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10 to 100 times higher compared to non-infected individ-
uals. Integrated HBV DNA refers to the incorporation of 
HBV DNA into the host cell’s genome, which is one of the 
important factors contributing to HBV-related carcino-
genesis. HBV integration can induce genetic damage and 
chromosomal instability, leading to tumor progression 
via the activation of oncogenes or inactivation of tumor 
suppressor genes [2–4]. It may persist even after success-
ful hepatitis B surface antigen (HBsAg) seroconversion, 
which can contribute to HBsAg re-positivity and increase 
the risk of developing HCC [5]. Remarkably, integrated 
HBV DNA is identified in around 85-90% of HCC cases 
associated with hepatitis B virus infection [6]. Target-
ing the HBV DNA integration process and eliminating 
integrated HBV DNA from the host genome becomes 
crucial in preventing the progression of chronic hepati-
tis B. The treatment of CHB now includes options such 
as nucleos(t)ide analogues (NAs) and interferon-alpha 

Background
Chronic Hepatitis B (CHB) refers to a persistent liver 
infection caused by the hepatitis B virus (HBV) that 
lasts for more than 6 months [1]. Among these individu-
als with CHB, a staggering 820,000 cases experienced 
adverse outcomes such as liver failure, liver cirrhosis, 
HBV-related hepatocellular carcinoma (HCC), or other 
HBV-associated diseases. The risk of developing HCC in 
patients with CHB is significantly elevated, ranging from 
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Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing 
a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective 
of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic 
covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to 
summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing 
cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including 
modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal 
instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral 
therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into 
future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination 
include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration 
deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
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(IFN-α), which could effectively inhibit HBV replication 
and new integrations. While IFN is administered for a 
finite duration, NAs are typically prescribed for extended 
periods, often lifelong [1, 7, 8]. The primary objective 
of CHB treatment is to suppress HBV replication to the 
maximum extent possible. Hepatocyte inflammation and 
necrosis, liver fibrosis and hyperplasia can be attenu-
ated by inhibiting HBV replication, thereby delaying and 
reducing the occurrence of severe complications such as 
liver failure, liver cirrhosis, and HCC [9, 10]. The types of 
CHB cure are categorized as functional cure (also known 
as clinical cure or immunological cure) and sterilizing 
cure (also known as virological cure). A “functional” cure 
was defined as sustained HBsAg loss and HBV DNA less 
than the lower limit of quantitation (LLOQ) 24 weeks 
off-treatment [11]. On the other hand, a “sterilizing” cure 
was defined as all traces of HBV infection would be elimi-
nated, including cccDNA and integrated HBV DNA [11, 
12]. For eligible patients, the pursuit of functional cure 
should be considered [7, 13, 14]. The sterilizing cure of 
HBV is to achieve sterilizing cure, which necessitates 
the elimination of intrahepatic cccDNA and the com-
plete eradication of integrated HBV DNA. However, this 
remains a challenging feat due to the persistence of viral 
reservoirs, weak immune response, long-term medica-
tion requirements, variable treatment responses, and 
the presence of advanced liver disease [1, 15]. In animal 
models, the frequency of integration events is estimated 
to be approximately one in 103-104 hepatocytes [16, 17]. 
However, the precise mechanisms of integration remain 
unclear, necessitating further attention and investigation. 
This review aims to provide a comprehensive overview of 
HBV DNA integration, including its molecular mecha-
nisms, detection methods, research models, oncogenetic 
roles in HCC, and potential treatment strategies for elim-
inating HBV DNA integration.

HBV integration occurs during HBV replication
The structure and life cycle of HBV DNA
The HBV is a DNA virus that belongs to the Hepadna-
viridae family [1]. Dane particles are infectious virions 
characterized by a lipid membrane that encapsulates a 
nucleocapsid. The lipid membrane contains three HBsAg, 
which include large (L-HBs), middle (M-HBs), and small 
(S-HBs) forms. The nucleocapsid within the Dane par-
ticle is composed of hepatitis B core protein (HBc), viral 
polymerase (Pol), and the viral genome DNA. The HBc 
protein provides structural integrity to the nucleocapsid, 
while the viral polymerase is responsible for replicating 
the viral genome during the viral life cycle (Fig. 1A).

The viral genome of the HBV is a partially double-
stranded DNA (dsDNA) structure. It consists of one 
complete coding minus(-) strand and one incomplete 
non-coding plus(+) strand. The viral genome contains 

four overlapping open reading frames (ORFs) that are 
responsible for encoding various viral proteins including: 
(1) HBV DNA polymerase (pol), which is involved in viral 
replication and synthesis of the viral genome. (2) HBsAg, 
which exists in three forms: Large, Medium, and Small. 
These antigens are crucial for viral attachment and entry 
into host cells. (3) HBV core antigen (HBcAg), providing 
structural integrity to the nucleocapsid of the virus. (4) 
HBV e antigen (HBeAg), whose exact function is not fully 
understood but is associated with immune tolerance and 
viral replication. (5) HBV X protein (HBx), a multifunc-
tional protein involved in regulating viral replication, cell 
proliferation, and immune response modulation. Each of 
these viral proteins contributes to different aspects of the 
HBV life cycle, including viral replication, virion assem-
bly, and immune evasion (Fig. 1B) [18].

