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Abstract

Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their
application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis
C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct
or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis
and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks

in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins,
which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for
patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating
viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of
harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer
progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and

discuss their implications for therapeutic advancement.
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Introduction
The International Agency for Research on Cancer (IARC)
recognizes 7 major human viruses as direct oncogenic
agents, including human papilloma virus (HPV), hepati-
tis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr
virus (EBV), Kaposi’s sarcoma-associated herpesvirus
(KSHYV), Merkel cell polyomavirus (MCPV), and human
immunodeficiency virus type 1 (HIV-1) [1]. Additionally,
cytomegalovirus (CMV) reactivation and infection are
frequently observed in immunocompromised individuals
such as transplant recipients or HIV-1 carriers [2], with
mounting evidence suggesting CMV’s potential as an
oncogenic virus [3-6].

Despite the typically robust immune response to viral
antigens in most infected individuals, persistent or latent
infection of oncoviruses enables to evade the immune
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system and induce immune tolerance through mecha-
nisms such as downregulating major histocompatibility
complex (MHC) molecules, producing immunosuppres-
sive proteins, and directly infecting immune cells [7-9],
which increases the risk of virus-driven or associated
cancers (Fig. la). For instance, HPV, EBV and CMV
encode viral oncoproteins that mimic or interfere with
host regulatory mechanisms, disrupt cellular homeo-
stasis, and impact cellular proteins, such as the tumor
suppressor proteins p53 and pRb (Table 1) [2, 10]. In
some other cases involving either DNA or RNA viruses
(HPV, HBV, EBV, CMV and HIV-1), the viral genome
can integrate into the host genome, remaining dormant
until conditions favor reactivation, thereby contribut-
ing to viral persistence and disease manifestation [11].
Importantly, the “hit-and-run” theory also posits that
viruses induce a series of cellular changes, promoting
normal cells to become cancer cells, after which the virus
leaves while the cancer cells develop [12]. However, HBV
and HCV can create a microenvironment conducive to
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inflammation leads to the production of cytokines and
growth factors, that promote cell proliferation, angiogen-
esis, and genomic instability [13].

Current antiviral treatments effectively suppress viral
replication but fail to eliminate chronic or latent infec-
tions. Eradicating viral reservoirs remains a critical thera-
peutic challenge. Beyond tumors, virus-specific adoptive
cell therapies (ACTs) have shown promise in purging
viral infections, suggesting a potential role in treating
viral malignancies [14]. ACTs are particularly suited to
viral malignancies due to the expression of targetable
tumor-associated viral antigens exclusively in cancerous
cells, providing an unparalleled opportunity to subvert
such oncoproteins as tumor-specific targets. Further-
more, the current tantalizing goal is to activate immune
cells by targeting viral antigens, rejuvenate antiviral
effects and achieve the goal of recognizing and killing
virus-related tumor cells.

Tremendous progress has been made in the develop-
ment of ACTs for viral malignancies, including tumor-
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Fig. 1 aViral persistent or latent infection and host cellular immunity against oncogenic infection (By Figdraw). A variety of virally oncogenic mechanisms
determine the transformation and maintenance of the malignancy. Virus-infected cells can be recognized and eliminated by host cellular immunity. b
Schematic diagram of ACTs on viral malignancies. Engineered TiLs, DCs, CAR-T cells, TCR-T cells, and VST therapies have the potential for application to viral
malignancies. CAR-T cells target the virally-encoded cell surface antigen through an antibody-based scFv. In contrast, TCR-T cells target a virus-derived
peptide on MHC complex. In TIL therapy, tumor is surgically resected and T-cells are expanded from the tumor ex vivo. TILs target viral antigens as well as
non-viral proteins. The VST therapy aims to enhance the host immune system’s ability to clear infected cells by using activated virus specific T-cells. While
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chimeric antigen receptor (CAR)-T cell, T-cell receptor
(TCR)-T cell, and virus-specific T-cell (VST) therapies
(Fig. 1b), and these findings require reanalysis and reflec-
tion. Our review covers preclinical and clinical ACTs for
the ablation of oncovirus infections and associated viral
malignancies, highlighting the therapeutic potential of
targeting virally encoded antigens.

HPV

High-risk HPV types (HPV16/18) are well-established
drivers of various cancer, including cervical carcinoma
(CC), head and neck cancer (HNC) and oropharyngeal
cancer (OPC) [15]. This oncogenic potential is primarily
attributed to viral integration and oncoproteins [16—19].
The HPV genome encodes early (E1-E7) and late (L1 and
L2) proteins during the viral life cycle. When the HPV
genome gets integrated, constitutive E6 and E7 expres-
sion is observed, which is critical for the transformation
and maintenance of malignancy by interfering with cel-
lular homeostasis, inhibiting the immune response and
inducing immune escape [20]. The pRb pathway is dis-
rupted by the E7 protein, releasing the E2F transcrip-
tion factor and leading to cell cycle dysregulation and
unrestricted proliferation [21, 22]. E6 promotes p53 deg-
radation, thus inhibiting p53-mediated apoptosis and
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facilitating an ongoing cell cycle for viral replication [23].
Multiple pathways, including the Wnt/[3-catenin, Bak and
PI3K/Akt pathways promote cancer progression by inter-
fering with cell proliferation, differentiation, and apopto-
sis and inducing abnormal gene expression [24].

Even prophylactic vaccines are envisaged to protect
immunized individuals against cancer-associated HPV
genotypes. For established HPV infection or mainte-
nance in a latent or asymptomatic state in basal cells,
where the HPV integrates with the host cell genome
and no longer expresses viral L1/2 antigens, the conven-
tional preventive HPV vaccines have been demonstrated
to be ineffective [25]. In contrast, therapeutic HPV vac-
cines focusing on HPV primary oncoproteins, specifically
E6 and E7, represent a promising avenue for enhancing
clinical outcomes among advanced-stage and recurrent
patients without eliciting autoimmune or severe adverse
events (Fig. 2a; Table 2). Notwithstanding, it is crucial
to acknowledge that the most frequently encountered
severe toxicities primarily manifest as hematologic com-
plications, which are anticipated sequelae of lymphocyte-
depleting conditioning regimens commonly employed in
such therapeutic strategies.
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HPV-specific CAR-T cells

The E7 oncoprotein localizes to the intracellular com-
partment and consequently cannot be targeted with
antibodies or generic CAR-T cells. In the HPV-infected
epithelium, E7 proteins are cleaved into short peptide
fragments by proteasomes and presented on the cell
surface by HLAs, and thus recognized and attacked by
T-cells. We presume that CAR-T cells targeting antigen-
peptide HLA complexes have higher specificity and lower
off-target toxicity. Novelly constructed CAR-T cells tar-
geting the E7;;_;o/HLA-A"02:01 complex (E7;;_;o:HLA
CAR-T) are waited for intensively investigated. Upon
delivery using viral vectors, extracellular vesicles or some
targeting sequences, the intracellular single-chain anti-
bodies (scFvs) counteracting the E6 and E7 oncoproteins
demonstrated antitumor efficacy in vitro and in vivo [26—
28]. To our knowledge, CAR-T cells targeting the oncovi-
rus-restricted surface antigen have not yet been reported.

