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Abstract

Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies
worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is antici-
pated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based
immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer
engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the abil-
ity of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well

as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our
attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications

of NK cells in the immunotherapy of patients with NHL.
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Introduction

B-cell non-Hodgkin lymphoma (NHL) collectively rep-
resents the most common type of hematologic malig-
nancy [1]. While advances in chemotherapy, monoclonal
antibodies, and stem cell transplantation have improved
survival rates, many NHL patients remain resistant to
therapy or experience relapse. This highlights the neces-
sity for finding novel curative therapeutic options for
these patients [2-4].

Recently, novel therapeutic approaches, such as chi-
meric antigen receptor (CAR)-T cell therapy, have been
utilized in several clinical trials for patients with relapsed/
refractory (R/R) B-cell NHL, resulting in promising clini-
cal responses [5-7]. However, this therapeutic approach
is expensive and associated with unique and severe
side effects such as cytokine release syndrome (CRS),
immune effector cell-associated neurotoxicity syndrome
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(ICANS), and graft-versus-host disease (GVHD) in allo-
genic settings [8, 9]. Other immune cells, such as natu-
ral killer (NK) cells, which exhibit significant cytotoxic
activity against cancer cells and possess a safer immune
profile, can be used as alternative approaches for immu-
notherapy of patients with R/R NHL. Moreover, it is also
feasible to equip NK cells with a CAR structure [10, 11].
This study will delve into the B-cell NHL tumor micro-
environment (TME) and the interaction between NK
cells and malignant cells. Additionally, we provide a com-
prehensive review of clinical trials focused on the utiliza-
tion of NK cells in patients with R/R NHL. Finally, new
approaches recently used to increase NK cells effective-
ness for B-cell NHL immunotherapy are summarized.

NK cells: biology, receptors, and functions

NK cells, a specialized subset of innate lymphoid cells
(ILCs), can distinguish between self-cells and non-self-cells
through the recognition of self-major histocompatibil-
ity complex (MHC) I molecules [12, 13]. They constitute
approximately 10-15% of the lymphocyte population in
peripheral blood, and characterized as large granular lym-
phocytes with kidney-shaped nuclei, a high cytoplasm-to-
nucleus ratio, and large azurophilic granules in cytoplasm
[14, 15]. NK cell development and maturation primarily
occur in the bone marrow, where common lymphoid pro-
genitors (CLPs) differentiate into NK precursors (NKPs),
immature NK cells, and finally mature NK cells [12]. Nota-
bly, recombinant interleukin (rIL)-15 plays a crucial role in
NK cell development from hematopoietic stem cells [16]. In
humans, CD122 expression on NKPs is crucial for NK cell
lineage commitment, and CD56 expression is a final step in
the differentiation of NKPs into NK cells [17]. NK cells are
typically identified by the expression of CD56 and CD16,
and the absence of CD3 (T cell marker) [18].

Human NK cells can be classified into two main subsets:
the CD56"8"t subset, which is characterized by immaturity,
limited cytolytic activity, but high cytokine production; and
the CD564™ subset, which is mature, exhibits higher cytol-
ytic activity, but lower cytokine production [19].

NK cells are equipped with various germline-encoded
activating and inhibiting receptors [20]. The function of
NK cells is delicately regulated by the balance of the acti-
vating and inhibitory signals that are transmitted through
their receptors [21]. Table 1 provides an overview of NK
cell receptors.

NK cells express the HLA-specific activating receptors
such as KIRs/CD158 (2DS1-2DS5 and 3DS1), NKG2C,
and NKG2E. NKG2C and NKG2E are expressed as het-
erodimers with CD94. Upon interaction with HLA-E,
they transmit activating signals through the DNAX-acti-
vation protein (DAP)-12 adaptor molecule [22-24]. The
natural cytotoxicity receptors (NCRs) including NKp46,
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NKp44, and NKp30 are the major non-HLA specific
activating NK receptors, which evoke an immune
response upon detection of cognate viral and cellular
ligands [20, 25]. NKG2D is another non-HLA-specific
activating NK cell receptor [26]. The UL16-binding pro-
tein (ULBP) and MHC class I chain-related proteins A
and B (MICA/B), which are increased in the tumor,
stressed, and infected cells, are representative of NKG2D
ligands [27]. Additionally, some other molecules, such
as 2B4, NTB-A, CD59, NKp80, and DNAX accessory
molecule-1 (DNAM-1), are essentially coreceptors; in
fact, they can intensify the NK cell triggering induced
by NCRs or NKG2D (See Table 1) [28-32]. NK cells are
also equipped with the CD16a (FcyRIlla, a low-affinity
Fc), which plays a crucial role in their antibody-depend-
ent cell-mediated cytotoxicity (ADCC) effector function.
It is worth noting that CD16 is the only receptor that can
activate NK cells without the need for further activation
from other receptors [33].

Besides activating receptors, NK cells express inhibi-
tory receptors that modulate the strength of activat-
ing receptors and contribute to regulating immune
responses and tolerance [34]. The CD94/NKG2A (CD9%4/
CD159a) heterodimer and members of the KIR/CD158
family are two distinct classes of HLA-specific inhibitory
receptors [35, 36]. The LIR-1/ILT2/CD85 is an inhibi-
tory receptor with broad specificity for both classical
and non-classical MHC molecules [37-39]. Program-cell
death receptor 1 (PD-1), Sialic acid recognizing Immu-
noglobulin-like Lectins (Siglecs)/p75/AIRM1/CD328,
leukocyte-associated immunoglobulin-like receptor-1
(LAIR-1)/p40/CD305, and IRp60/CD300a known as
another non-HLA-specific inhibitory receptor that ham-
per NK cell-mediated antitumor immunity through the
recognition of different ligands on the surface of cancer-
ous cells (See Table 1) [40, 41].

NK cells have diverse functions, including their natural
antitumor and antiviral activities, as well as their regula-
tory roles in modulating immune responses and promot-
ing tissue growth. They are abundant in the TME, where
they kill cancer cells in a variety of ways [21]. The anti-
tumor functions of NK cells include missing self-mech-
anisms, direct cytotoxicity, and activation of adaptive
immune responses (Fig. 1) [42-47].

TME in NHLs: composition and functions

The development of B-cell lymphoma involves an intri-
cate interplay between tumor cells and the surrounding
TME (Fig. 2). The microenvironment in B-cell lymphoma
is fascinating because it has crucial functions in regulat-
ing the survival and growth of tumor cells, promoting
immune evasion, and contributing to the development of
resistance to treatment [48-52]. It is worth mentioning
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Receptors Molecular structure CD marker Ligand (s)
Activating receptors
HLA-specific activating receptors Immunoglobin superfamily
(1) Killer immunoglobin receptors (KIRs)
- KIR2DS1 CD158h HLA-C2
- KIR2DS2 CD158j HLA-C1
- KIR2DL4 CD158d HLA-G
- KIR2DS5 CD158g ?
« KIR3DS1 CD158e2 HLA-F
(I1) CD94/NKG2 C-type lectin family
NKG2C CD159c¢ HLA-E
NKG2E CD159%e ?
Non-HLA-specific activating receptors
() Natural cytotoxicity receptors (NCRs) Immunoglobin superfamily
« NKp46 (NCRT1) CD335 Heparin, viral HA and HN
+ NKp44 (NCR2) CD336 viral HA and HN, NKp44L, PCNA
+ NKp30 (NCR3) CD337 B7-H6, BAT3, viral HA
(Il) NKG2D C-type lectin CD314 MIC-A, MIC-B, ULBP
(1) Coreceptors
- 2B4 Immunoglobin superfamily CD244 SLAMF2 (CD48)
«NTB-A Immunoglobin superfamily CD352 NTB-A
« DNAM-1 Immunoglobin superfamily CD226 PVR (CD155), Nectin-2 (CD112)
+ NKp80 C- type lectin-like family - AICL
(IV) FeyRlll Immunoglobin superfamily CcD16 IgG1,19G2, 1gG3
Inhibitory receptors
HLA-specific inhibitory receptors
(I) Killer immunoglobin receptors (KIRs) Immunoglobin superfamily
+ KIR2DL1 CD158a HLA-C2
- KIR2DL2 CD158b HLA-C1
« KIR2DL3 CD158b2 HLA-C1
« KIR2DL5 CD158F ?
- KIR3DL1 CD158e HLA-Bw4
+ KIR3DL2 CD158k HLA-A3, A1
(I1) CD94/NKG2 C-type lectin family
« NKG2A CD158a HLA-E
() Other
- LIR-1(ILT2) Immunoglobin superfamily CD85 ?
Non-HLA-specific inhibitory receptors
() PD-1 Immunoglobin superfamily CcD279 PD-L1/PD-L2
(I Siglec7/p75/AIRM1/ Immunoglobin superfamily CD328 Sialic acid
(1) LAIR-1/p40 Immunoglobin superfamily CD305 Collagen, C1q, SP-D, ADP
(IV) IRp60 Immunoglobin superfamily CD300a ?