After the HBV virion entering hepatocytes, the nucleo-
capsid is released into the cytoplasm and the relaxed 
circular DNA (rcDNA) enters the nucleus where it will 
convert into cccDNA [19–22]. The cccDNA then serves 
as a template for the synthesis of five transcripts (3.5Kb 
pregenomic RNA, 3.5Kb precore mRNA, 2.4Kb preS1 
mRNA, 2.1Kb preS2/S mRNA, and 0.7Kb HBx mRNA), 
which are transcribed by host RNA polymerase II. 
Among these transcripts, the 3.5Kb pregenomic RNA 
(pgRNA) plays a crucial role in viral reverse transcription 
and replication processes. Following the utilization of 
pgRNA as a template, the minus(-) strand is synthesized, 
and subsequently, the synthesis of the plus(+) strand 
proceeds using the minus(-) strand as a template. This 
process gives rise to two products during plus(+) strand 
synthesis: partially circular rcDNA and double-stranded 
linear DNA (dslDNA). Rather than being encapsulated 
and secreted as virions, dslDNA has the potential to re-
enter the nucleus and integrate into the human genome 
[5] (Fig. 1C).

The procedure of HBV integration
During reverse transcription, the HBV DNA polymerase 
utilizes pgRNA as a template to transcribe the minus(-) 
strand DNA. This process involves the generation of 
DNA oligonucleotides (TGAA or GAA), which serve as 
primers for synthesizing the minus(-) strand. These prim-
ers are produced within a ε stem-loop structure located 
at the 3’ terminal of the pgRNA. During the process of 
extending the minus(-) strand DNA, most of the pgRNA 
undergoes degradation mediated by RNase H, except for 
the capped 5’ end of pgRNA. Remarkably, these unde-
graded RNA oligonucleotides play a vital role as prim-
ers for the synthesis of the plus(+) strand DNA. Among 
these fragments, one containing the direct repeat 1 (DR1) 
sequence acts as a primer for the synthesis of the plus(+) 
strand DNA [23–25]. Typically, this primer binds to the 
direct repeat 2 (DR2) region of the newly synthesized 
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minus(-) strand DNA, which is complementary to the 
DR1 segment of the residual pgRNA. This binding guides 
the synthesis of plus(+) strand DNA, resulting in the for-
mation of partially circular rcDNA (90–95%). However, 
if the initiation of the plus(+) strand synthesis occurs in 
situ without binding to the DR2 region (in-situ priming), 
the synthesis of double-stranded dslDNA takes place 
(5–10%) [26]. This small probability of primer transloca-
tion failure might be due to the mutation of DR2 region 
which causing reduced complementarity between DR2 
region and RNA primer [27]. Another study suggests that 

cis-acting elements mutants in HBV genome are related 
to the proportion of dslDNA generation [28, 29].

Since the initial discovery of HBV integration in the 
early 1980s [30, 31], several hypotheses have emerged to 
shed light on the mechanisms underlying this integration 
process [32, 33]. The dslDNA provides HBV DNA frag-
ments that can integrate into the host genome. Upon 
entering the nucleus, dslDNA is inserted randomly into 
hepatocyte chromosomes through DNA repair pathways 
[23]. The oxidative damage caused by hepatitis can induce 
DNA breakages in the host genome, creating breakpoints 

Fig. 1 The structure of HBV DNA genome and HBV life cycle. (A)The schematic diagram of Dane particle. (B)The circular schematic diagram of genotype 
C HBV genome. (C) After HBV Dane particles entering hepatocytes, uncoating takes place and genome is released. RcDNA is repaired to form cccDNA 
which is transcribed to pgRNA and 3.5Kb/3.5Kb/2.4Kb/2.1Kb/0.7Kb transcripts, HBV RNA transcripts are translated into proteins such as HBeAg, Core pro-
tein and HBx protein. Polymerase binds to the pgRNA with the recruitment of Core protein to assemble nucleocapsid and package pgRNA, pgRNA serves 
as the template to reverse transcription synthesize the HBV minus(-)-strand DNA. Polymerase translocates accurately to synthesize the HBV plus(+) strand 
DNA. Polymerase translocates mistakenly results the synthesis of dslDNA and the integration of dslDNA into the host genome
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for the integration process [34–38]. Considering the lim-
ited homologous sequences between viral DNA and the 
human genome, the most likely mechanisms for HBV 
integration are non-homologous end joining (NHEJ) and 
microhomology-mediated end joining (MMEJ) DNA 
repair pathways [38, 39]. These pathways facilitate the 
joining of DNA ends during the repair process, allow-
ing the integration of HBV DNA fragments into the host 
genome. In the NHEJ pathway, DNA breaks lacking sig-
nificant homology undergo modification and subsequent 
ligation, leading to the generation of deletions or inser-
tions [40]. On the other hand, MMEJ pathway is a distinct 
mechanism for end joining that operates separately from 

NHEJ [41, 42]. MMEJ relies on the presence of micro-
homology and utilizes longer stretches of microhomol-
ogy (5–25 bp) compared to NHEJ [41]. Furthermore, the 
dslDNA can undergo circularization through the NHEJ 
DNA repair pathway. However, this process can lead to 
the formation of non-functional molecules due to the 
error-prone nature of NHEJ (Fig. 2) [43].