HPV-specific TCR-T cells

TCR-T cells that recognize both surface and internal viral
antigens demonstrate robust infiltration and persistence
in the treatment of solid tumors. As a model for proof-
of-principle studies in epithelial cancers, the treatment
of HPV-induced cancers using virus-specific TCR-T
cells has been established [29]. Epitope E7,,_,,-tar-
geted and HLA-A'02:01-restricted TCR transgenic T
(E7;1_19 TCR-T) cells can specifically recognize and kill
HPV16-positive cancerous cell lines and mediate regres-
sion of established human HPV16-positive CC in an in
vivo model [30]. These data provide preclinical support
for first-in-human, phase I clinical trials of such E7;;_,q
TCR-T cells. Robust tumor regression was demonstrated
as clinical objective response rate (ORR) in 6/12 meta-
static HPV-associated epithelial cancers, including com-
plete remission (CR) of lesions and marked responses
even in anti-PD-1 refractory patients [31].

TCR-T cells directed against E6g,_;5; of HPV16
(E6gy_ 10 TCR-T) were validated high activity towards
HPV16-positive HLA-A"11:01 CC cells in vitro and effi-
ciently repressed tumor growth in a murine model [32].
Another earlier study revealed that the avid E6,9_ 43 TCR-
T, recognized an HLA-A'02:01-restricted epitope of
HPV16 E6 successfully targeted HPV16-positive epithe-
lial tumor cells and caused tumor regression [33]. In a
subsequent phase I/II study, E6,4_ 3, TCR-T cells showed
high levels of peripheral blood engraftment 1 month after
treatment and induced an ORR in 2/12 patients with
chemotherapy-refractory, metastatic HPV16-positive
epithelial cancers [34]. Overall, TCR-T therapy based
on E6 and E7 oncoproteins of HPV16-positive epithelial
cancers are capable of in vivo expansion, long-term per-
sistence, and tumor regression.
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HPV-specific TILs

Therapeutic TILs for successful treatment of patients
with HPV-positive CC are directed for HPV E6 and/or
E7 antigens [35-37]. However, that bulk of E6 and E7
specific T-cells reside predominantly in the PD-1-ex-
pressing T-cell compartment, are rendered functionally
inactive within the TME and display no preferential in
vivo expansion [35, 36], suggesting that PD-1 blockade
or proper stimulation can be exploited for unleashing
diverse antitumor T-cell reactivities. Using a lympho-
cyte depletion chemotherapy regimen followed by aldes-
leukin administration and TIL infusion, 9 women with
metastatic CC participated in the reported phase I/II
clinical trial of single infusion of E6 and E7 targeted TILs
(HPV-TILs). Ultimately, 3/9 patients experienced objec-
tive tumor responses, whereas 2/9 patients experienced
CR 15 and 22 months after treatment [38]. In the subse-
quent phase II study, 5/18 patients with metastatic CC
showed ORR, 2 of whom achieved CR, and 2/11 HPV-
positive noncervical cancer cohort also showed ORR.
Even more importantly, the magnitude of HPV reactivity
and peripheral blood repopulation with HPV-TILs are
correlated with the clinical response [39]. These studies
indicate that HPV-TIL therapy is feasible and can induce
persistent CR in metastatic HPV-positive CC.

HPV-specific DC vaccines

DCs orchestrate adaptive immunity by phagocytosing
viral antigens and presenting peptide epitopes, but only a
limited number of peptide epitopes are capable of prim-
ing specific CTL precursors for a given HLA. More con-
cerningly, the inadequate antigen presentation on mature
DCs is frequently observed in HPV-positive tumor
bearing individuals [40-42]. Although cognate peptide-
loaded autologous DCs can stimulate a specific CTL
response against HPV16 E7g_,;, such immunogenic
peptide does not appear to be processed or presented
by HPV16-infected cells [43]. This finding raises contro-
versy regarding the antitumor activity of HPV-specific
CTLs and challenges our understanding of CTL epitope
mapping.

To broaden clinical applicability, diverse strategies
employing genetically modified DCs expressing E6/E7,
pulsed with E6/E7 fusion proteins, infected with recom-
binant adenovirus, or hybridization with tumor cells
have facilitated a versatile presentation of all possible
CTL epitopes [43—45]. To this end, DC-based vaccines
can overcome the limitations of peptide epitopes with
respect to specific HLA-haplotypes and improve antigen
presentation in tumor-bearing individuals. As expected,
intramuscular administration of E7-transfected murine
DCs substantially decreased tumorigenicity and gener-
ated strong immunity against HPV16/18 E7-expressing
neoplasms [46]. The enhancement of immune responses
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by cytokines and immunostimulatory gene therapy
should prospectively potentiates antitumor activity, as
extensively reviewed elsewhere [44, 47, 48]. However,
the immune inhibitory effect on HPV16 E7-expressing
DCs has been shown to be mediated by the coexpression
of IL12 [49]. In preclinical models, local administration
of the tumor lysate-pretreated DC vaccines, containing
HPV16 E6/E7 oncoprotein, effectively inhibited recur-
rence or minimal residual tumors in mice [50].

In a pilot clinical study of 15 CC patients, HPV E7 anti-
gen-loaded autologous DCs (E7-DCs) induced a specific
antibody response in 3/11 evaluated patients and a spe-
cific cellular immune response in 4/11 patients. Unfor-
tunately, neither histopathological regression nor viral
clearance of treated patients was observed, attributed to
HLA expression loss [51]. Moreover, even with a sharp
decrease in L1 expression and a limited cellular immune
response against the L1 antigen in cervical lesions with
established HPV16 infection, DCs pulsed with major
L1 capsid protein-based HPV16-like particles (VLPs,
L1-DCs) can elicit strong specific CTLs and lyse HPV16-
infected autologous tumor cells [52]. Evidence also sug-
gests that CTLs induced by VLP vaccination can target
cells expressing low L1 protein levels [53, 54]. Collec-
tively, ongoing optimization of DC-based cancer vaccines
is essential given their current therapeutic limitations in
HPV-related cancers.

HBV

HBYV is a hepatocyte specific and enveloped DNA virus.
The HBV genome contains four partially overlapping
open reading frames (ORFs), namely the preS/S region,
preC/C region, P region, and X region. According to
the different starting codon positions, preS/S can be
divided into three different structural domains, includ-
ing preS1/S, preS2/S, and S, which are responsible for
the large protein (LHB), medium protein (MHB), and
small protein (SHB) of the envelope protein hepatitis B
surface antigen (HBsAg), respectively. Upon entry into
hepatocytes, the virus releases its relaxed circular DNA
(rcDNA), which is then transported to the nucleus where
it forms covalently closed circular DNA (cccDNA).
Transcription of cccDNA generates pregenomic RNA
(pgRNA), which serves as a template for both viral
genome replication and the translation of viral proteins.
Newly synthesized pgRNA is encapsidated along with the
viral polymerase to form nucleocapsids. Within nucleo-
capsids, the reverse transcription process generates
rcDNA, which can either replenish the cccDNA pool or
be enveloped and released as mature virions [55]. This
replication cycle perpetuates HBV infection and contrib-
utes to its persistence in the host. Owing to the reverse
transcription process of HBV, its DNA can be integrated
into the chromosome of the targeted cell, resulting in
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genomic instability, direct insertional mutagenesis and
abnormal expression of oncogenes and tumor suppressor
genes [56].