HN Hemagglutinin neuraminidases, PVR Poliovirus receptor, AICL Activation-induced C-type, SP-D Surfactant protein D, ADP Adiponectin, PCNA Proliferating cell
nuclear antigen, SLAMF2 Signaling lymphocytic activation molecule 2, MIC MHC class | chain-related protein, ULBP UL16 binding protein 1

that different cells within the TME can display pro-
tumorigenic or anti-tumorigenic functions, as shown in

Table 2.

Intratumoral T lymphocytes constitute 50% of the total
cells within the TME and are categorized based on the

expression of CD4 or CD8. Typically, CD4" T lympho-
cytes support other immune cells, while CD8" cytotoxic

T lymphocytes (CTLs) are known to trigger target cell

killing by releasing perforin and granzyme B, expression
of death ligands and IFN-y and TNF-a production [53,
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C: Triggering the adaptive immune response

Fig. 1 Natural killer (NK) cell function within tumor microenvironment (TME). A) Missing-self recognition against tumor cells lacking MHC class
I'ligands for inhibitory NK receptors. B) Direct cytotoxicity against tumor cells mediated by releasing cytotoxic granules containing perforin/
granzymes, IFN-y and TNF-a production, antibody-dependent cell-mediated cytotoxicity (ADCC) via CD16, and induction of apoptosis pathway
through death receptor ligands like TRAIL/FasL. C) Triggering the adaptive antitumor immunity by recruiting dendritic cells via chemokines

and then amplifying CD4" and CD8* T cells antitumor immune response

54]. CTLs are activated by antigen presentation through
MHC-I molecules and the interaction of costimulatory
molecules (B7-1 and B7-2) with CD28 [55, 56]. Con-
versely, inhibitory signals from molecules like CTLA-
4, PD-L1/PD-L2, and LAG-3 regulate the activation of
CTLs [57, 58]. Clinical studies have shown that higher
numbers of intratumoral CD8" T cells are linked to
longer overall survival (OS) and disease-specific survival,
regardless of other prognostic factors [59]. CD4" T cells
play a crucial role in regulating the immune response by
boosting Ab production, attracting granulocytes to areas
of inflammation, and supporting an efficient immune
response by generating cytokines and chemokines
[53]. These cells were categorized into effector CD4™ T
cells, follicular helper T (TFH) cells, and regulatory T
cells (Tregs). Effector CD4% T cells polarized to TH1,
TH2, and TH 17 cells based on the patterns of various
cytokines (See Table 2) [60, 61]. TH1 cells aid the acti-
vation of macrophages, NK cells, and CTL, while TH2
cells facilitate humoral immune responses by promoting
B-cell growth and antibody production [62—64]. In B-cell

NHL, the expression of both TH1 and TH2 cytokines at
high mRNA levels has been reported [65]. Traditionally,
the TH1 immune response is considered more effec-
tive at promoting antitumor immunity, while the TH2
immune response may support tumor growth by pro-
moting angiogenesis and inhibiting the TH1-mediated
immune response [66]. Higher levels of IL-4, indicative
of a TH2 response, are associated with longer survival,
while increased levels of IL-12, a cytokine involved in
TH1 immunity, are linked to poorer prognosis in certain
NHL types, suggesting that malignant B cells can mod-
ulate the effects of TH1 and TH2 cells in different lym-
phoma types [52, 67]. Besides, defects in TH17 cells have
been observed in B cell NHL [52, 68, 69]. TFH cells play
specific roles in B-cell clonal selection, maturation, and
differentiation into memory cells or plasma cells within
germinal centers [70]. TFH cells also facilitate B-cell
activation, prevent malignant B cells from undergoing
spontaneous apoptosis, and stimulate the proliferation
of lymphoma cells [52, 71]. Tregs have a critical role in
cancer by restricting immune activation and specific
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Fig. 2 Schematic representation of tumor microenvironment (TME) constituents in non-Hodgkin lymphomas (NHLs). The TME comprises cellular
and noncellular components. The cellular microenvironment consists of immune and nonimmune cells that can play pro- or antitumorigenic
roles within the NHL milieu (see Table 2 for more details about the pro-tumorigenic and anti-tumorigenic cells in the TME). CTLs, effector CD4.*

T cells (TH1, TH2, TH17, TFH, and Treg cells), follicular dendritic cells (FDCs), natural killer (NK) cells, tumor-associated macrophages (TAMs),
tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs) constitute the immune microenvironment. On the other
hand, mesenchymal stromal cells (MSCs) and cancer-associated fibroblasts (CAFs) are involved in nonimmune microenvironments. The
noncellular components include the extracellular matrix (ECM) as well as various cytokines, chemokines, and molecules produced by cancerous
and noncancerous cells and executed by these cells to induce their stimulatory or inhibitory effect on bystander cells (see Sect. "TME in NHLs:
Composition and Functions” for more details about the interaction between cells inside the TME)

immune responses [72]. In lymphoma biopsy samples,
Treg cells are abundant and have been shown to suppress
antitumor immunity by inhibiting other intratumoral
CD4" and CD8* T-cell populations. TGF-p produced by
lymphoma cells can stimulate the expression of FoxP3, a
specific marker for Tregs, which can result in the conver-
sion of CD4+/CD25- T cells into Tregs [73].

In addition to T cells, the immune TME in NHLs
also contains tumor-associated macrophages (TAMs),
tumor-associated neutrophils (TANs), and myeloid-
derived suppressor cells (MDSCs). TAMs are classified
to anti-tumorigenic (M1 macrophages) and pro- tumo-
rigenic (M2 macrophages) [74]. M1 macrophages sup-
port the growth and differentiation of THI1 cells and
NK cells, trigger CTLs cytotoxicity, and mediate ADCC
[75-77]. Conversely, M2 macrophages hinder antitumor
immunity and promote TH2 and Treg function, as well
as CTL suppression [76, 78]. In B-cell lymphoma, TAMs
play an important role in tumor progression, drug
resistance, and recurrence via multiple mechanisms
[78]. Similarly, in the early stages of tumor formation,

TANSs primarily exhibit the N1 phenotype in the pres-
ence of INF-f resulting in CTL activation and recruit-
ment and triggering ADCC. However, as the tumor
progresses, TGF-p triggers the transition of TANs to
the N2 phenotype. Neutrophils with an N2-like phe-
notype accompanied by tumor proliferation, blood ves-
sel formation, extracellular matrix (ECM) degradation,
and hinder T-cell activation. In addition to their func-
tions, the N1 phenotype and N2 phenotype differ from
each other in terms of cell surface markers (See Table 2)
[50, 78—81]. MDSCs are a diverse group of cells that
include monocytic MDSCs (M-MDSCs) and granulocytic
MDSCs (PMN-MDSCs). MDSCs suppress CD4+T
cells, CD8+T cells, and NK cells through direct cell
contact and the production and activation of inhibitory
molecules. Furthermore, MDSCs regulate the expansion
and activation of Tregs, support tumor angiogenesis and
metastasis, and can transform into TAMs at the tumor
site. A high prevalence of the M-MDSC subpopulation
has been linked to disease progression and decreased
OS in B-cell NHL patients [50, 52, 73, 82].
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TME also contains stromal cells such as mesenchymal
stromal cells (MSCs), which reduce cell death and sup-
port tumor growth by secretion of immune molecules.
Within the lymphoma TME, MSCs recruit monocytes,
macrophages, and neutrophils to the tumor site. Moreo-
ver, MSCs can differentiate into cancer-associated fibro-
blast (CAF)-like cells and secrete diverse chemokines
that contribute to the homing and adhesion of lymphoma
B cells [52, 83, 84]. CAFs, as another stromal cell, influ-
ence a variety of biological processes that advance can-
cer, including angiogenesis as well as the production
and release of growth factors, cytokines, and exosomes.
CAFs actively stimulate tumor cell growth, invasion, and
inflammation, and contribute to resistance to treatment
(50, 52].