The breakpoints of HBV integration in the viral 
genome display several distinctive characteristics: (1) 
Integration often takes place near the DR1 or DR2 sites. 
(2) Integrated HBV fragments show a range of sizes, 
varying from 28  bp to 3215  bp. Long integration frag-
ments(> 2000  bp) are observed more frequently than 

Fig. 2 Schematic diagram about synthesis of dslDNA and HBV DNA integration. (A) ε stem-loop structure forms and P protein primes at the ε stem-loop 
structure to form P-ε ribonucleoprotein (RNP) complex. The terminal protein (TP) domain of the P protein binds with the first deoxyribonucleotide in ε 
stem-loop structure near the 5’cap of pgRNA. After the first four(TGAA) or three (GAA) nucleotides of the new minus(-) strand DNA generated in ε stem-
loop structure, the DNA oligo then transferred to DR1 at the 3’end of pgRNA with TP and the synthesis of minus(-) strand starts.(B) pgRNA is degraded 
by RNase H domain of P protein while the minus(-) strand is synthesizing. (C) The DNA oligomer binds to the direct repeat 2 (DR2) region of the newly 
synthesized minus(-) strand DNA to guide the synthesis of plus(+) strand DNA, forming a partially circular rcDNA (90–95%). (D) The RNA primer directly 
initiated in situ without binding to the DR2 region (5–10%), dslDNA will be generated. (E) Inflammation and oxidative stress induce host genomic DNA 
double-stranded breaking, which provides breakpoints for integration through NHEJ or MMEJ
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short ones. (3) It is common to observe small deletions 
within viral sequences at the joining site [16, 38, 44–47]. 
These characteristics highlight the specific patterns and 
variations in HBV integration events within the viral 
genome. Previous studies have shown that HBV has a 
preference for integrating into genic regions such as 
exons, introns, and promoters, as well as gene-rich areas 
[48]. Notably, certain genes such as hTERT, MLL4, and 
CCNE1 have been frequently identified as targets of HBV 
integration [44, 48–52]. This biased selection of integra-
tion sites has been observed in both tumor and adjacent 
tissues with a higher frequency of integration occurring 
in tumor tissues compared to non-tumor tissues [44, 53, 
54]. These findings highlight the specific genomic loca-
tions where HBV integration tends to occur and suggest 
its potential impact on specific genes in both tumor and 
non-tumor tissues.

HBV integration occurs early in infection
The occurrence of integration during the early stages 
of HBV infection has been supported by multiple stud-
ies, which aligns with experimental evidence from cell 
infection models and animal liver infection models. For 
instance, in ducklings experimentally infected with the 
avian hepadnavirus duck hepatitis B virus (DHBV), inte-
grated HBV DNA was detected as early as 6 days post-
infection [55]. Similarly, in the woodchuck infection 
model, integration of woodchuck hepatitis virus (WHV) 
was observed within 1–3  h post-infection, indicat-
ing immediate genomic integration of WHV DNA into 
hepatocytes upon natural viral invasion [45, 56]. These 
findings highlight the early occurrence of HBV integra-
tion and provide valuable insights into the dynamics of 
viral integration in different infection models. More-
over, numerous investigations utilizing primary human 
hepatocytes (PHH), HepaRG-NTCP, HepG2-NTCP, 
and Huh7-NTCP cells have consistently demonstrated 
rapid viral integration after infection [35]. Furuta et al. 
conducted a study using a chimeric mouse model con-
sisting of human hepatocytes infected with HBV, where 
they found that HBV integration could occur between 
23 and 49 days post-infection through MMEJ, primarily 
within mitochondrial DNA [57]. Furthermore, the occur-
rence of integration in acute hepatitis B also suggests 
its early onset following infection [58]. Taken together, 
these findings strongly indicate that integration may take 
place within the host genome during the initial stages of 
hepadnaviral infection. Considering that HBV DNA inte-
gration predominantly occurs during viral replication, it 
becomes crucial to hinder replication at the early stage of 
infection in order to prevent integration.

The integration of HBV DNA and Hepatitis promotes each 
other
Liver damage caused by HBV infection is characterized 
by persistent necrotizing inflammation accompanied by 
immune regulation [59]. Integrations, as an early event 
in HBV infection, are closely associated with ongoing 
immune-mediated inflammatory responses. The oxida-
tive damage to hepatocellular DNA acts as breakpoints 
for dslDNA integration [60]. Multiple studies consistently 
report a positive correlation between the extent of hepad-
navirus integration and oxidative damage [61, 62]. From 
another perspective, HBV-specific cytotoxic T lympho-
cytes (CTLs) selectively target and eliminate hepatocytes 
replicating HBV, leading to the preferential clonal expan-
sion of HBV DNA-integrated hepatocytes that may evade 
the immune response mediated by HBV-specific CTLs 
[47]. Moreover, the integration of HBV DNA can trig-
ger an inflammatory response. Integrated HBV DNA is 
considered a potential source of HBsAg, which is derived 
from both a 2.1Kb transcript and mRNA transcribed 
from integrated HBV DNA. The presence of HBsAg plays 
a crucial role in the pathogenesis of hepatitis [63]. It is 
widely recognized that elevated production of HBsAg 
contributes to T cell exhaustion, resulting in restricted or 
impaired T cell responses and even the elimination of T 
cells recognizing specific epitopes [64, 65]. Additionally, 
CD205 has recently been identified as a pivotal receptor 
involved in the capture of CpG-oligodeoxynucleotides 
in vivo. The enhanced expression of CD205 on Kupffer 
cells in HBsAg-transgenic mice may be attributed to mild 
inflammation associated with HBsAg [66, 67]. In previ-
ous consensus, cccDNA has been acknowledged as the 
primary transcriptional template for HBsAg production 
[68, 69]. This hypothesis is further supported by evidence 
documented in chimpanzees with chronic HBV infection 
[70]. A dynamic observation using liver biopsy speci-
mens from CHB patients revealed that individuals with 
HBV S gene integration experienced a slower decline in 
serum HBsAg levels compared to those without such 
integration following prolonged therapy [71]. This find-
ing highlights the diverse origin of HBsAg. Researchers 
from Switzerland, based on liver biopsies obtained from 
HBe(-) patients, discovered that transcriptionally active 
integrated HBV DNA can autonomously generate HBsAg 
without relying on HBV replication [72]. This result may 
explain why serum HBsAg level is much less correlation 
with HBV DNA in HBe(-) patients with a very low HBV 
replication state.