Persistent HBV infection predisposes to the initiation
and development of hepatocellular carcinoma (HCC)
through necro-inflammation and direct carcinogenic
effects. The prevalent HBV-related HCC (HBV-HCC) is
mostly characterised by HBV-DNA integrations, even
in cases serologically negative for HBV antigens [57].
Additionally, the immunosuppressive TME facilitates
virus escape and chronic HBV (CHB) progression. The
oncogenic process is multifaceted, involving intervention
in various signal pathways through microRNAs, com-
promised immune responses, increased chromosomal
alterations, endoplasmic reticulum (ER)-stress toward
hepatocellular transformation, epigenetic dysregulation
of tumor suppressor genes, and overexpression of fetal
liver/hepatic progenitor cell genes [58, 59]. In terms of
a plethora of oncogenic factors, prolonged expression of
the viral HBV x antigen (HBxAg) and aberrant preS1/S2
envelope proteins dysregulate cell transcription and pro-
liferation, making liver cells sensitive to carcinogenic fac-
tors [60-62].

Currently available therapies, including prophylactic
vaccine and antiviral treatment, effectively control HBV
infection or replication but do not achieve clearance
for intermediate and advanced HCC. Functional cure,
defined by HBsAg loss, does not equate to viral eradica-
tion in CHB patients, as residual cccDNA or HBV-DNA
integrations encoding HBsAg can lead to disease relapse
in HBV carriers [63]. Purging cccDNA in hepatocytes
through deamination-induced decay following antiviral
therapy is a major therapeutic goal in CHB [55]. ACTs
remain pivotal in the management of infection and in
the prevention of HBV-HCC relapse (Fig. 2b; Table 3),
although exploitation of HBV antigens as tumor-specific
targets for ACTs has been criticized due to their incon-
sistent expression in HCC. Additionally, risk assessment
must address two considerations: the adequacy of cellular
immunity to achieve durative and complete HBV clear-
ance in CHB patients subjected to prolonged exposure
to HBV antigens; assessing whether the robust cytotoxic
effects of ACTs might precipitate severe hepatotoxicity
and acute liver damage.

HBV-specific CAR-T cells

HBsAg remains positive in both CHB and HBV-HCC
with integrated viral genomes. Targeting HBV sur-
face proteins therefore seems promising. SHB and
LHB specific CAR-T cells demonstrated recognition of
soluble HBsAg and HBsAg-positive hepatocytes, elic-
iting secretion of IFNy and IL-2 and selective eliminat-
ing of cccDNA-positive cells. More abundance of SHB
on the surface of HBV-induced cancer facilitates the ER
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membrane targeting of HBsAg and steady ER-plasma
membrane exchange [14, 64]. Concordantly, SHB-CAR-
T cells exhibited faster activation and greater cytokine
secretion than LHB-CAR-T cells [65].

In HBV-transgenic mice lacking cccDNA forma-
tion, but possessing a functional immune system, large
amounts of circulating viral antigens do not inactivate
transferred HBsAg-CAR-T cells or lead to uncontrolled
immune-mediated damage in vivo. But rather HBsAg-
CAR-T cells would recognize all the extracellular and
secreted HBsAg proteins (SHB, MHB, and LHB proteins,
combined as HBsAg) and demonstrate efficacy against
HBV-infected hepatocytes [66]. Reduced HBsAg-CAR-
T cell persistence alongside increased viral parameters
were observed after initial and sequential transfer into
HBV-transgenic mice, suggesting potential causes, such
as T-cell exhaustion or overactivation via antigen binding
or Fc receptor interaction with the CAR [66, 67]. Notably,
through irradiation and tolerization of immunocompe-
tent mice, fully human SHB-CAR-T cell transfer persisted
at high numbers and induced a sustained antiviral effect
[67]. Accordingly, interactions with the different arms of
the endogenous immune system, bystander immune cell
activation, and combination therapies are warranted for
combating virally induced HCC.

Further preclinical exploration of CAR-T cells as HBV
immunotherapy in models with authentic infections
harboring episomal HBV cccDNA is warranted. Murine
HBsAg-CAR-T cells transferred into HBV-infected
humanized liver chimeric mice accumulate in the liver,
significantly reducing plasma HBsAg and HBV-DNA
levels compared with those in controls [68]. Notably,
HBsAg-CAR-T cells did not kill HBV-positive cell lines in
cytotoxicity assays, indicating noncytopathic viral clear-
ance. Upon triple knockdown of exhaustion markers
(PD-1, Tim-3, and Lag-3), CAR-T cells, which target the
preS1 domain of HBsAg and exhibit the tumor-reactive
marker CD39*% (preS1-CAR-T), potently inhibit tumor
growth and increase IFNy secretion in a patient-derived
xenograft (PDX) mouse model [69].

HBV specific TCR-T cells

HBV-specific TCR-T cells utilize TCR sequences sourced
from endogenous T-cells of patients with self-limited
HBYV infection or are exogenously engineered to recog-
nize HBV antigens presented by infected cells [70, 71]. In
some cases, HBV-HCC negative for HBV antigens may
contain translationally active HBV-DNA integrations,
generating functional T-cell epitopes recognized by and
activate HBV-specific T-cells [72].

High-affinity HBsAg- and HBV core antigen (HBcAg)-
specific TCRs in resting and activated T-cells from
healthy donors and CHB patients can transform these
cells into polyfunctional effector cells, which exhibit
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antiviral efficacy with limited liver injury through direct
cytotoxicity [73]. Whilst a single transfer of TCR-T cells
into HBV-infected, humanized mice eliminated HBV
infection and suppressed virological markers without
damaging non-infected cells [73]. Additionally, TCR-T
therapy has shown promising results in maintaining
memory T-cell function, which is crucial for long-term
immune surveillance against HBV reactivation and the
occurrence of HBV-HCC. Intriguing, resting T-cells
reprogrammed by HBV-specific TCR reduced HBV rep-
lication in humanized immunodeficient mice without
lysing HBV-infected hepatoma cells and simultaneously
have comparable IFNy levels and lower perforin and
granzyme levels [74].