Exosomes are an important part of the TME. In lym-
phomas, exosomes can decrease NK cell-mediated
cytotoxicity, trigger immune cell death, and increase
treatment resistance through the delivery of various mol-
ecules such as interleukins, PGE2, TGF-f3, and microR-
NAs. Additionally, tumor-derived exosomes expedite the
activation and growth of MDSCs [50, 52, 85, 86]. Apart
from exosomes, chemokines and cytokines present in the
TME can also support tumor growth and development.
Many studies have shown that the serum level of solu-
ble IL-2Ra, which is produced by CD4" CD25* T cells,
is greater in B-cell NHL patients and is associated with a
poorer prognosis [73, 87]. The secretion of TGF-p malig-
nant B cells leads to the suppression of TH1 and TH17
cell growth and hinders the proliferation of T cells [73,
88]. Serum IL-10 levels have been demonstrated to be
increased in B-cell NHL patients and to be negatively
correlated with prognosis [73]. In addition, chemokines
released by MSCs in lymphoma, including CXCL13,
CCL19/CCL21, and CXCL12, facilitate B-cell adhesion
and homing [52].

NK cell defects in NHL

The NK cell defects in the TME of NHL include quan-
titative deficiency, distribution abnormalities, functional
deficiency, the presence of an immunosuppressive TME,
and tumor cell escape from NK cell surveillance. Figure 3
summarizes NK cell defects in the TME of NHLs.

Quantitative deficiency

The absolute NK cell count (A-NKC) decreases in (Dif-
fuse large B cell lymphoma) DLBCL patients. Accord-
ing to Plonquet et al. investigation, one-third of DLBCL
patients who present with 2 or 3 adverse prognostic
factors of aalPI have low NKC at diagnosis. Further-
more, they established that NKC was associated with
a poorer response to treatment and shorter event-free
survival (EFS) [89]. Similarly, flow cytometry analysis of
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CD3~CD56" and/or CD16% cells in the peripheral blood
of DLBCL and (follicular lymphoma) FL patients demon-
strated that both DLBCL and FL patients had low NKC,
which was correlated with a reduction in progression-
free survival (PFS) and OS [90]. Furthermore, a deficit
in NKC was detected in other NHLs, such as primary
central nervous system lymphoma (PCNSL). Lin et al.
conducted a study on 161 patients with PCNSL and
found that individuals who responded to treatment had
a higher median of circulating NKC and NK cell propor-
tion compared to those who did not respond. Their study
revealed that PCNSL patients who have a higher baseline
NKC display longer OS than those with a low NKC [91].
Consequently, NKC in NHL patients represents a prog-
nostic biomarker for the assessment of clinical outcomes.

Functional deficiency

Cancer cells have been observed to employ a wide range
of mechanisms to escape from the innate immune pres-
sure exerted by NK cells, including abnormalities in NK
cytotoxicity function [92]. In the context of NHLs, NK
cells have impaired degranulation capacity. According
to previous studies, NK cells exhibit defects in the pro-
duction and exocytosis of cytotoxic granules containing
perforin and granzyme [93, 94]. In a protein quantifica-
tion study involving 12 patients with NHL, it was dis-
covered that while the gene expression levels of perforin
and granzyme B were higher in NHL patients compared
to the control group, the intracellular levels of perforin in
NK cells were lower in NHL patients [93]. Furthermore,
a separate study conducted by Baychelier et al. found
that patients who developed NHL after undergoing lung
transplantation exhibited an accumulation of NK cells
with low expression of perforin and impaired degranu-
lation against NHL target cells [94]. Other aspects of
NK cell hypofunction include decreased cytokines pro-
duction, e.g. IFN-y and TNF-a, the overexpression of
suppressor receptors such as T-cell immunoreceptors
with immunoglobulin and ITIM domains (TIGIT), and
the decreased expression of activating receptors such
as TIM-3 [95]. It should be noted that TIGIT has been
associated with NK cell exhaustion [96]. In addition,
decreased CD16 expression in NK cells and impaired
ADCC activity were observed in newly diagnosed and
refractory NHL patients [95, 97].

NK cells in refractory NHL exhibit downregulated
expression of activating receptors, including NKp30,
NKp46, and NKG2D. Further investigation revealed that
de novo NHL development was correlated with increased
NKG2A and CD62L expression but reduced inhibitory
KIR and CD57 receptor expression [94]. Essa et al. dem-
onstrated that DLBCL patients with advanced stages of
the disease have significantly lower NKp44 levels than
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Fig. 3 Possible mechanisms of natural killer (NK) cell defects in non-Hodgkin lymphomas (NHLs). The NK cell defects within the TME of NHLs
include functional deficiency, the presence of an immunosuppressive TME, and tumor cell escape from NK cell surveillance (as well as quantitative
deficiency and distribution abnormalities that are not shown in Fig. 2). See Sect. "NK cell defects in NHL" for more information). A) NK cell functional
defects include decreased expression of activating receptors, overexpression of suppressor receptors, decreased ADCC mechanisms, decreased
IFN-y production, and impaired degranulation capacity. B) Immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory
T cells (Tregs), and M2 macrophages hinder NK cell function through the production of immunosuppressive factors or the expression of inhibitory
receptors. C) NHL cells evade NK cell-mediated cytotoxicity via resistance to the perforin/granzyme-mediated apoptosis pathway, resistance

to death receptor-mediated apoptosis pathways, and inhibition of NK cell activation

patients with earlier stages of DLBCL. This decrease in
NKp44 may be attributed to the high level of IL6 and
TGF-B in the advanced stages of the disease, which in
turn downregulate NK activating receptors [98]. The
expression of CD16 and NKG2D activating receptors
on the surface of CD56%™ cells was also reported to be
decreased after rituximab treatment [99] (Fig. 3A).

Immunosuppressive TME

Successful interaction between NK cells and dendritic
cells (DCs) and the production of chemokines are
required to induce effective antitumor immunity by NK
cells (Fig. 1). This process is negatively affected by TME,
especially cellular and soluble components of the TME,
which are associated with the escape of cancer cells due
to the lack of effective immune responses [100]. Several
immune suppressive cells, like MDSC, TAMs, and Tregs
negatively interfere with NK cell activation and function.
In a phase 2 clinical trial conducted by Bachanova et al.,

the frequencies of MDSCs and Tregs were investigated
about adoptive NK cell therapy response in patients with
NHL. Results from the trial indicated that patients who
exhibited higher frequencies of MDSCs and Tregs, along
with the adoptive NK cells, had a poorer response to
therapy [95]. Similarly, Sato et al. demonstrated that the
accumulation of MDSCs leads to NK cell depletion in
NHL patients [101]. Increased numbers of MDSCs were
reported in DLBCL, MZL, MCL, high-grade B-cell lym-
phoma (HGBL), PCNSL, and FL. Interestingly, MDSCs
are markedly increased in high-grade NHLs and may
be a potential prognostic marker [102]. The inhibitory
effect of MDSCs on NKG2D expression and IFN-y pro-
duction in NK cells was confirmed in both in vivo and
in vitro experiments [103]. The downregulation of other
types of NK cell activating receptors, such as NKp30 and
NKp46, was also detected [104, 105]. Further analysis in
a murine lymphoma model revealed that MDSCs, which
can secrete IL-10, reduced the frequency of NK cells
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[101]. Additionally, the coculture of MDSCs with NK
cells has been shown to negatively affect the degranula-
tion capacity of these cells through the TIGIT/CD155
pathway [105].