The interaction between HBV DNA integration and 
hepatitis is complex, as they mutually reinforce each 
other through immune responses starting from the early 
stages of HBV infection, ultimately leading to the devel-
opment of HCC.
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Examination and research models for HBV 
integration
With the progress of high-throughput sequencing tech-
nologies, different strategies have been implemented 
to enable a more precise investigation into the implica-
tions of the integration process. These strategies aid in 
the detection of integrated viral DNA within the host 
genome. The unique features of each strategy are summa-
rized in Table 1.

Examination methods based on DNA hybridization
The integration of HBV was initially detected in HCC 
patient tissue and the PLC/PRF/5 cell line in 1980 
through Southern Blot hybridization using HBV as a 
probe31. It was observed that most integration events 
took place at the nicked cohesive end region of HBV 
DNA. Moreover, Northern blot analysis revealed the 
presence of specific transcripts of HBsAg even in the 
absence of HBcAg [73]. Following these discoveries, the 
Southern Blot hybridization technique was employed to 
detect viral integration within the host cell genome [2, 
74]. Subsequent investigations progressively unveiled the 
integration of HBV DNA in liver tissues of patients with 
HBV-related conditions such as HCC, acute HBV hepa-
titis, chronic HBV infection, and HBV-related liver cir-
rhosis [2]. These findings highlight use of Southern Blot 

hybridization as a valuable tool in studying viral integra-
tion. In addition to this approach, in situ hybridization 
based on the same principle as Southern Blot hybridiza-
tion was utilized to identify the chromosomal sites of 
HBV DNA integration [75]. Subsequently, Fluorescence 
In Situ Hybridization (FISH) emerged as a more sensitive 
and specific method for detecting integrated HBV DNA, 
replacing the previous techniques [76, 77].

Examination methods based on PCR amplification
Recombinant plasmid vectors were utilized for the direct 
cloning of virus-cell junctions, allowing for a comprehen-
sive examination of integrated HBV DNA fragments [78]. 
However, the presence of diverse virus-cell junctions 
poses significant challenges in achieving accurate and 
sensitive detection of HBV integration.

The detection of virus-cell junctions has been made 
possible through the development of various PCR-based 
strategies, including the Arthrobacter luteus-PCR(Alu-
PCR) [95]. Alu elements, which are short interspersed 
nuclear elements (SINEs), are widely distributed through-
out primate genomes and can be found in approximately 
1,000,000 copies per human genome [96]. By utilizing a 
combination of HBV and Alu repetitive element primers, 
it is possible to amplify and sequence fragments of virus-
cell DNA junctions [71, 97, 98]. However, Alu-PCR has 

Table 1 Detection methods of HBV DNA integration
Technique Suitable uses Advantages Limitations References
Southern blot 
hybridization and 
FISH

Detection of the existence of HBV 
DNA integration in highly ampli-
fied clonal hepatocytes.

Low cost. No sequence information.
Dependent on restriction enzyme sites.
Low sensitivity.
Possibility of radioactivity.

[31, 79, 80]

Alu-PCR Sequencing the detected integra-
tion in highly amplified clonal 
hepatocytes.

Low cost.
Detection of integrated 
HBV DNA and adjacent cel-
lular DNA sequence.

Detection of HBV integration near Alu 
sequences.
Dependent on Alu sequences.
No integration quantification.

[52, 81, 82, 
83]

Inverse nested PCR Detection of HBV DNA integrations 
and virus–cell junctions.

Quantification of 
integration.
High selectivity and 
sensitivity.
Low cost.

Dependent on restriction enzyme sites for 
detection of virus–host DNA junction.
Detection of integrations that occur between 
nucleotides ~ 1650 and ~ 1850 of viral genome.

[16, 84, 85, 
86]

Direct cloning and
Sanger sequencing

Detection of HBV DNA integra-
tion in liver samples with highly 
expanded hepatocyte clones.

Detection of integrated 
HBV DNA and adjacent cel-
lular DNA sequence.

Low throughput. [44, 87]

Whole genome 
sequencing
(WGS)

Sensitive and comprehensive in 
the identification of viral integrates 
across the human genome.

Full genome coverage. High cost.
Low depth.

[88, 89]

Whole-exome 
sequencing

Detection of HBV integration in 
coding regions.

Greater depth than WGS. Only detection of coding region. [90, 91]

Capture-enriched 
next generation 
sequencing

Targeted enrichment of integrated 
HBV DNA and sequencing.

Cost-effective compared 
with WGS.
Quicker and less laborious 
than PCR-based methods
High-throughput.

Lower sensitivity and specificity than PCR-
based methods.

[92, 93, 94]

RNA sequencing Detection the integrations in 
transcriptome.

Greater depth than WGS. Only detection of expressed coding regions.
Biased towards more highly expressed genes.

[88, 91, 94]
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limitations in detecting HBV integrated fragments that 
are located far from the Alu repeat sequence or accu-
rately quantifying the integration junctions.