In the first-in-man proof-of-concept clinical trials of
TCR-T cells, the HCC-specific antigen HBsAg was tar-
geted by adoptively transferred HBV-specific TCR-T
cells in a compassionate setting for HBV-HCC patients
with extrahepatic metastasis after liver transplant. Ret-
rovirally transduced TCR-T cells (HBsAg;g5_;-TCR-T),
which are designed to target HLA-A"02:01/HBsAg45 101
complexes, dramatically reduced HBsAg levels by
approximately 10-fold in concomitance with TCR-T cell
expansion, albeit with limited survival due to metastatic
disease progression [75-77]. These findings underscore
the potential efficacy of TCR-T cells targeting HBV anti-
gens in inducing sustained immune control over HBV-
related tumors.

In both preclinical and clinical settings, multiple infu-
sions of short-lived mRNA-based HBV-specific TCR-T
(HBV-TCR-T) cells for HBV-HCC individuals exhibited
clinically relevant suppression of HCC and a reduction
or stabilization of circulating HBsAg and HBV DNA
levels, indicating on-target effects [72, 78-81]. The tran-
scribed mRNA can be intuitively safe because of the tran-
sient self-limiting inflammatory reaction and a dearth of
transgene integration into the host genome. However,
the results from a phase I trial in a compassionate setting
for patients with HCC recurrence post-liver transplant
revealed that HBsAg- or HBcAg-directed TCR-T cells
engineered by concomitant electroporation of mRNAs
encoding specific TCRs have no superior anti-tumor
efficacy [80]. From our perspective, the aforementioned
status has implications for armoring more robust and
drug-resistant TCR-T cells to overcome the immunosup-
pressive TME.

HBV-specific DC vaccines

DC-based vaccines loaded with HBV-specific antigens
represent a promising immunotherapeutic strategy to
restore antiviral immunity crucial for controlling CHB
and HBV-HCC [82]. DCs loaded with HLA-restricted
peptides such as HBcAg;g_,, and HBsAgss;_343 have
demonstrated efficacy in priming specific CTLs ex vivo
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and in humanized mice. Stimulation of PBMCs or TILs
from CHB patients with these peptide-loaded DCs
resulted in significant HBV-specific CTL responses,
including IFNy secretion, CD107 expression upon
restimulation, reduction in systemic viral load, and lysis
of HBV antigen-expressing hepatocytes [83].

Elegant work has validated the safety and efficacy of
antigen-pulsed DCs in a large cohort of CHB patients.
DCs derived from CHB patients and pulsed with HBsAg
or HBcAg effectively induced CTL responses, reversed
immune tolerance in CHB, promoted DC maturation,
cytokine production, and enhanced CTL activation [84—
86]. Since CD14-HBsAg complexes were detected in vitro
and in the serum of HBV infected patients. It’s proposed
that HBsAg activates DCs through CD14-dependent
mechanisms [87], crucial for initiating effective HBV-
specific immune responses.

Moreover, DCs loaded with HBV subviral particles
(HBVsvp) offer an innovative approach to activate HBV-
specific CTLs, bypassing dysfunctional DCs and T-cells
in CHB patients, thereby inducing Th1 polarization and
strong cytolytic activity [88]. Phase I trials utilizing autol-
ogous DCs pulsed with irradiated tumor stem cells (DC-
TC) have shown initial safety in patients with cirrhosis
and HBV infection, suggesting potential therapeutic
benefits [89]. Collectively, these findings underscore the
promise of DC-based vaccines as a therapeutic avenue
against HBV-associated HCC.

HCV

HCV belongs to the Flaviviridae family and has a single
positive-sense RNA (+ssRNA), which codifies for an ico-
sahedral nucleocapsid composed of C protein and enve-
lope glycoproteins (E1 and E2), as well as non-structural
proteins (NS1, NS2, NS3, NS4A/4B, NS5A/NS5B). The
molecular mechanisms underlying HCV-HCC primarily
revolves around a complex interplay of viral proteins with
cellular pathways, leading to dysregulated cellular func-
tions, genomic instability, and tumor transformation [90,
91].

HCV reaches its peak titers several weeks before
the onset of detectable humoral or cellular immune
responses and the initiation of liver disease. In western
countries and Japan, chronic HCV infection is the pri-
mary cause of HCC. Wherein the highly variable HCV
genomes under the selective pressure of host immune
response are major risk factors for HCC development
and impede the effectiveness of prophylactic and thera-
peutic treatments [92-94]. With the advent of potent
antivirals targeting the viral life cycle: the NS3/4A pro-
tease, the NS5A protein and the RNA-dependent RNA
polymerase NS5B protein, the incidence of HCV-HCC
has substantially decreased [95]. Nevertheless, in cases
where the HCV titer remains relatively low during
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chronic infections, we should armor immune cells and
pre-empt T-cell exhaustion or anergy to clear HCV infec-
tion. HCV specific ACTs are list in Table 4 (Fig. 2c).

HCV-specific CAR-T cells

The highly variable HCV E2 glycoprotein (HCV-E2) is a
major target of the host immune response. Anti-HCV-
E2 CARs were designed based on a previously described
broadly cross-reactive and cross-neutralising human
monoclonal antibody (mAb), directed against conserved
HCV-E2 epitopes [96]. The cytotoxic ability of anti-HCV-
E2 CARs-grafted T (HCV-E2-CAR-T) cells was evalu-
ated in vitro against HCV-E2-transfected cells as well as
hepatocytes infected with HCV. In a proof-of-concept
study, retrovirus-transduced HCV-E2-CAR-T were
endowed with specific antigen recognition accompanied
by degranulation and secretion of proinflammatory and
antiviral cytokines [97].

Introducing the HCV NS3 protease (HCV-NS3)
between the scFv and hinge domain allowed for pro-
tease-regulated CAR circuits, enabling precise control
over CAR-T cell activation during cancer therapy. In the
absence of HCV-NS3 inhibitor, NS3 displays the proteo-
lytic process, disrupts the CAR structure and prevents
the activation signals. Conversely, administering prote-
ase inhibitors inhibited NS3 cleavage, preserving CAR
integrity and facilitating T-cell activation [98, 99]. The
anti-tumor potency and reversibility of drug-regulated
CAR-T cells targeting tumor-associated antigens (TAA)
were evaluated in solid and hematological tumors [100,
101]. As such, future investigations may explore CARs
targeting HCV antigens, potentially leveraging clinically
approved HCV-NS3 antiviral protease inhibitors to syn-
ergistically combat HCV-HCC.

HCV-specific TCR-T cells

Two specific HCV TCRs that mounted a polyfunctional
response to the cognate HLA-A2-restricted NS3,75_10s;
and NS5,995_5000 Peptide, and enabled to eliminate
human hepatoma cells with persistent HCV RNA replica-
tion [102]. The expanded study revealed that NS3-specific
TCR-T cells were prone to induce the antigen-specific
cytolysis of target cells, while NS5-specific TCR-T cells
favored a non-cytotoxic mechanism [103, 104], mirroring
some marked differences in avidity and functional profile
between HCV-specific TCR-T in tumor cell lines. High-
avidity NS3-specific TCR-T cells rapidly activated apop-
totic signaling pathways, causing hepatotoxicity, whereas
the low-avidity NS5-specific TCR-T cells promoted the
proliferative and metabolic pathways as the extended
survival of HCV target cells [104]. At this juncture we
surmised that, high-avidity TCR-T cells demonstrate
superior antiviral activity, while low-affinity TCR-T cells
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of cancer. Intriguingly, anti-CMV VST cells accumulate
in extremely high numbers and serve as “bystanders” of
the tumor. To harness CMV-specific immunity against
malignancies, diverse strategies have been devised
to redirect VSTs towards eradicating cancerous cells
(Fig. 2d; Table 5) [113].