Tregs are another immunosuppressive cell type
that limits adoptive NK cell therapy in NHL patients.
Increased numbers of Tregs expressing high levels of
Foxp3 following high-dose chemotherapy and IL2 admin-
istration before adaptive NK cell infusion interfere with
NK cell expansion [106]. Treg infiltration in the TME
could be justified via Indoleamine-2,3-dioxygenase
(IDO). IDO is an immunosuppressive enzyme that cata-
lyzes the conversion of tryptophan to kynurenine [107].
NHL patients who overexpress IDO simultaneously
exhibit increased levels of FoxP3, a Treg marker [108].
In addition, IDO not only inhibits NK cell proliferation
but also decreases activating receptors [107]. In a study
conducted by Ninomiya et al., it was found that 32% of
DLBCL patients exhibit overexpression of IDO, which
is associated with unfavorable clinical outcomes [109].
Additionally, Yoshikawa et al. reported elevated levels of
tryptophan-derived kynurenine in DLBCL patients [110].

Crosstalk between M2 macrophages and NK cells is
another barrier to NK cell function in the TME. M2
macrophages limit NK cells’ function by triggering the
expression of inhibitory receptors immunoglobulin-
like transcript 2 (ILT2/ CD85j), an NK cell inhibitory
receptor [111]. In NHL, a high density of M2 mac-
rophages in DLBCL of the central nervous system
(CNS-DLBCL) has been detected and accounted for
poor clinical outcomes [15].

Among other immunosuppressive factors, TGF-$ has
been investigated in NHL, and previous studies revealed
TGF-f signaling Dysregulation in mantle cell lymphoma
(MCL), FL, and DLBCL. The TGE-p signaling cascade
is dysregulated through various mechanisms, such as
altered receptor expression, disrupted SMAD signal-
ing, and disturbances in epigenetic and genetic pro-
cesses [112]. TGF-fB inhibits IFN-y expression, affects
the metabolic pathway of NK cells, and reduces NKG2D
and NKp30 expression, which are essential for tumor cell
recognition and elimination, as well as for the effective
interaction between natural NK cells and DCs [113, 114].
Interestingly, MDSCs and M2 macrophages participate
in NK cell exhaustion by producing TGF-p1 (Fig. 3B)
[103, 115].

Evasion mechanism

Resistance to apoptosis

Tumor cells in NHLs may escape from NK cell-mediated
cytotoxicity through resistance to perforin/granzyme-
mediated apoptosis. For this purpose, tumor cells may
exhibit elevated intrinsic levels of proteinase inhibitor 9

Page 9 of 44

(PI9), which functions to restrict the proteolytic action of
granzyme B and secure their survival [116]. In this line,
Bladergroen et al. verified that P19 was overexpressed
in different types of T/B-NHL, such as extranodal T-cell
NHL, enteropathy type T-cell NHL, NK/T-cell nasal-type
lymphoma, and DLBCL [116]. Furthermore, cancer cells
may escape apoptosis by inactivating apoptotic pathways
activated by death receptors. The death ligands FasL/
CD95L and TRAIL, which are members of the TNF fam-
ily, are expressed in NK cells. These ligands interact with
their respective receptors, Fas/CD95 and TRAIL-R, pre-
sent on the surface of target cells. Upon interaction, the
death domain (DD) is activated, initiating the apoptotic
signaling cascade and ultimately leading to apoptosis
[117]. According to previous studies, loss of Fas/CD95
expression was found in some FL and diffuse B/T-cell
lymphomas [118], mucosa-associated lymphoid tissue
lymphomas (MALTLs) [119], and cutaneous B-cell lym-
phomas (CBCLs) [120], which are associated with poor
prognosis. In addition, mutations in Fas/CD95 have been
reported in GC-derived B-cell lymphomas, such as pri-
mary nodal DLBCL, MALT-type lymphomas, FL, and
anaplastic large cell lymphoma (ALCL) [121, 122]. A
somatic mutation in TRAIL-R, which is correlated with
the loss of chromosome 8p21-22, has also been detected
in NHLs (Fig. 3C) [123].

Inhibition of NK cell activation

CD58 or lymphocyte-function antigen 3 (LFA-3) is
known as an NK cell activator that interacts with CD2
on the NK cell surface [124—126]. Based on this specu-
lation, mutations or deletions in CD58 also prevent NK
cell function, which has been reported in DLBCL and
FL [125, 126]. HLA-G is an inhibitory molecule in both
membrane-bound and soluble isoforms that suppresses
NK cells through interaction with its ILT2 [127]. The
serum level of soluble HLA-G increased in NLHs such as
DLBCL, FL, and peripheral T-cell lymphoma, which may
disrupt NK cell function and be involved in lymphoma
development [128]. Notably, HLA-G expression in lym-
phoma is a double-edged sword with protective and
destructive effects [129]. To explore the evasion mecha-
nisms, strategies that disturb NK cell receptors are also
considered. The investigation by Satwani et al. revealed
that, incubation of NHL cells with romidepsin enhanced
NK cell cytotoxicity. Subsequently, they reported that
romidepsin increases the surface expression of the
NKG2D ligands MIC A/B on lymphoma cells. Based on
the results of this study, impairment of NK cell func-
tion may be related to decreased expression of activat-
ing receptor ligands such as MIC A/B [130]. The immune
checkpoints PD-1 and PD-L1 also restrict NK cell func-
tion, and PD-1/PD-L1 axis blockade unleashes NK cell
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cytotoxicity [127]. Research conducted by Laurent et al.
revealed that DLBCL cells exhibit notably elevated lev-
els of PD-1 and PD-L1/2 compared to FL cells. Nota-
bly, some DLBCL tumor cells coexpress both PD-1 and
PD-L1/2. Interestingly, there are more PD-L1/2-positive
lymphoma cells in the activated B-cell (ABC) subtype
of DLBCL (ABC-DLBCL) than in the GC subtype (GC-
DLBCL) [129]. Similarly, Kiyasu et al. reported that PL-1
is frequently expressed in tumor cells in DLBCL and is
associated with poor prognosis [131].

NK cell immunotherapy in NHLs

In NHL, the A-NKC of the autograft directly influ-
ences clinical outcomes of following HSCT [132]. In
a randomized, double-blind phase III clinical trial,
patients with NHL who received an autograft with
an A-NKC>0.5x10° cells/kg demonstrated 5-year
OS and 5-year PFS rates of 87% and 71%, respec-
tively. In contrast, patients infused with an autograft
A-NKC<0.5x10° cells/kg experienced 5-year OS rates
of 55% and 5-year PES rates of 32% [133]. With a 10.6-
year median follow-up in the final update, the 13-year
OS rates demonstrated a significant difference between
groups, with a rate of 46% for the cohort infused with
autograft A-NKC>0.09x 10’ cells/kg compared to 36%
for the group infused with A-NKC<0.09x10° cells/kg
(P-value<0.02) [134]. Faster and robust recovery of NK
cells following HSCT is another factor that can affect
clinical outcomes [135]. Porrata et al. reported that NHL
patients with an A-NKC>80 cells/uL on day 15 after
autologous HSCT had longer OS and PFS than patients
with lower counts (not reached vs 5 months, p0.001; not
reached vs 3 months, p0.0001, respectively) [136]. These
findings suggest that the early post-HSCT recovery of
NK cells may play a crucial antitumor role in the poten-
tial graft-versus-tumor (GVT) effect, given that NK cells
are the only immune effector cells that reach normal
numbers and function post-HSCT [137].