In addition to Alu-PCR, another technique called 
inverse nested PCR (invPCR) can be employed for ampli-
fying virus-cell DNA junctions. This method provides an 
alternative approach to detect and analyze these junc-
tion fragments. In 1995, Gong et al. successfully detected 
DR-related integrations of wild-type DHBV in LMH-D2 
cells using inv PCR, which introduced a novel protocol 
for detecting and characterizing integrations of DHBV 
derived from episomal viral DNAs [99]. This strategy was 
primarily designed to selectively amplify virus-cell DNA 
junctions near the DR sequences, as these DR sequences 
are recognized as preferred integration sites for hepad-
naviral DNA [23, 45, 55, 99, 100]. To detect integrations 
in or near hypothetical sites, high-molecular-weight liver 
DNA was cleaved by restriction endonucleases specifi-
cally targeting and cleaving HBV DNA and host DNA 
at unknown sites. Subsequently, the DNA was circular-
ized using T4 DNA ligase and further cleaved by another 
restriction endonuclease, resulting in the generation of 
linear strands. Within these strands, the viral-cellular 
DNA junctions were located internally, with viral frag-
ments present at both termini. These fragments were 
then amplified through nested PCR utilizing virus-spe-
cific primers [16, 84]. This technique has been widely 
employed for the detection of integrated HBV DNA due 
to its high sensitivity and specificity [101–103]. However, 
it is important to note that this method can only detect 
DNA sequences in close proximity to the junctions and is 
heavily reliant on restriction endonucleases [47].

Examination methods based on high-throughput 
sequencing technology
Whole-genome sequencing (WGS) and whole-exome 
sequencing (WES) are two widely used next-generation 
sequencing (NGS) methods that have found extensive 
applications in various areas of virology research. NGS 
offers several advantages, including the elimination of 
the need for prior viral DNA information and improved 
sensitivity in detection. WGS allows comprehensive 
coverage of host genomes, enabling the identification 
of viral sequences [104]. On the other hand, WES pro-
vides greater depth than WGS Nanopore sequenc-
ing, but it focuses solely on coding regions 91. However, 
deep sequencing with significant insertions or deletions 
remains challenging due to the intrinsic error-prone 
nature and limited length of the generated sequence 
reads [105]. In recent years, the field of third-genera-
tion sequencing technology has witnessed a remarkable 
advancement, offering inherent advantages in exploring 
complex genomic rearrangements [106]. This technol-
ogy allows the generation of complete HBV genomes in 

a single sequencing read, facilitating the investigation 
of intricate and diverse distribution patterns of rapidly 
mutating viral genomes [107]. By combining third-gener-
ation sequencing with the analysis of biological informa-
tion, a deeper understanding of HBV integration can be 
achieved [106].

Research models for HBV DNA integration
Comprehensive investigations into HBV integration face 
challenges due to the limited availability of human non-
tumor liver tissues at all stages of HBV infection, espe-
cially compared to HCC tissues. Additionally, the scarcity 
of suitable models for studying HBV infection further 
hampers research on HBV integrations. To overcome 
these limitations, several in vitro studies have utilized 
PHH, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP 
cells to investigate the mechanisms and timing of HBV 
DNA integration [35, 57, 77]. These cell-based mod-
els offer valuable insights into HBV integration. Fur-
thermore, other hepadnavirus-infected animal models 
have also contributed significantly. For example, studies 
using ducklings infected with DHBV and woodchucks 
infected with WHV have provided important contribu-
tions to our understanding of HBV integration [45, 55, 
56]. These animal models offer insights that complement 
the in vitro studies and enhance our overall understand-
ing of HBV integration. Since HBV integration in both 
genomic DNA and RNA transcripts was observed in 
various cell lines including HepG2.2.15, HepAD38, PLC/
PRF/5, DE19, MHCC97H, MHCC97L, MHCCLM3 cells 
as well as Huh1 and Hep3B cells, [88, 92, 93] therefore, 
HBV-related HCC cell lines could also be utilized as the 
cell model for HBV integration. Animal infection mod-
els, including chimpanzees, human liver chimeric mice, 
Tupaia, and hNTCP-expressing macaques, have been uti-
lized to study HBV infection. These models demonstrate 
susceptibility to chronic HBV infection and can generate 
clonally expanded hepatocytes that contain integrated 
viral DNA [17, 108–110].

HBV DNA integration induces HCC
Previously, it was suggested that integrated HBV DNA 
had no discernible function due to its random distribu-
tion and lack of requirement in HBV replication. How-
ever, over the past decade, numerous studies have shown 
the significant impact of HBV DNA integrations on both 
HBV infection and carcinogenesis (Fig.  3) [5, 6, 32, 36, 
46, 52, 101, 99, 111–121]. Therefore, conducting more 
research to understand the relationships between inte-
gration translocations in host genes, fragments of HBV 
genome, and carcinogenetic mechanism of integra-
tion are of great clinical significance [112]. The integra-
tion of HBV DNA into the host genome is an early event 
that precedes clonal tumor expansion [122, 123] and the 
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presence of integration events indicates their potential 
role as precursors to tumor development in patients with 
chronic hepatitis and during the acute infection stage [35, 
58, 124, 125]. HBV DNA integration primarily contrib-
utes to HCC through three mechanisms: (1) modulation 
of the expression or function of proto-oncogenes and 
tumor suppressor genes, (2) induction of chromosomal 
instability, and (3) expression of integrated mutant HBV 
proteins [54].

HBV DNA integration modulates cancer-related genes
The integration of HBV in the human genome was 
observed to have a distinct distribution pattern in tumors 
compared to non-tumor tissues, with a tendency for 
enrichment around cancer driver genes [118]. The chro-
mosomal locus 11q13.3 has a significant tendency to 
serve as a recurring site for HBV integration [126]. This 
specific genomic region contains crucial oncogenic 
driver genes, namely CCND1 and FGF19, which are fre-
quently amplified in HCC [127]. Additionally, the expres-
sion levels of cancer-associated genes, such as hTERT, 
KMT2B, MLL4, CCNE1 and PAK3, were found to be up-
regulated in tumor tissues compared to their correspond-
ing normal counterparts [44, 128, 129]. Telomeres, which 
enhance telomerase activity, play a crucial role in main-
taining genome stability. Additionally, the upregulation of 
hTERT has been extensively reported [130]. Furthermore, 
studies investigating hTERT integration sites have shown 
that HBV DNA integration at the hTERT promoter is piv-
otal in the overexpression of the hTERT gene [131, 132].