CAR-redirected CMV-specific cytotoxic T-cells (CMV-CAR-T)
The immunodominant CMV antigens, namely the pp65,
IE1, and IE2 proteins, evoke physiological CMV-specific
T-cells [114]. These T-cells can be isolated and/or rein-
vigorated using ex vivo CMV-peptide stimulation prior
to CAR transduction, followed by in vivo expansion
through a CMV vaccine boost [115-117]. CD19-CAR-T
cell therapy faces limitations such as inadequate engraft-
ment, differentiation, exhaustion, prolonged B cell apla-
sia, and increased susceptibility to CMV infections [118].
In contrast, CMV-CD19-CAR-T cells integrate anti-
CD19 effector functions with potent anti-CMV activity,
exhibiting superior proliferation, survival, and in vivo
antitumor efficacy compared to conventional CD19-
CAR-T cells [115]. Moreover, in a phase I dose-escalation

Specific antigen recognition, degranulation and secre-
Anti-tumor potency via protease-regulated CAR circuits,
show diminished T cell exhaustion and greater stem-
ness, enhance anti-tumor efficacy in solid tumor models
Facilitate specific cellular immune activation and induce
anti-viral cytokines and antibodies

tion of proinflammatory and antiviral cytokines
Activate T cell, enhance cross-presenting capability

Induce apoptotic signaling pathways and cause

hepatotoxicity
Extend proliferative and metabolic pathways

Biological effect

Table 4 Hepatitis C virus (HCV)-specific adoptive cell therapies (ACTs)

ACTs
N531O734 WOSTTCR‘T

HCV-E2-CAR-T
HCV-NS3-CAR-T
NS5 1992 — ZOOOATCRAT
HCV-£2-DCs
HCV-NS3-DCs
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trial of progressive glioblastoma (GBM) patients without
prior lymphodepletion, Ahmed et al. evaluated the feasi-
bility and safety of CMV-Her2-CAR-T cells and reported
a promising median overall survival (OS) of 11.1 months
from the first T-cell infusion and 24.5 months from diag-
nosis [119]. Overall, compared to generic CAR-T cells,
CMV-CAR-T cells have shown superior proliferation,
survival, and in vivo antitumor efficacy. They are well tol-
erated with only minor adverse events (Table 5).

TCR-engineered CMV-specific cytotoxic T-cells (CMV-TCR-T)
To prevent CMV reactivation after haploidentical periph-
eral blood SCT (PBSCT), a phase I clinical trial assessed
the safety and efficacy of CMV-specific T-cells engi-
neered to recognize HLA-restricted peptides from the
CMYV pp65 protein [120]. Another clinical trial investi-
gated ex vivo expanded CMV-specific T-cells in recur-
rent GBM patients and reported a median OS of 4.4—13.4
months and a median progression-free survival (PES)
of approximately 8.1 months. However, in vitro analysis
did not reveal significant changes in CMV-specific T-cell
polyfunctionality [121].

Manufacturing CMV-TCR-T cells appears to be more
challenging than CMV-CAR-T cells due to the down-
regulation of endogenous TCR expression upon forced
expression of the artificial TCR. Redirected by the minor
histocompatibility antigens (HA), HA-TCR-transferred
CMV-specific T (HA-CMV-TCR-T) cells exerted dually
potent antileukemic as well as anti-CMV reactivity,
showing comparable TCR-specific cytolytic activity to
generic TCR-engineered T-cells [122]. Notwithstand-
ing, a follow-up study disclosed that repetitive stimula-
tion skews CMV-TCR-T cells to predominantly express
the triggered TCR [123]. In a phase I clinical trial, CMV-
TCR-T cells were safely infused into 5/9 patients, but the
overall efficacy of this treatment approach was too low to
warrant further clinical development [124].

CMV-specific CAR-T cells

At the early stage of the CMV replication cycle, CAR-T
(gB-CAR-T) cells directed against glycoprotein B (gB)
accessible on the surface of infected cells can mediate
antiviral effector functions, such as cytokine production
and cytolysis [125]. However, a set of viral antiapoptotic
factors directly abrogate T-cell cytotoxicity at later stages
of the replication cycle. These gB-CAR-T cells were not
tested in vivo because of the low degree of sequence sim-
ilarity of gB protein between murine and human CMYV,
thus, recombinant mouse CMV expressing human CMV-
gB is obligatory.

CMV-specific DC vaccines
A multiperformance recombinant adenovirus coexpress-
ing the CMV immediate early gene (CMV-IE) enables the
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selective infection of DCs in vivo (CMV-IE-DCs), which
induce T-cell activation to kill cancerous cells and pro-
long survival in CMV-IE-implanted murine glioma mod-
els [126]. Owing to the attenuated ability of CMV-specific
T-cells in patients to generate multiple cytokines and
chemokines, a pilot trial in which 22 patients with GBM
received CMV pp65 RNA-loaded-DCs to augment the
polyfunctionality of CMV pp65-specific T-cells revealed
that polyfunctional T-cell responses are potential bio-
markers for effective antitumor immunotherapy [116].
Encouragingly, three separate clinical trials have demon-
strated that DC vaccines targeting the CMV pp65 protein
(CMV-pp65-DCs) confer long-term survival benefits to
nearly 1/3 of GBM patients, showing no tumor recur-
rence five years posttreatment [127]. Enhanced insights
into tumor etiology and immune principles underscore
the unique advantages of virus-targeted DC vaccines in
specific tumor immunotherapies.

EBV

EBV belongs to human herpesvirus 4 (HHV-4) of the
herpesvirus family and features a 175 kb double-stranded
DNA genome encoding over 85 proteins. EBV enters
epithelial, B, NK/T cells through a variety of membrane
proteins, including gp350, gB, gH, gL and gp42 [128].
EBV has been definitively linked to a variety of lymphoid
and epithelial cell malignancies, including B/T/NK cell
lymphomas, nasopharyngeal carcinoma (NPC), gastric
carcinoma and lung carcinoma due to the immune cell
exhaustion and dysregulation [129, 130]. Upon primary
infection, the immune-evasive EBV establishes latency
and allows the viral genome to persist in the lymphatic
system by driving the expansion of infected B cells [131].
EBV-infected B cells selectively express latent viral pro-
teins: EBV nuclear antigen (EBNA) and latent membrane
proteins (LMPs). As signaling proteins, LMPs promote
the overexpression of some TAAs in B cells and upregu-
late costimulatory ligands to jointly activate T-cells [132].
As importantly, continuous EBNA1 expression is crucial
for maintaining EBV genome replication in EBV-positive
tumors, whereas EBNA3 is upregulated in EBV-induced
lymphoma and can induce potent anti-EBV-specific
CTLs. In addition, compared with those in the con-
trol lymphocytes of healthy individuals, EBNA1 and
EBNA3 mRNA levels in EBV-induced lymphoma cells
are increased by thousands of folds [133]. Accordingly,
these latent EBV proteins are viable targets for cellular
immunotherapies to clear EBV-infected targets (Fig. 2e;
Table 6).