Several early studies have employed the administration
of low-dose subcutaneous rlL-2 to promote the recovery
and cytotoxic activity of NK cells as an effective approach
to eradicate residual disease and prevent relapse follow-
ing autologous HSCT in NHL patients [138, 139]. In a
clinical trial involving patients with R/R high-grade NHL,
researchers demonstrated that the administration of a
low dose of rlL2 early after autologous HSCT for a dura-
tion of one year is well-tolerated and leads to the in vivo
expansion of CD167/CD56* NK cells. Significantly,
compared to their baseline quantity and function before
starting treatment, the expanded CD56"8" NK cell sub-
sets exhibited enhanced activity against K562 cells (an
NK-sensitive cell line) and CD16-mediated redirected
killing activity against P815 target cells (an NK-resistant
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cell line). All ten patients who participated in the trial
remained free from relapse for a period ranging from 5
to 34 months (median 16 months) after initiating rIL2
therapy. Notably, two patients who still had residual dis-
ease following HSCT experienced complete disease dis-
appearance after rIL2 treatment [138]. Building upon
the encouraging outcomes of these early studies, clinical
trials have explored the adoptive transfer of ex vivo acti-
vated autologous NK cells or lymphokine-activated killer
cells as a therapeutic approach for patients with lym-
phoma [140, 141]. The adoptive transfer of autologous
NK cells was found to be feasible and safe, although only
a limited antitumor effect was observed [142]. This limi-
tation primarily stemmed from the matching of inhibi-
tory receptors on autologous NK cells with self-MHC
class I present on tumor cells, leading to "self" recogni-
tion signals that dampen NK cell activation and subse-
quent antitumor effects [142]. Furthermore, the adoptive
transfer of autologous NK cells is costly and frequently
requires multiple apheresis procedures, and the dose of
injected NK cells is limited to approximately 107/kg [143].
To overcome these limitations, researchers have recently
used allogeneic NK cells for lymphoma immunotherapy.
In the phase 1 clinical trial conducted by Green Cross
LabCell Corporation, the safety and possible efficacy of
allogeneic NK cells were assessed in patients with malig-
nant lymphoma or advanced solid tumors. In this study,
allogeneic NK cells (namely, MG 4101) were obtained
from random healthy unrelated donors and expanded in
culture bags supplemented with IL-2, irradiated autolo-
gous feeder cells, and OKT3. Multiple doses of MG4101
were administered in the dose range of 1x10° cells/kg
to 3x 107 cells/kg without any signs of GVHD or serious
toxicity. Among the 17 evaluable patients, only 8 exhib-
ited stable disease (SD), while the disease progressed
in the remaining patients. The median PFS for patients
with SD was 4 months, ranging from 2 to 18 months
[144]. The results of this study indicated that the use of
alloreactive NK cells alone was not sufficient to elimi-
nate the disease mass completely. As a result, researchers
explored the combination of NK cells with other strate-
gies to enhance their therapeutic effectiveness in subse-
quent studies [135].

NK cells combined with mAbs

Over the past two decades, the therapeutic effects of at
least 570 monoclonal antibodies (mAbs) have been inves-
tigated in clinical trials. Among them, 79 therapeutic
mAbs, including 30 mAbs for the treatment of hemato-
logical malignancies, have received approval from the
United States food and drug administration (FDA) and
are currently commercially available [145]. When mAbs
bind to their targets, they can kill cancer cells through a
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variety of mechanisms, including programmed cell death
(PCD), complement-dependent cytotoxicity (CDC),
and ADCC [146]. Among these mechanisms, ADCC is
an effective immune mechanism that is triggered when
therapeutic mAbs are employed to eliminate cancer
cells [147]. During the ADCC process, the FC region of
the antibody is ligated to its corresponding FC receptor
(FcR) on the plasma membrane of immune effector cells,
while the Fab portion of the antibody attaches to target
antigens on the surface of the cancer cell [148]. Human
NK cells serve as crucial effector cells in the context of
ADCC by expressing CD16A, which is a low-affinity
receptor for IgG1 and IgG3 antibodies [149]. Given the
likelihood that the efficacy of ADCC-mediated tumor cell
elimination relies on the ratio of effector to target cells,
the number and function of NK cells have been investi-
gated as potential biomarkers to predict the response to
anti-CD20 immunotherapy in NHL patients [90, 150].
Klanova et al. reported that low peripheral blood NKC
in FL and DLBCL patients receiving anti-CD20 mAbs
(rituximab or obinutuzumab) plus chemotherapy were
linked to shorter PFS in both FL and DLBCL patients
and diminished OS specifically in FL patients [90] Hence,
the number of NK cells in individuals with lymphoma is
important for determining their prognosis [151].

The administration of adoptive NK cells to enhance the
ADCC capabilities of mAbs is a growing area of interven-
tion that has been explored in recent years [152]. There
are several ongoing and completed clinical trials explor-
ing the safety and effectiveness of combining mAbs with
infusions of autologous or allogeneic NK cells in patients
with NHL (Tables 3 and 4). In a recent phase I study, Tan-
aka et al. investigated the infusion of ex vivo-expanded
autologous NK cells in combination with rituximab-con-
taining chemotherapy in patients with relapsed CD20™
malignant lymphoma [153]. Expanded autologous NK
cells with high expression of NKp30, NKp44 and CD16
were intravenously infused (up to 10x10° cells/kg) into
lymphoma patients one day after rituximab-combined
salvage chemotherapy. The combination was safe and
feasible, and among the nine lymphoma patients, seven
achieved complete response (CR), with a median dura-
tion of 44 months (range: 6-56 months). However, it is
difficult to determine the precise contribution of autolo-
gous NK cells to the clinical response, given that chemo-
therapy was administered to eight of nine patients after
NK cell infusion [153]. In another study on chemother-
apy-refractory NHL patients, allogeneic NK cell therapy
(dose of 0.5-3.27x 107 cells/kg) in combination with IL-2
and rituximab was found to be safe and effective in 4 of 15
evaluable patients, with 2 patients achieving CR lasting 3
and 9 months and 2 patients obtaining partial response
(PR) [95]. Moreover, in a recent phase I study employing
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ex vivo-expanded allogeneic NK cells (namely, MG4101)
plus rituximab after lymphodepleting chemotherapy for
R/R NHL patients, Yoon et al. demonstrated that the
treatment was well tolerated and led to a PR in 4 patients
and a CR in 1 patient, yielding an overall response rate
(ORR) of 55.6% [154]. Notably, one patient achieved a
lasting CR that extended beyond 806 days [154].

In addition to autologous or allogeneic peripheral
blood (PB)-derived NK cells, an increasing number of
clinical trials have scrutinized the safety and efficacy of
other NK cell sources, including cord blood (CB) [6, 155,
157], induced pluripotent stem cells (iPSCs) [158], and
immortalized NK cell lines [162], for NHL immunother-
apy. For example, in a phase 1/2 clinical trial, the safety
and clinical activity of AB-101 (an allogeneic, nongeneti-
cally modified, CB-NK cell product) has been evaluated
as a monotherapy and combined with rituximab for the
treatment of R/R NHL patients [155]. The results from
this study indicated that the concurrent administration
of both agents was safe, resulting in an ORR of 67% in 6
patients (CR observed in 3 patients and PR in 1 patient),
in contrast to an ORR of 27% in cohorts receiving AB-101
alone [155]. Another study by Katayoun Rezvani’s group
assessed the efficacy of ex vivo-expanded CB-NKs in
combination with rituximab and high-dose chemother-
apy in NHL patients who were candidates for autologous
HSCT [157]. Patients received rituximab and high-dose
chemotherapy from days 13 through 7, lenalidomide
from days 7 through 2, and CB-NK cells (10%/kg) on day 5
before to autologous HSCT. CB-NK cells were detectable
in vivo for two weeks, regardless of their HLA mismatch
status. Importantly, no adverse events attributable to the
CB-NK cells were observed. At a median follow-up of 47
months, the rates of relapse free survival (RFS) and OS
were 53% and 74%, respectively [157].

NK-92 is an immortalized IL-2-dependent CD16~ NK
cell line that was isolated and successfully established by
Klingman et al. in 1992 from a patient suffering from lym-
phoma. NK-92 cells exhibit potent cytotoxicity against
several cancer cells, a phenomenon primarily ascribed
to the overexpression of numerous activating recep-
tors, concurrent downregulation of almost all inhibitory
receptors, and heightened expression of perforin and
granzyme. Furthermore, NK-92 cells can continuously
proliferate with a doubling time of 2—4 days, are easily
obtainable, and have a homogeneous phenotype [163,
164]. However, due to their cancerous nature, NK-92
cells must be mitotically inactivated prior to infusion into
patients to inhibit undesired clonal proliferation, which
restricts their persistence and expansion in vivo, and allo-
geneic administration demands very high doses of NK-92
cells [165]. In 2008, Arai et al. demonstrated for the first
time the feasibility and safety of administering NK-92
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cells (up to 3x10%) to cancer patients [166]. Recently, a
phase I dose-escalation study using NK-92 cells (1 x 10’
cells/m?, 3x10° cells/m? and 5x10° cells/m?) for refrac-
tory hematological malignancies that relapsed after
autologous HSCT was conducted by Williams et al. [162].
A total of 12 patients were enrolled in this trial, including
2 patients with HL. and 5 patients with NHL. The infu-
sions of irradiated NK-92 cells were well-tolerated even
at high doses and resulted in CR in one HL patient and
a minor response (defined as 10-30% regression of tar-
get tumor lesions without the occurrence of new lesions
or progression of nontarget lesions) in 2 NHL patients.
Notably, in this study, no NK-92 cells were detected more
than 15 min after infusion [162]. As mentioned earlier,
NK-92 cells are highly dependent on exogenous IL-2 for
survival and lack the CD16 receptor, thus impeding their
capacity to mediate ADCC [167]. To address this, NK-92
cells have been modified to internally express IL-2 and
the high-affinity CD16 receptor [168, 169]. Currently, this
product, designated high-affinity NK (haNK), is being
investigated in several clinical trials for solid tumors
[170, 171]. Furthermore, preclinical data indicated
that the combination of haNK cells withmAbs, such as
daratumumab for multiple myeloma (MM) and rituxi-
mab for NHL, may have a synergistic effect. However,
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further clinical investigation is required to validate these
approaches for NHL [163].