Integration events involving mitochondrial DNA have 
been identified in tissue samples obtained from both 
tumor and non-tumor areas of HCC patients. This new 
finding highlights mitochondrial DNA as a newly recog-
nized target of HBV integration, causing mitochondrial 

instability and dysfunction. Consequently, this contrib-
utes to the development and progression of HCC [133]. 
In a recent study, the coexistence of two distinct HCC 
subtypes was observed in a patient with HBV infection, 
with no identical integration sites detected. This finding 
suggests that the multicentric occurrence of HCC may be 
attributed to diverse HBV DNA integration events [120].

HBV DNA integration induces chromosomal instability
Chromosomal instability is a fundamental character-
istic of human cancer, and it is closely associated with 
unfavorable prognosis, metastasis, and resistance to 
therapeutic interventions [134]. The breakpoints of 
HBV integration have been found to be correlated with 
an increased level of copy-number variation [44]. This 
observation highlights the potential contribution of HBV 
integration to the chromosomal instability observed in 
the HCC genome [38, 53].

One study suggests that HBV has a preferential integra-
tion site in the human genome, particularly fragile sites 
and CpG islands [38]. These are regions of the genome 
that are prone to rearrangements and genetic altera-
tions, which can lead to the development of cancer. HBV 
integration into these regions can also lead to epigenetic 
instability, which can further contribute to the develop-
ment of HCC [135]. Additionally, HBV integration events 
were observed to be enriched in the proximity of telo-
meres, which play a crucial role in maintaining genome 
stability. Dysfunction of telomeres can lead to extensive 
DNA rearrangements, deletions, and amplification, all of 
which are commonly associated with the development of 
cancer [136].

Fig. 3 Schematic diagram of HBV DNA integration from chronic HBV infection to hepatocellular carcinoma. (A) Initially HBV DNA randomly integrates 
into host genome. (B) The infected hepatocytes are eliminated by host immune response. Infected hepatocytes with favorable integrations survive and 
clonally expand. (C) Hepatocytes with integrations expand. When integration happens near/into HCC-related genes, HCC initiating cells may occur. (D) 
HCC initiating cells expand and HCC cells with carcinogenetic integrations appear. (E) HCC cells with carcinogenetic integrations expand leading to the 
development of HCC
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HBV DNA integration expresses truncated HBV proteins
Truncated HBs and HBx proteins, derived from inte-
gration fragments of HBV DNA, are recognized as sig-
nificant contributors to the development of HCC [137]. 
Truncated preS2/S sequences within hepatocytes, com-
monly observed in integrated HBV DNA, have been 
implicated in promoting HCC progression through mul-
tiple pathways [138–140]. The accumulation of truncated 
mutant HBsAg induces endoplasmic reticulum stress, 
leading to the generation of reactive oxygen species, 
oxidative stress, and DNA damage [141]. Moreover, the 
down-regulated expression of TGFBI induced by trun-
cated HBsAg in the TGF-β/Smad signaling pathway also 
contributes to carcinogenesis [142]. Additionally, the 
truncated S protein impedes the G1/S phase cell cycle 
checkpoint by suppressing the expression of the p53-p21 
axis [143]. Multiple truncated HBx proteins, particularly 
those with C-terminal truncation (ct-HBx), have been 
identified to exert diverse functions in HCC, including 
the induction of stem cell-like characteristics, inhibition 
of apoptosis, and promotion of HCC invasion and metas-
tasis [144–150].

The incidence of HCC is significantly higher in males 
compared to females, with a ratio of approximately 4:1 
but the reasons for the gender bias are unclear. Some 
certain integration sites of HBV can be identified as 
human somatic risk loci for HBV integration (VIMs). 
The enriched transcription factors in VIMs are involved 
in DNA repair and the androgen receptor (AR) signal-
ing pathway. There are significant interactions between 
the AR pathway and the complement system. These 
interactions, along with the X-linked ZXDB regulon that 
includes albumin (ALB), may contribute to the male pre-
dominance observed in HCC [151]. However, additional 
research is required to confirm the association between 
HBV integration and male predominance in HCC. Fur-
thermore, studying the underlying mechanisms of inte-
grated HBV DNA in promoting HCC can aid in the 
development of more targeted therapeutic strategies for 
HCC and provide novel biomarkers for monitoring its 
occurrence.

The quest for non-invasive biomarkers in HBV DNA 
integration during HCC development
Until now, the quantification of integrations has predom-
inantly been conducted in liver tissues. However, liver 
biopsy is an invasive procedure associated with inher-
ent risks. Alternative biomarkers such as serum levels of 
HBV core-related antigen (HBcrAg) and HBV RNA may 
serve as indicators of transcriptional activity specific to 
cccDNA, as they are expected to be exclusively generated 
from cccDNA rather than integrated HBV DNA due to 
the absence of a promoter that initiates core RNA tran-
scription [22, 152–154]. Therefore, further investigation 

is needed to identify specific serum biomarkers for HBV 
DNA integration. Cell-free DNA (cfDNA) is an emerging 
noninvasive blood biomarker that is used to assess tumor 
progression, evaluate prognosis, diagnose diseases, and 
monitor response to treatment [155]. Recent studies have 
reported the detection of HBV integration in circulat-
ing cfDNA from both HCC and liver cirrhosis patients’ 
plasma [89]. Since cfDNA primarily originates from 
dying tumor cells, the release of cfDNAs from non-HCC 
liver tissues is considerably lower compared to HCC 
liver tissues [156]. As a result, cfDNA is more suitable 
for monitoring HBV integration in HCC development. 
In a study on the early recurrence of HCC after surgi-
cal resection, researchers found that plasma virus-host 
chimera DNA (vh-DNA) could serve as a biomarker for 
detecting residual tumor cells and predicting recurrence 
[94]. Detecting sequence-unknown vh-DNA directly 
from cfDNA requires a sensitive NGS approach with a 
standardized workflow and appropriate cutoff values, 
along with a population study to ensure sensitivity and 
specificity, incorporating known tumor-related somatic 
mutations [157].