EBV-specific CTLs

EBV-specific CTLs face challenges due to EBV’s vari-
able viral gene expression and multiple evasion mecha-
nisms, complicating epitope selection. During the latent



Page 15 of 23

(2024) 12:71

Zhang et al. Biomarker Research

UIRAS 1A MY/ LN
/A93 343 Y1m 103jul

91e13)10Jd OAIA X3

o] pue s||92 ,#£QD Poo|q Pa1011sal  ‘AJIAIIDR DIA|0IAD pUR UOIIDII9S sapueUbijew
9SNOW dIduUdbHoUdY ymoib Jowny igiyuj pauoiuaW JoN pJod Yym juejdsuel | 1020xV-VIH 2upoifd axonoid ‘Aypine ybiH  pajeidosse-pg3 WL LA
adedsa
uabnue pgedb
adedsa usbnue pgedb aowoid Ag3 7 2dA1 o104 210wolid
pue MoJiew aUog dY} Ul peo| e YHM 194Ul ‘YyD Ul ‘05edb Jo uols MOJIBUI SUOQ 33 Ul peo|
[S¥1] VNG Ag3 241 padnpal Ing OAIA 320Uy 03 spoylawl bul -s21dxa 9|qe VNQ Ag3 843 9onpaJ Ing ew 1-4vD-05£db
asnow yelbouax Ul yimolb Jowny 1giyur Jou og PaUORUBW JON  -1Pa auab 6SeD/YdSIYD  -lea puesespy  -oydwA| uo Aoeduyys moj 1ax] ewoydwA]  paupa ays-ayi-Ho
“uoleWWeUl 9Npal
pue quswdolaAap Jowny
40 ¥2e| ‘uonielayjoidoyduA| uled3s 1A DN/ L8N 958351 SAIIRID
4! Jueubijew |19 g Jo sapusnbaly /A93 943 YUm 1094ul sisauabeuwloydwA| pue uoiesd -jljoidoyduiA|
‘1] 19MO| pamoys pue peaids Ag3 pue s||92 ,#£QD Poo|q 0sedb uey  -jijoidoydulA| payenosse-Ag3 ‘sappueUbeW
9SNOW PIZIUBWINH  92NPaJ JO [0JIUOD 31U JO %G/ pauOIIUSW JON pIod yum jueidsuel]  -oid [BIIADIAT  puadwll pue A1DIX0J0IAD 1SXT  PIIRIDOSSe-AGT 1-4vD-05£db
Jauuew dypads | dIAT]
e ul z-7) pue AN4| @onpoid pue
lerl] L dIA] BuIsSsa1dXa19A0 S|192 DN
asnow yeibouax Ymolb Jowny 9onpay paUOIIUSW 10N UIIM 31N3N2-0D Ul Pa1eAIde 9g JdN 19D~ LA
SISPISEIDW PUB 9DUBAINDI
(1] siapuodsai JdN 1uanaid pue |013U0d
| 9seyd Ul %116 JO 23l SO Jeak-an14 pajelo|o} [lI9M UORdNPSURL ¢dINT-PY 11D 24123ds ZdIAT 35009 JdN SOA-¢dN
PIAISCO SeM S||90 12l
syuow  A3dIx03 Juedylubis -J103ds-z/1dIN
0'9 SeM 3WI[} SO URIPAW @ OU ‘sasuodsal Ay |esayduad jo
oy1] 'SYIUOW 76'| SeM S4d UBIPW  -AIISUSSIadAY 9dAy ‘uononpsuely  Adusnbaly ayy ONIAUIS||DD DN padueApe
Il 9seyd ‘ASTL/TWd TL/L WO Tl/e  pakeap paonpul CAWT-LdWTV-PY Ul 9SealdUl ON 12y1>3ds-¢/ 1IN 91eAlDY 9ANSOd-AGT  SDA-CdNT-LAWTV-PY
usbiue gz
uolsnjul Buissaidxa (5E45PY)
71D JaYe SieaA | € JO urIpaW SI01D9A |eJIAOUDPR syuaned
og1] 91 1/900.1ON B 1B UOISSIULIJI pauleIsns S9IIDIX0) UM Po3D3)sueil ST YD Ul ul peaids adoyds eWOYdWIA|
| °seyd 67/8C YD LT/LL YO LT/EL [eUOISNYUION g pue D snobojony 9A135q0 ‘ewioydwiA| s1edipel3  pajeldosse-Agd TLO-dA1
95e3s|p
aAIssalboid 01
aNp (QVS) uene
9SIDAPE SNOLISS
e Jo ased 9|buls e
‘ainssaid poojq
MO| pue 'ybnod
AIp ‘3siejew uolsuedxa
‘suoldwiAs y1j-nYy KoddWT-13pY  Ou Jo [ewiuiw uoissaiboid
V€Ll ¥TTS/9000609C INYLDV Buipnpour sand! YHM pa1ojul SOINGd PaMOUs  JOWN} [03U0D 'S||9D | dYidads  DdN dlelselawl
| 9seyd SYIUOW 7'/ | 4O SO UBIPa -X0} 7/l 9pelo  snobojoine pajeipest| syuaned /7 -1VYNg3 PUB -g|N792NpU|  PUB JULINDDY 1LD-LYNGI/dWT
‘Joy bumas jeuy sasuodsaliowin]  SJUSAS 3SISAPY suoneuiquo) suoneywi] 1099 |edibojolg  4adued paje|y ),

(s1DV) saidelayy [|92 aandope dydads-(Ag3) sniiA Leg-uleisd3 9 ajqeL



Zhang et al. Biomarker Research (2024) 12:71

phase, EBV-specific CTLs are often infrequent, relatively
immature, and anergic, potentially allowing tumor cells
to evade immune surveillance. Previous studies have
demonstrated that expanding LMP1/EBNA1-specific
CTLs by coculturing with irradiated autologous PBMCs
infected with an adenoviral vector encoding EBNA1 and
multiple CTL epitopes from LMP1 and LMP2 (AdE1-
LMPpoly), followed by reinfusion into EBV-positive
recurrent and metastatic NPC patients, effectively con-
trolled tumor progression with a median OS of 17.2
months [134]. However, preparative lymphodepleting
chemotherapy prior to administering higher doses of
EBV-specific CTLs did not improve clinical outcomes
in patients with EBV-associated NPC [135]. In addition,
LMP specific CTL was expanded using autologous DCs
and EBV-transformed B-lymphoblastoid cell lines trans-
duced with an adenoviral vector expressing LMP, which
could induce durable CR in lymphoma patients at a
median of 3.1 years after CTL infusion. Within 2 months
after CTL infusion, epitope spread can be detected in
patients who achieve clinical responses [136]. To enrich
BARF1-specific CTLs for NPC treatment, EBV lytic cycle
inducers can be used to upregulate the BARF1 oncogene
in LCLs to promote more pronounced immunogenic
properties [137, 138], suggesting new strategies to bolster
EBV-targeting immunotherapy.