NK cells derived from iPSCs (iNKs) are another prom-
ising avenue for NK cell therapy and have the poten-
tial to address challenges commonly encountered with
other sources of NK cells (Fig. 4) [172]. To generate iNK
cells, somatic cells are first differentiated into iPSCs
and then into CD34" hematopoietic stem and progeni-
tor cells (HSPCs). Subsequently, NK cells differentiate
from HSPCs using cytokines (IL-3, IL-7, IL-15, SCF, and
FLT3L) or stromal-based feeder cell lines and are then
cocultured with feeder cells for further expansion [173,
174]. Currently, iPSC-based NK cell platforms have been
evaluated in several clinical trials as monotherapies or
in combination with mAbs for the treatment of hema-
tological malignancies or solid tumors [158, 175-177].
As an example, FT516 is an iPSC-derived NK cell prod-
uct modified to express high-affinity, cleavage-resistant
Fc receptor (CD16A), with a preliminary report of 18
patients with R/R B-cell lymphoma in combination with
rituximab demonstrating safety, with no evidence of
GVHD, ICANS or CRS. Patients received two cycles of
treatment consisting of a conditioning regimen (fludara-
bine and cyclophosphamide, each for 3 days), a single
dose of rituximab and three weekly cycles of FT516 (four
patients received 90 million cells/dose, seven patients
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received 300 million cells/dose, and seven patients
received 900 million cells/dose) accompanied by IL-2 (6
MIU after each dose of FT516). Of the 18 patients, 10
patients were naive to treatment with autologous CD19-
targeted CAR-T cells, and eight patients were previously
treated with autologous CD19-targeted CAR-T-cell
therapy. A total of 8/10 naive patients achieved an ORR
(including 5 patients who achieved CR), and 3/8 patients
previously treated with CD19-targeted CAR-T-cell ther-
apy achieved an OR and CR [158, 177].

NK cells combined with bispecific antibodies

Bispecific killer engagers (BiKEs) were created with the
intention of having one "arm" that binds to CD16 on NK
cells and the other "arm" that targets a specific antigen
on tumor cells [178]. The engager serves as a replace-
ment for traditional antibody-Fc interactions in facilitat-
ing the immunological synapse between tumor cells and
NK cells, thereby promoting NK activation and the kill-
ing of tumor cells [179]. Therefore, the use of BiKEs could
enhance the function of NK cells by creating a stronger
interaction when binding to anti-CD16 compared to the
interaction between CD16 and the natural Fc portion of
antibodies [180]. Moreover, BiKEs are nonimmunogenic
and have rapid clearance properties, making them easy to
engineer to target known tumor antigens. In addition to
these advantages, BiKEs may offer advantages over mAbs
due to their smaller size, which allows for better distri-
bution in the body. This approach is especially beneficial
for treating solid tumors [181-183]. Currently, several
clinical trials are being conducted to evaluate the effec-
tiveness of BiKEs in combination with NK cell therapy as
a treatment for patients with lymphoma. Some of these
trials focused on AFM13 [159, 184]. AFM13 is a tetrava-
lent, bispecific innate cell engager that targets CD16A/
CD30 and activates innate immune cells such as NK
cells and macrophages [185]. AFM13 acts as a mediator
by binding to CD16A on NK cells and to CD30 on lym-
phoma cells, which aids in the recruitment and activa-
tion of NK cells in proximity to tumor cells [186]. AFM13
was initially tested as a single therapy in a phase 1 clini-
cal study for patients with R/R lymphoma [187]. The
study showed that AFM13 treatment was safe and well-
tolerated and led to positive tumor responses in several
patients [187]. CB-NK cells precomplexed with AFM13
were recently tested within an ongoing phase I/II clini-
cal trial for patients with refractory CD30-positive lym-
phomas. Forty-two patients (37 patients with HL and 5
patients with NHL with a median of seven prior lines of
therapy) received fludarabine/cyclophosphamide fol-
lowed by CB-NK cells precomplexed with AFM13 and
three weekly IV infusions of AFM13. The results of this
study showed that AFM13 in combination with NK cells
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was safe for patients with no instances of CRS, ICANS, or
GVHD and resulted in an ORR of 92.8% and a CR rate of
66.7%. All four patients who had previously failed CD30
CAR-T-cell therapy achieved a CR [159].

NK cells combined with CAR structure

The CAR construct plays a crucial role in activating
cells that have been transduced with CAR. The CARs
employed in CAR-NK cells are often analogous to those
utilized in CAR-T cells. A CAR consists of four essen-
tial components: an extracellular binding domain, a
hinge region, a transmembrane domain, and one or
more intracellular signaling domains (Fig. 5). Single-
chain antibody variable fragments (scFvs) originate from
a tumor-specific antibody and have the ability to bind
to a particular antigen displayed on the surface of can-
cer cells. Moreover, the intracellular signaling domains
are obtained from the cytoplasmic domains of ITAMs
found in TCRs or other stimulating receptors [188]. The
extracellular binding domain of CAR-modified effector
cells enhances specificity by targeting tumor-associated
antigens (TAAs). The hinge region serves as a connec-
tion between the extracellular binding domain and the
transmembrane domain. The intracellular signaling
domains in different generations of CARs possess differ-
ent compositions, which affects the potency of the acti-
vation signal transmitted and consequently influences
the cytotoxic capability against tumor cells (Fig. 5) [189].
The first generation of CARs consisted of only the CD3-(
activation signaling domain. Subsequent generations of
CARs incorporated one or two supplementary costimu-
latory molecules, including CD28, ICOS, 4-1BB, CD27,
0X40, and CD40. CD28 and 4-1BB are the predomi-
nant molecules utilized among this group of molecules
[190, 191]. Researchers have utilized other molecules as
activation signaling domains for NK cells, in addition to
the commonly used CARs that are applicable for both
CAR-T cells and CAR-NK cells. CD244 (2B4), a member
of the signaling lymphocyte activation molecule (SLAM)
family, can also serve as a costimulatory molecule. The
overexpression of 2B4 in NK cells leads to an enhanced
ability to amplify signals and increased innate cytotoxic-
ity against tumor cells [192]. DAP-12 is present on NK
cells and plays a role in transmitting signals through the
NK-activating receptors NKG2C and NKp44. Addition-
ally, DAP-10 is involved in signal transmission through
NKG2D [193, 194]. Hence, DAP-12 and DAP-10 can
transmit intracellular signals in CAR-NK cells. In addi-
tion, NK cells modified with DAP-12-based CARs exhib-
ited superior performance compared to that of NK cells
modified with CD3-{-based CARs [193]. Recent research
has indicated that NKG2D ligands are overexpressed
in several hematological malignancies. Hence, the
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NKG2D-DAP-10-CD3-{ CAR, which specifically targets
NKG2D ligands, holds significant promise for the treat-
ment of blood malignancies [195].