The importance of early intervention
HBV DNA integration has the potential to generate a 
portion of HBsAg and contribute to HCC development, 
making early intervention for HBV infection crucial. 
While NAs may not eradicate integrated HBV DNA, 
initiating treatment at an early stage can reduce the 
occurrence of integrations, potentially reducing onco-
genic mutations. The continuous suppression of the 
virus through effective treatment significantly lowers the 
risk of oncogenic mutations. Functional cure, achieved 
through sustained virus suppression, greatly diminishes 
the likelihood of carcinogenic mutations. The elimination 
of cccDNA, the viral reservoir in hepatocytes, is essen-
tial in preventing HBV reactivation and relapse. The ulti-
mate objective in managing HBV infection is to achieve 
a sterilizing cure, which involves the complete eradica-
tion of cccDNA and integrated HBV DNA from the host 
genome. Strategies aimed at accomplishing this goal 
include utilizing antiviral agents that specifically target 
and eliminate integrated HBV DNA from the host cells.

The slow decline, or no decline of serum HBsAg levels 
during NAs treatment may be due to the ongoing pro-
duction of HBsAg from integrated HBV DNA, particu-
larly in HBeAg-negative patients [158]. Recent studies 
have confirmed the presence of integrant-derived RNAs 
(id-RNAs) and 5’-human-HBV-3’ transcripts originat-
ing from integrated HBV DNA in serum [159]. Initiating 
treatment at an early stage may enhance the likelihood of 
achieving a functional cure by reducing HBV DNA inte-
gration. Additionally, quantifying integrations in these 
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patients can help identify factors that contribute to the 
slow clearance of HBsAg.

Exploring strategies for HBV DNA integration 
inhibition and elimination: current progress and 
future directions
The integration of HBV DNA can contribute to both neo-
plasia and a portion of HBsAg production. The elimina-
tion of integrated HBV DNA is also regarded as a critical 
measure for achieving complete eradication of HBV [1]. 
Inhibiting HBV DNA integration at an early stage holds 
immense importance and has consistently garnered sig-
nificant attention from researchers in this field [160, 161]. 
The efficacies of current strategies to eliminate HBV 
DNA integration are concluded in Table 2.

The commonly used treatment, such as NAs, has been 
recognized for its efficacy in inhibiting the production of 
integrated HBV DNA [71]. NAs are effective in suppress-
ing HBV replication, thereby reducing the generation 
of integrated viral DNA resulting from viral replication. 
After entecavir (ETV) treatment, the pattern of HBV 
integration appears to be more random and irregular, 
potentially contributing to a decreased risk of HCC [162]. 
In a recent study, researchers procured liver tissue speci-
mens from individuals diagnosed with chronic hepatitis 
B before the initiation of NAs treatment. Subsequently, 
they obtained liver tissue samples from the same individ-
uals after five and ten years of continuous NAs treatment. 
This longitudinal analysis revealed a gradual reduction in 

the frequency of HBV integration events within the liver 
tissue over the specified treatment durations [167]. A 
plausible mechanism underlying this phenomenon is that 
NAs effectively suppress viral replication, while concomi-
tant normal hepatocyte regeneration results in the grad-
ual dilution of the frequency of viral integration events. 
However, it is important to note that NAs do not have 
any effect on eliminating cccDNA or integrated DNA [79, 
168].

In comparison to NAs treatment, therapies that tar-
get innate immunity, such as IFN-α, are more likely to 
possess the potency to eliminate cccDNA [192]. This 
therapeutic approach has shown success in inducing a 
functional cure among a minority of patients with CHB 
in clinical settings [193]. Reports indicate that patients 
who are functionally cured and exhibit intrahepatic 
HBsAg possess higher levels of integrated HBV DNA 
than those without intrahepatic HBsAg. Interestingly, 
a certain subset of these patients maintains transcrip-
tional activity of the integrated viral DNA [170, 171]. 
Utilizing spatial transcriptome sequencing, it was found 
that transcriptionally active HBV integration is relatively 
low in patients who have cleared HBsAg. In addition, 
there’s a close correlation between the level of intrahe-
patic cccDNA and virus integration events [194]. IFN-α 
has been shown to indirectly reduce the synthesis of 
pgRNA, which is vital for HBV DNA integration. Never-
theless, research is currently scant on whether IFN-α can 

Table 2 Efficacies of current strategies for HBV DNA integration inhibition and elimination
Treatment 
Strategies

Mechanism of antiviral 
treatment

Effect on integrat-
ed DNA

Advantages Limitations Refer-
ences

NAs Inhibit HBV DNA polymerase, 
reducing viral replication.

Indirect effect: 
Suppress further 
integration events.

Effective in suppressing HBV 
replication.
Gradually reduce the frequency 
of HBV integration events.

Do not eliminate cccDNA or 
integrated DNA.
Risk of drug resistance over 
prolonged use.

[162–
169]

IFN-α Enhance the host immune 
response.
Reduce the synthesis of 
pgRNA.

Indirect effect: 
Reduce new integra-
tion events.

Induce a functional cure in a 
minority of patients.
Reduce the synthesis of pgRNA.