Initial preparation of EBV-specific CTLs involved stim-
ulating PBMCs with autologous EBV-transformed LCLs,
followed by transduction with E1l-deficient adenovirus.
These El-transgenic CTLs released oncolytic adenovirus
at tumor sites, leading to tumor regression upon expo-
sure to HLA-matched, EBV-infected cells [139]. Recent
research highlights the potential of ectopically expressed
LMP1 in tumor B cells to prime autologous CD4* T-cells
(LMP1-CD4" T) against a wide array of endogenous
tumor antigens, including TAAs and neoantigens, sug-
gesting efficient treatment for B cell malignancies [132].
These groundbreaking studies underscore the necessity
of reevaluating conventional paradigms in both viral and
tumor immunity.

EBV-specific DC vaccines

Although autologous DCs transduced with an adenovi-
rus encoding truncated LMP1 (ALMP1) and full-length
LMP2 (Ad-ALMP1-LMP2-DCs) enable to activate
LMP1/2-specific T-cells in vitro, no increase in the fre-
quency of peripheral LMP1/2-specific T- cells was
detected in advanced NPC patients. Meanwhile, they
induced delayed-type hypersensitivity responses but
did not result in significant toxicity [140]. Consider-
ing its limited efficacy, future research should priori-
tize the administration of more potent DC vaccines to
patients with lower tumor burdens. In a pilot study of 29
subjects, intradermal injection of LMP2-DCs using an
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adenovirus expressing LMP2 (Ad-LMP2) achieved a five-
year survival rate of 94.4% in NPC responders, indicating
enhanced responses to LMP2 peptide pools [141].

EBV specific CAR-T cells

Compared to CTL treatment regimens, the development
of EBV-specific CAR-T is somewhat slower. CAR-T cells
engineered with the scFv specific to the extracellular
domain of LMP1 (LMP1-CAR-T) were activated in co-
culture with LMP1-overexpressing NPC cells, leading to
production of IFNy and IL-2. Intra-tumoral injection of
LMP-CAR-T cells in a xenograft mouse model reduced
tumor growth [142]. Moreover, a clinical trial is currently
underway (NCTO02980315) to evaluate LMP1-CAR-T
cells for treating EBV-associated malignant tumors.

The lytic envelope gp350 is prominently expressed on
the surface of cells during EBV lytic reactivation and
persists in subsets of latently infected cells. A proof-of-
concept preclinical study revealed that gp350-targeting
CAR-T cells (gp350-CAR-T) exerted cytotoxic effects
against EBV-positive tumor cells and hindered EBV-asso-
ciated lymphoproliferation and lymphomagenesis in a
fully humanized mouse model [143, 144]. However, using
TCR alpha chain (TRAC) locus-knock-in, off-the-shelf
edited gp350-CAR-T cells showed limited efficacy against
lymphoma due to weak and variable gp350 expression
[145], highlighting EBV’s immune evasion mechanisms
that can affect CAR-T cell characteristics and efficacy.

EBV-specific TCR-T cells

The TCR specific to LMP1 (LMP1-TCR) provoked high
levels of cytokine secretion and cytolytic activity, display-
ing explosive ex vivo proliferation upon antigen activa-
tion, and inhibited tumor growth in a xenogeneic model
[146]. Ongoing efforts aim to generate more robust EBV
TCRs by incorporating a CD28 domain preceding CD3,
which augments antigen-specific IFNy production with-
out compromising the cytotoxic response [147]. Clinical
trials investigating LMP2-specific TCR-T cells are ongo-
ing (NCT04509726, NCT03925896). Despite promis-
ing results, the effectiveness of adoptive immunotherapy
for EBV-associated cancers remains constrained by
limited targetable EBV antigens and their suboptimal
immunogenicity.

HIV-1

HIV-1 latent reservoirs are established days after infec-
tion and persist through clonal expansion of infected
cells. Individuals living with HIV-1 face heightened risks
of developing T-cell lymphoma and B-cell non-Hodgkin’s
lymphoma (B-NHL), predominantly diffuse large B-cell
lymphoma (DLBCL) and Burkitt’s lymphoma [148].
Pathogenesis studies highlight multifaceted mechanisms
encompassing oncogenic proteins, immune system



Zhang et al. Biomarker Research (2024) 12:71

dysregulation, genetic predisposition, and other factors.
Despite antiretroviral therapy (ART) effectively suppress-
ing active viral replication, it fails to eliminate integrated
latent viruses, necessitating lifelong treatment. Strategies
to target HIV-1 latent reservoirs and associated lympho-
mas propose cytolytic immunotherapies as adjunctive to
ART (Table 7; Fig. 2f).

HIV-1-specific CAR-T

The huge success of CAR-T therapy for B cell leukemias
is rooted in pioneering preclinical and clinical study of
HIV-1 infection. Furthermore, CAR-T cell has been rec-
ommended for the clinical therapy for HIV-1-positive
lymphoma patients [149, 150]. In a randomised phase
II clinical trial, first-generation CAR-T cells using CD4
ectodomain (CD4-CAR-T) to target the HIV-1 gpl120
expressed on the surface of HIV-1-infected cells, noted a
trend toward viral-load rebound and long-term engraft-
ment in patients [151]. Given that CD4 and CCR5 are
primary coreceptors of HIV-1 infection, CD4-CAR-T
cells are susceptible to HIV-1 infection. For that reason,
broadly neutralizing antibodies (bNAbs) against HIV-1
are engineered in the CAR construct (bNAb-derived
CAR-T) cells showed a higher neutralizing capacity for
different HIV-1 strains and circumvented HIV-1 infec-
tion [152]. Furthermore, bNAb-derived CAR-T cells
with the deletion of CCR5 exhibited superior viral rep-
lication control compared to counterparts lacking this
modification [153]. Nevertheless, emergence of resistant
viral variants through spontaneous mutations poses a
challenge to sustained efficacy, necessitating ongoing
refinement. Innovative approaches like DuoCAR-T cells,
targeting multiple binding sites on gp120 and the extra-
cellular region of gp41, exhibited promising efficacy in
eliminating HIV-1 in preclinical models of humanized
mice with intrasplenic infection, presenting a multifac-
eted strategy against globally prevalent HIV-1 strains
[154, 155].