Transduction of the CAR gene into NK cells encom-
passes viral transduction, namely, retrovirus-based and
lentivirus-based approaches, as well as transfection
techniques such as electroporation, lipofection, and
their combination with transposon systems (Fig. 5) [11].
CAR constructs are commonly integrated into a retro-
virus or lentivirus-based expression vector. These vec-
tors are then used to transduce primary NK cells or NK
cell lines, with NK-92 being the most frequently used.
The transduction of retroviral vectors shows a high
level of effectiveness (ranging from 43 to 93%) in pri-
mary NK cells. However, the occurrence of insertional
mutagenesis and its negative consequences significantly
limit the use of this method in clinical applications
[196]. However, lentivirus-based transduction is con-
sidered to be a safer method. Although its transduc-
tion efficiency in peripheral blood mononuclear cell
(PBMC)-derived NK cells ranges from 8 to 16%, there is
still an opportunity for improvement [197]. RNA trans-
fection methods are economical strategies that have
greater efficacy in transferring genes. However, the pro-
duction of CAR constructs using this method is tempo-
rary, lasting for approximately 3—5 days. Although the
short therapeutic time frame is a limitation, the tempo-
rary nature of CAR therapy may lower the occurrence

of CAR-associated adverse effects, such as on-target
off-tumor effects [195, 197, 198]. The integration of
DNA into cells using transposon systems, such as Pig-
gyBac (PB) and sleeping beauty (SB), in combination
with transfection methods has emerged as an appeal-
ing strategy for generating cells that express transgenes
in a safer and more stable manner [199, 200]. The SB
transposon vector has proven to be a cost-effective and
efficient means of gene transfer. However, its suitability
for use with CAR-NK cells has not yet been evaluated
[201].

CAR-NK cells are safer than CAR-T cells. The
enhanced safety of CAR-NK cells can be attributed to two
primary factors. CRS and neurotoxicity are frequently
adverse effects of CAR-T-cell therapy [202]. The cytokine
storm triggered by CAR-T cells, specifically TNF-q, is
primarily facilitated by proinflammatory cytokines such
as IL-1 and IL-6 [203]. CAR-NK cells secrete a variety of
cytokines, such as IFN-y and GM-CSF, which differ from
the cytokines produced by CAR-T cells. Second, CAR-T
cells can cause life-threatening GVHD due to HLA limi-
tations. On the other hand, NK cells, which are consid-
ered important cells that initiate the GVT response early
on, can potentially prevent GVHD by eliminating recipi-
ent antigen-presenting cells and CTLs [204]. Further-
more, CAR-NK cells may exhibit superior effectiveness
in targeting and destroying cancerous cells compared
to CAR-T cells. CAR-NK cells possess the ability to
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identify and execute their cytotoxic functions via both
their designed and innate killing capabilities. By utilizing
CARs, effector cells can enhance their ability to selec-
tively target and eliminate a specific antigen with greater
efficiency. Unlike CAR-T cells, CAR-NK cells retain the
inherent ability of NK cells to destroy target tumor cells
even when the expression of specific tumor antigens is
reduced [205]. Moreover, the production of CAR-NK
cells is more convenient than that of CAR-T cells. Due
to the absence of the risk of GVHD, NK cells can be
obtained from either a donor who is a match or a donor
who has an HLA mismatch, hence expanding the pool of
potential donors and enhancing the overall quality of the
end products [206].

Recently, CAR-NK cell therapy has been assessed in
various clinical trials for the treatment of lymphoma
(Tables 5 and 6). CB-CAR-NK cells are presently
employed in a clinical trial at MD Anderson Cancer
Center, specifically targeting CD19 cells, and yield-
ing highly favorable outcomes. 37 patients with R/R
CD19-positive malignancies were enrolled in this trial
and treated with CB-CAR-NK cells in two phases:
a dose-escalation phase and an expansion phase. In
the dose-escalation phase (n=11), patients received
a conditioning regimen (fludarabine and cyclophos-
phamide, each for 3 consecutive days) followed by the
infusion of CB-CAR-NK cells (three patients received
10x 10* cells/kg, four patients received 10x 10° cells/
kg, and four patients received 10x 10° cells/kg). In the
expansion phase (n=26), patients were first treated
with 10x10° cells/kg CB-CAR-NK. Then, the trial
was amended to include a second expansion cohort
in which patients received a single flat dose of 8x 108
cells/kg CB-CAR-NK. A retroviral vector including an
anti-CD19-CD28-CD3-{ CAR, an IL-15 gene, and a
suicide switch was utilized for transduction. None of
the patients developed neurotoxicity or GVHD, and
only one patient developed mild CRS (grade I). The
ORR (including PR and CR) on days 30 and 100 for the
37 patients was 48.6%. The 1-year OS and PFS were 68%
and 32%, respectively. Compared with non-responders,
patients who achieved OR had higher levels and longer
persistence of CB-CAR-NK cells [6, 207].

Goodridge et al. created a CAR-NK product called
FT596. This product was derived from iPSCs. The
iPSCs were modified to consistently produce anti-CD19
CAR, a high affinity and non-cleavable CD16 Fc recep-
tor, and a combination of a membrane-bound IL-15 and
an IL-15Ra fusion protein. In a Raji xenograft mouse
model, the combination of FT596 with rituximab
resulted in a substantial increase in the elimination
of Raji tumor cells. In addition, when a mouse model
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that had been engrafted with human CD34 cells, FT596
showed enhanced longevity and safety compared to
primary CAR19 T cells [211]. This platform has been
translated into a multicenter, phase I clinical trial as
monotherapy or in combination with rituximab to treat
patients with R/R B-cell lymphoma [210]. A total of 20
patients underwent two treatment regimens, includ-
ing 10 in regimen A (FT596 alone) and 10 in regimen B
(FT596 cells combined with rituximab). Among the 17
evaluable patients, clinical response was observed in 9
patients (5 from regimen A and 4 from regimen B), 7 of
whom achieved CR. Notably, no dose-limiting toxicity,
ICANS, or GVHD of any grade was observed. Interest-
ingly, 2/4 of patients treated with CAR-T-cell therapy at
doses>9 x 107 cells/kg achieved CR [210]. An extended
follow-up period will provide insight into the durabil-
ity and efficacy of this platform. More recently, simi-
lar peripheral blood-derived anti-CD19 CAR-NK cells
(named NKXO019, a cryopreserved product utiliz-
ing OX40/CD3-{ signaling domains and expressing a
membrane-bound form of IL-15 for activation) were
investigated in a phase I trial as a monotherapy for 19
patients with R/R B-cell malignancies. Patients received
a daily lymphodepletion regimen of fludarabine and
cyclophosphamide for 3 days. Next, they received three
infusions of NKX019 at 3 dose levels, with doses rang-
ing from 300 million to 1.5 billion cells per infusion.
During the follow-up period, no dose-limiting toxic-
ity, neurotoxicity, CRS or GVHD was reported. Among
the 14 patients with NHL, 8 achieved CR; however, 3
patients with indolent lymphoma subsequently experi-
enced relapse after a remission period of greater than 6
months [208, 212].

What's Next? CIML NK cells

NK cells following exposure to happens, viral infection or a
combination of cytokines achieve memory properties. NK
cells preactivated with IL-12/15/18 have been described
as cytokine-induced memory-like (CIML) NK cells [213].
CIML NK cells present distinctive characteristics, such
as high proliferative capacity, sensitivity to low doses of
IL-2, increased IFN-y production, resistance to TGF-f,
elevated glycolysis, and oxidative phosphorylation, which
distinguishes them from conventional NK cells (cNK cells)
[214-217]. In addition, the long-term life span and adaptive
immune features of CIML NK cells have drawn attention
to the use of these cells in cancer immunotherapy. Recent
findings from preclinical and clinical trials have shown that
CIML NK-based immunotherapy has produced promising
results and also offers a safe approach to preventing GVHD,
CRS, and neurotoxicity [218]. In the context of hemato-
logical malignancies, CIML NK cell-based immunotherapy
has aided in the discovery of novel treatments for various
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cancers, particularly myeloid disorders. Similarly, adoptively
transferred CIML NK cells trigger CR in 44% of R/R acute
myeloid leukemia (AML) patients [219].

Another clinical trial by Shapiro et al. revealed that
CIML NK cell infusion into an immune-compatible
microenvironment in posttransplant relapsed AML,
MDS, and MPN patients resulted in satisfactory expan-
sion and persistence [220]. Similarly, CIML NK cells
injected into pediatric/young adults with post-HCT-
relapsed AML patients significantly expand and persist
in a compatible milieu. Furthermore, this clinical trial
established that AML patients were treated with donor
lymphocyte infusions (DLIs), and CIML NK cells showed
promising outcomes [221].