Limited effect on eliminating 
integrated HBV DNA.
Associated with significant 
side effects and variable 
patient response.

[82, 
169–
171]

CRISPR/Cas9 Use guide RNAs to target 
and cleave specific HBV DNA 
sequences, including those 
within integrated DNA.

Direct effect: Spe-
cifically target and 
cleave integrated 
HBV DNA.

Potential to eliminate both cccD-
NA and integrated HBV DNA.

Risk of off-target effects and 
genome instability.
Limited clinical application 
due to safety and delivery 
challenges.

[172–
177]

RNAi Use siRNAs to degrade viral 
mRNA, reducing the produc-
tion of viral proteins and 
replication intermediates.

Indirect effect: Low-
ers the levels of viral 
mRNA and proteins.

Downregulate viral mRNA, 
reducing viral proteins, RNA, 
and DNA.
Can lead to a reduction in inte-
grated HBV DNA.

Do not directly affect cccDNA.
Long-term efficacy and safety 
remain uncertain.

[70, 
172, 
178–
183]

ZFNs and TALENs Engineered nucleases that can 
be designed to target specific 
DNA sequences, including 
those within HBV integrations.

Direct effect: Induce 
double strand 
breaks at specific 
sites in the integrat-
ed HBV DNA.

Show potential in manipulating 
HBV cccDNA in cellular models.
May help reduce integration 
events.

Early-stage research with 
limited clinical data.
Potential off-target effects and 
technical complexity.

[184–
191]
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completely eliminate integration. Thus, further explora-
tion in this field is warranted.

The utilization of CRISPR/Cas9 has shown effective-
ness in eliminating both HBV cccDNA and integrated 
HBV DNA [15, 176]. When selecting target sequences, 
it is important to optimize them to maximize the elimi-
nation of viral genes while minimizing potential damage 
to the human genome [195]. Following this principle, 
sequence design could focus on targeting the full-length 
3,175-bp HBV DNA sequence [174]. Additionally, studies 
have explored targeting specific open reading frames of 
HBV, such as the S and X regions [175]. Both approaches 
hold promising potential for achieving a radical cure. 
However, the clinical application of CRISPR/Cas9 tech-
nology is currently limited due to factors like off-target 
cleavage and the risk of inducing genome instability 
when cutting integrated HBV DNA. A recently devised 
technique, involving the concurrent administration of 
Cas9 mRNA and guide RNAs, demonstrates its effi-
cacy in modifying HBV integration DNA in mouse and 
tree shrew models, exhibiting a notable absence of liver 
enzyme elevation and minimal off-target effects [177]. A 
separate study put forth the hypothesis that pre-existing 
viral integrations within clonal HBV-infected hepato-
cytes could be eliminated during liver damage in patients 
with CHB. The researchers observed a negative correla-
tion between the types and frequencies of breakpoints 
and the grade score for liver inflammation activity, pro-
viding support for this hypothesis [196].

It is intriguing to note that the majority of HBV tran-
scripts show consistent termination sites within the 
viral genome, creating a unique opportunity to leverage 
RNA silencing mechanisms [70, 197]. RNA interference 
agents have emerged as a novel strategy for eradicating 
integrated DNA, with the potential to comprehensively 
influence the viral life cycle by downregulating all virus-
generated mRNA [158]. One such agent, ARC-520, has 
shown promising results in reducing viral proteins, RNA, 
and DNA, leading to a surprising decrease in integrated 
HBV DNA in both chimpanzees and patients. However, 
it does not directly affect cccDNA [182].

Zinc-finger nucleases (ZFNs) or transcription activa-
tor-like effector nucleases (TALENs) have shown poten-
tial in manipulating HBV cccDNA in cellular models, 
which may help attenuate integration events [15, 161]. 
As our knowledge of cccDNA formation continues to 
grow, future therapeutic strategies could target nuclear 
enzymes, histones, and other essential components that 
play a crucial role in cccDNA generation [22].

Conclusion
HBV integration refers to the insertion of DNA frag-
ments derived from HBV into the human genome [119]. 
The integration of HBV DNA into the human genome 

has been extensively studied, revealing its confirmed 
carcinogenic potential in various experimental models. 
While integration events occur early during HBV infec-
tion, their exact role in the development of HCC is yet to 
be fully verified.

In the future, the establishment of comprehensive 
animal models that encapsulate the entire HBV infec-
tion process is pivotal. Such models will afford a more 
nuanced exploration of the ramifications of integrated 
HBV DNA on the hepatocytic transformation into a 
carcinogenic phenotype. Moreover, the development of 
pragmatic and cost-efficient methodologies for detecting 
integrations, coupled with the identification of pertinent 
serological markers denoting their presence, will signifi-
cantly augment our capacity to appraise the potential for 
attaining a functional cure.

Furthermore, given that integrated HBV DNA con-
tributes to the production of HBsAg and may impede 
the realization of a functional cure, prospective research 
should concentrate on discerning novel serological mark-
ers that more accurately signify the presence of integra-
tions. This is particularly imperative in patients subjected 
to NAs treatment, where the absence of correlation 
between HBsAg levels and serum HBV DNA poses chal-
lenges in monitoring the efficacy of antiviral therapy.

Moreover, for the advancement of the field, the priori-
tization of clinical trials assessing the efficacy of diverse 
treatments in expediting the clearance of HBV integra-
tions is essential. The exploration of innovative thera-
peutic modalities tailored specifically to target integrated 
HBV DNA will be instrumental in achieving comprehen-
sive elimination. Thus, forthcoming research endeav-
ors should be strategically oriented toward these pivotal 
domains to unravel the intricacies of HBV DNA integra-
tion and pave the way for more efficacious therapeutic 
interventions.
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