategies to optimize the function of adoptive 
cells in the context of the complex TME. Furthermore, 
investigating the optimal timing for intervening in the 
progression from viral infection to chronic inflamma-
tion to cancer development is crucial. Early intervention 
strategies to prevent or delay the carcinogenic process 
represent a significant area for further exploration and 
discussion in the field of cellular immunotherapy for viral 
infections. In general, ACTs can target viral antigens and 
tumor-specific markers, and provide potent immune 
responses against viral infections and their associated 
malignancies. More importantly, we need to determine 
which specific scenarios can be administrated by certain 
form of ACTs.
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HBsAg	� Hepatitis B surface antigen
HBV	� Hepatitis B virus
HCV	� Hepatitis C virus
HCC	� Hepatocellular carcinoma
HA	� Histocompatibility antigens
HHV-4	� Human herpesvirus 4
HHV-5	� Human herpesvirus 5
HIV-1	� Human immunodeficiency virus type 1
HPV	� Human papilloma virus
hTERT	� Human telomerase reverse transcriptase
IARC	� International Agency for Research on Cancer
KSHV	� Kaposi’s sarcoma-associated herpesvirus
LMPs	� Latent membrane proteins
LCLs	� Lymphoblastic cell lines
MHC	� Major histocompatibility complex
MCPV	� Merkel cell polyomavirus
NPC	� Nasopharyngeal carcinoma
NK	� Natural killer
ORR	� Objective response rate
ORFs	� Open reading frames
OPC	� Oropharyngeal cancer
OS	� Overall survival
PDX	� Patient-derived xenograft
PBSCT	� Peripheral blood SCT
JCPV	� Polyomavirus JC
pgRNA	� Pregenomic RNA
PFS	� Progression-free survival
rcDNA	� Relaxed circular DNA
+ssRNA	� Single positive-sense RNA
scFvs	� Single-chain antibodies
TCR	� T cell receptor
TRAC	� TCR alpha chain
TAA	� Tumor associated antigen
TIL	� Tumor-infiltrating lymphocyte
VST	� Virus-specific T cell
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