Other HIV-1-specific ACTs

Anti-HIV-1 TCR-T cells manifested robust, antigen-spe-
cific polyfunctional cytokine profiles upon encountering
antigens, but ineffectively controlled HIV-1. Conversely,
CAR-T cells demonstrated accelerated recognition and
elimination of HIV-1-infected targets relative to TCR-T
cells, attributed to their ability to activate Caspase 3 and
induce apoptosis in HIV-1-infected cells [156]. Therefore,
it is hypothesized that the speed of target recognition and
killing determines the efficacy of engineered T-cell thera-
pies for infectious HIV-1.

Therapeutic DC-based vaccines pulsed with heat
inactivated autologous HIV-1 (HIV-1-DC) have shown
feasibility, safety, and well-tolerated outcomes in clini-
cal settings [157]. Additionally, DCs electroporated
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with mRNA encoding Tat, Rev, and Nef (DC-TRN) sig-
nificantly modulated NK cell and HIV-1-specific T-cell
responses, leading to substantial reductions in plasma
HIV-1 viral loads following interruption of antiretroviral
therapy [158, 159]. These findings underscore the poten-
tial of DC-based approaches in augmenting immune
responses crucial for controlling HIV-1 infection and
HIV-1-defined cancers.

Other oncoviruses in viral malignancies
KSHYV is etiologically linked to Kaposi’s sarcoma and
primary effusion lymphoma, where both latency and
lytic reactivation phases contribute to the pathogenesis
of KSHV-associated malignancies [10, 160]. Notably,
KSHV’s immune evasion strategies, mediated by genes
like KSHV K3 and K5 encoding membrane-tethered E3
ubiquitin ligases, interfere with MHC expression, thereby
evading immune surveillance by T and NK cells. This
evasion mechanism could be exploited in the develop-
ment of off-the-shelf allogeneic CAR-T cells. Incorpo-
rating K3 or K5 into CAR constructs has been shown to
decrease the recognition and cytotoxicity against alloge-
neic T-cells in both culture and animal models [161].
Akin to MCPV, the elevated prevalence and viral load
of polyomavirus JC (JCPV) within tumor tissues strongly
suggest an active role in tumorigenesis rather than a
bystander effect [162—164]. Furthermore, some lympho-
mas are characterized as virus-associated cancers due to
the high incidence of viruses such as HIV-1, EBV, KSHYV,
HCV, HBV, and others, all of which exert pathogenic
effects [90, 165]. Cooperative interactions between dif-
ferent oncoviruses represent an additional contributory
mechanism in viral malignancies [165].

Conclusions and perspective

Preclinical and clinical studies have sought to utilize a
flood of innovation ACTs for the prophylaxis and treat-
ment of virus infection in both refractory and advanced
malignancies [63, 166—168]. Capitalizing on the etio-
logical link between viral malignancies and oncoviruses,
we have summarized the relevant literature on the use
of virus-specific ACTs to avoid or ablate viral malig-
nances, and this information may also provide guidance
for the selection of effective oncovirus-encoded antigens
(Fig. 2a-f). This therapeutic approach is often combined
with vaccinations, immune checkpoint inhibitors, sys-
temic aldesleukin, virotherapy, and support by organ
transplantation. Notably, virus-specific ACT mediated
antitumor effects were observed even in heavily pre-
treated patients. These immune antitumor effects may
be even more clinically evident when used as a first-
line treatment at the early stage of virus infection, since
an intense immunosuppressive TME that is typically
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encountered in refractory cancer patients may not be
present.

The bottleneck of ACTs for treating viral malignancies
lies in several factors, including inadequate expansion
and persistence of adoptive cells, MHC downregula-
tion, suppressive TME, and targetable viral antigen level.
Traditional strategies for solid tumor treatment aimed
at increasing the trafficking, infiltration, and persistence
of highly active adoptive cells are also applicable to the
treatment of viral malignancies. Specially T-cells can be
engineered with costimulatory signaling, immune check-
point inhibitors, CMV/EBV TCR coexpression, and tissue
homing ligands, which have demonstrated several advan-
tages over the prototype, including enhanced expansion,
persistence, antiviral activities. One major challenge is
effectiveness of this therapy in recognizing and targeting
infected cells. This is largely dependent on the ability of
the transferred T-cells to interact with MHC molecules
presenting viral antigens on the surface of infected cells.
Another crucial issue is the TME within the infected tis-
sue, which can create an inhibitory environment that
hinders the function of the transferred cells. This may
include factors such as immune suppressive cells, cyto-
kines, and a lack of adequate nutrients for T-cells to
proliferate and function optimally. Furthermore, the
availability and selection of appropriate viral antigens
for targeting also play a significant role in ACT success.
In addition, an important direction for future research
involves targeting multiple highly conserved sites of more
than one viral antigen and utilizing a variety of thera-
peutic targets to overcome the viral escape mechanisms.
Identifying highly immunogenic and conserved antigens
that elicit a strong T-cell response is essential for effec-
tively clearing the viral infection. Overall, overcoming
these obstacles requires a comprehensive understanding
of the immune response to viral infections and the devel-
opment of strategies to optimize the function of adoptive
cells in the context of the complex TME. Furthermore,
investigating the optimal timing for intervening in the
progression from viral infection to chronic inflamma-
tion to cancer development is crucial. Early intervention
strategies to prevent or delay the carcinogenic process
represent a significant area for further exploration and
discussion in the field of cellular immunotherapy for viral
infections. In general, ACTs can target viral antigens and
tumor-specific markers, and provide potent immune
responses against viral infections and their associated
malignancies. More importantly, we need to determine
which specific scenarios can be administrated by certain
form of ACTs.

Abbreviations

ACTs Adoptive cell therapies

alloSCT Allogeneic after stem cell transplantation
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CAR Chimeric antigen receptor

CHB Chronic HBV

CMV-IE CMV immediate early gene
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cccDNA  Covalently closed circular DNA
[@Y\% Cytomegalovirus

DC Dendritic cell
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gB Glycoprotein B
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HBVsvp HBV subviral particles
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HNC Head and neck cancer

HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HCV Hepatitis C virus

HCC Hepatocellular carcinoma

HA Histocompatibility antigens
HHV-4 Human herpesvirus 4

HHV-5 Human herpesvirus 5

HIV-1 Human immunodeficiency virus type 1

HPV Human papilloma virus

hTERT Human telomerase reverse transcriptase
IARC International Agency for Research on Cancer
KSHV Kaposi's sarcoma-associated herpesvirus
LMPs Latent membrane proteins

LCLs Lymphoblastic cell lines

MHC Major histocompatibility complex
MCPV Merkel cell polyomavirus
NPC Nasopharyngeal carcinoma
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ORR Objective response rate
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(o) Overall survival

PDX Patient-derived xenograft
PBSCT Peripheral blood SCT

JCPV Polyomavirus JC

pgRNA Pregenomic RNA

PFS Progression-free survival

rcDNA Relaxed circular DNA

+ssRNA Single positive-sense RNA
scFvs Single-chain antibodies

TCR T cell receptor

TRAC TCR alpha chain

TAA Tumor associated antigen

TIL Tumor-infiltrating lymphocyte
VST Virus-specific T cell
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