Unlike for myeloid disease, the therapeutic approach
involving CIML NK cells in lymphoid malignancies has
received less attention. One of these few studies was per-
formed on a rat model of T-ALL, namely, Roser leuke-
mia (RL). In this in vivo experiment, RL was treated with
cNK cells, and NK cells were stimulated with 1L12/15/18
(CIML NK cells). Based on these results, RL is resistant
to cNK cells but not to CIML NK cells. Therefore, CIML
NK cells could be introduced as a possibility for immuno-
therapeutic clinical trials in T-ALL patients [222].

The role of CIML NK cells in lymphoma was studied by
Ni et al. in mice injected with RMA-S lymphoma cells.
Tumor-bearing mice were treated with IL-12/15/18—preac-
tivated NK cells and IL-15—pretreated NK cells. The results
highlighted that compared with IL-15—pretreated NK cells,
IL-12/15/18—preactivated NK cells display greater frequency,
persistence, proliferation, and functional killing activity at the
tumor site [223]. In another study, Gang et al. further inves-
tigated CIML NK cell incorporation in lymphoma. They
preactivated NK cells with IL-12/15/18 and then developed
them to express the anti-CD19 CAR structure. The 19-CAR-
CIML NK cells exhibited improved in vitro cytotoxicity
against Raji cells and CD19" primary lymphoma cells, as
illustrated by elevated IFN-y production and degranula-
tion capacity. In addition, 19-CAR-CIML NK cells exhibited
satisfactory durability, expansion, and effector function in a
human lymphoma xenograft mouse model [224].

Finally, the challenges in NK cell-based immunother-
apy in NHLs, the highly appreciated features of CIML
NK cells, and promising results from current preclini-
cal studies have prompted us to develop new therapeu-
tic options based on CIML NK cells. Hopefully, we will
witness a fundamental revolution in the management of
patients with NHL.

NK cell expansion
NK cells offer significant potential for immunotherapy in
NHL treatment, but there are still obstacles to overcome
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to harness their full therapeutic benefits. There are still
efforts to obtain a considerable number of NK cells for
therapeutic purposes and to ensure that the obtained NK
cells are fully functional and capable of effectively target-
ing and killing abnormal cells. This requires careful selec-
tion and expansion of NK cells, which can be technically
challenging in the laboratory [225, 226]. Most PB-derived
NK cell expansion protocols can be categorized into
feeder-cell or feeder-free systems [227].

Feeder cells

The production of a significant amount of NK cells from
a small initial quantity relies on feeder cells. These feeder
cells, whether naturally or through additional modifica-
tions, present ligands for NK cell receptors. When com-
bined with cytokines, this interaction drives a substantial
expansion of NK cells outside the body, enabling the
generation of a large number of NK cells for therapeu-
tic purposes [228]. Various types of cells, such as EBV-
transformed lymphoblastoids and genetically engineered
HEK293 or K562 cell lines, are utilized as feeder cells.
Among these, genetically modified K562 cells are the
most commonly employed [227]. For example, when a
mixed lymphocyte population is infected with Epstein—
Barr virus (EBV) in vitro, it results in an immortalized cell
line that exhibits characteristics similar to those of pro-
liferating B cells. With the expression of different ligands
(4-1BBL), CD155, CD48, and CD58) that have specific
receptors (4-1BB, DNAM-1, 2B4, and CD2, respectively)
on activated NK cells, EBV-bearing lymphoblastoid cell
lines (LCLs) play essential roles in NK cell expansion
and stimulation [228]. Using this method, an average of
1,000-2,000-fold expansion of NK cells was reported to
be observed over a period of 14 days [229]. The addition
of IL-21 and IL-2 reportedly improved the expansion effi-
cacy [227, 230, 231]. In another method, irradiated feeder
cells were employed to amplify NK cells in laboratory
settings. The K562 leukemia cell line has been altered to
display particular ligands linked to antigen-presenting
cells (CD64, CD86, and truncated CD19, CD137L, 4-1BB
ligand, and membrane-bound IL-21). The irradiated
K562-mbIL21-41BBL cells seemed to be very effective at
rapidly increasing the number of NK cells in RPMI media
(containing 10% FBS). These modified cells expanded NK
cells 47,967-fold in 21 days [232]. Nevertheless, using
feeder cells can pose challenges due to licensing intri-
cacies, difficulties in sourcing, and the requirement for
their elimination from the culture. Challenges such as
incomplete irradiation of feeder cells (which might lead
to teratoma) and separating and thoroughly eliminating
cancer cells from the culture environment to avoid injec-
tion into patients are additional difficulties [233].
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Feeder-free expansion methods

Expanding NK cells without the need for feeder cells has
benefits compared to traditional methods, especially in
terms of lower contamination risks and improved regu-
latory compliance. Additionally, other benefits, such as
reducing costs through a more straightforward process
and even decreasing cytotoxicity, have been reported
[227]. Feeder-free NK cell expansion systems rely on
cytokines and stimulating supplements or antibod-
ies. Ex vivo cultured NK cells treated with IL-15 and
nicotinamide exhibited stable CD62L expression, which
was linked to increased FOXOL1 levels. Nicotinamide
enhanced NK cell metabolism, cytotoxicity, and cytokine
production, leading to improved outcomes in adoptive
transfer experiments. Recently, Cichocki et al. performed
a phase 1 clinical trial in patients with relapsed or refrac-
tory NHL using rituximab in association with NK cells
expanded with IL-15 and nicotinamide. The final result
showed a 74% response rate in 19 patients [156]. Gluk
et al. conducted two phase I studies to assess the com-
bination therapy of rituximab and IL-2 (4.5-14 million
international units) in relapsed or refractory B-cell NHL
to boost ADCC through NK cell activation. The results
showed that adding IL-2 to rituximab treatment is safe
and effective, particularly with thrice-weekly IL-2 dos-
ing, leading to increased NK cell counts and associated
with treatment response [234]. In conclusion, obtaining
a sufficient number of functional NK cells for therapeutic
purposes remains a challenge. Despite the advancements
made in feeder-free NK cell expansion, further investiga-
tions are needed to optimize this process and ensure its
utility in clinical applications.

Conclusion
In this comprehensive review, we first provided an over-
view of NK cells, including their function, characteris-
tics, development, and maturation. We then delved into
the complex tumor microenvironment and the interplay
between various presented cells that can either support
or hinder the antitumor activity of NK cells in NHL.
Building on these findings, we explored various strat-
egies to enhance the therapeutic potential of NK cells
because based on the findings reported in the literature,
the function and number of NK cells are defective in
NHL patients. Therefore, it would be beneficial to bolster
the innate immune response by injecting and activating
NK cells. Also, combinations of NK cells with multiplex
immunotherapy strategies such as mAbs, BiKEs, and
CARs could be effective and have been investigated in
numerous clinical trials. The mAbs and BiKEs augmented
NK cell-killing activity mediated by ADCC. However,
BiKEs simultaneously bind to the tumor antigen and the
NK cell surface Fc receptor, potentially creating a bridge
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between NK cells and tumor cells and allowing them to
act more effectively than mAbs. The use of NK cells engi-
neered with a CAR structure is another type of NK cell-
based immunotherapy for NHLs. CAR-NK cells, when
equipped with cytokine receptors or cytokine genes, have
demonstrated enhanced proliferation and prolonged sur-
vival in the patient’s bloodstream. They can target TAAs
with particular specificity and result in improved treat-
ment responses. CIML NK cells with adaptive immune
characteristics and long lifespans are also appropriate for
this application, but they have not been well assessed in
NHLs.

By reviewing the available clinical trial data, we con-
cluded that NK cell-based approaches are generally
well-tolerated, with no major safety concerns observed
specifically GVHD. Overall, the available clinical trial
data provide an encouraging foundation for the contin-
ued investigation and development of NK cell-based
immunotherapies for the management of NHLs. The
safety profile demonstrated in these studies, coupled
with the potential for improved clinical outcomes, war-
rants further exploration of NK cell-based approaches,
either as standalone therapies or in combination with
other modalities, to improve the treatment landscape for
patients with this complex hematological malignancy.
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