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Abstract 

Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies 
worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is antici-
pated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based 
immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer 
engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the abil-
ity of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well 
as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our 
attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications 
of NK cells in the immunotherapy of patients with NHL.
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Introduction
B-cell non-Hodgkin lymphoma (NHL) collectively rep-
resents the most common type of hematologic malig-
nancy [1]. While advances in chemotherapy, monoclonal 
antibodies, and stem cell transplantation have improved 
survival rates, many NHL patients remain resistant to 
therapy or experience relapse. This highlights the neces-
sity for finding novel curative therapeutic options for 
these patients [2–4].

Recently, novel therapeutic approaches, such as chi-
meric antigen receptor (CAR)-T cell therapy, have been 
utilized in several clinical trials for patients with relapsed/
refractory (R/R) B-cell NHL, resulting in promising clini-
cal responses [5–7]. However, this therapeutic approach 
is expensive and associated with unique and severe 
side effects such as cytokine release syndrome (CRS), 
immune effector cell-associated neurotoxicity syndrome 
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(ICANS), and graft-versus-host disease (GVHD) in allo-
genic settings [8, 9]. Other immune cells, such as natu-
ral killer (NK) cells, which exhibit significant cytotoxic 
activity against cancer cells and possess a safer immune 
profile, can be used as alternative approaches for immu-
notherapy of patients with R/R NHL. Moreover, it is also 
feasible to equip NK cells with a CAR structure [10, 11].

This study will delve into the B-cell NHL tumor micro-
environment (TME) and the interaction between NK 
cells and malignant cells. Additionally, we provide a com-
prehensive review of clinical trials focused on the utiliza-
tion of NK cells in patients with R/R NHL. Finally, new 
approaches recently used to increase NK cells effective-
ness for B-cell NHL immunotherapy are summarized.

NK cells: biology, receptors, and functions
NK cells, a specialized subset of innate lymphoid cells 
(ILCs), can distinguish between self-cells and non-self-cells 
through the recognition of self-major histocompatibil-
ity complex (MHC) I molecules [12, 13]. They constitute 
approximately 10–15% of the lymphocyte population in 
peripheral blood, and characterized as large granular lym-
phocytes with kidney-shaped nuclei, a high cytoplasm-to-
nucleus ratio, and large azurophilic granules in cytoplasm 
[14, 15]. NK cell development and maturation primarily 
occur in the bone marrow, where common lymphoid pro-
genitors (CLPs) differentiate into NK precursors (NKPs), 
immature NK cells, and finally mature NK cells [12]. Nota-
bly, recombinant interleukin (rIL)-15 plays a crucial role in 
NK cell development from hematopoietic stem cells [16]. In 
humans, CD122 expression on NKPs is crucial for NK cell 
lineage commitment, and CD56 expression is a final step in 
the differentiation of NKPs into NK cells [17]. NK cells are 
typically identified by the expression of CD56 and CD16, 
and the absence of CD3 (T cell marker) [18].

Human NK cells can be classified into two main subsets: 
the  CD56bright subset, which is characterized by immaturity, 
limited cytolytic activity, but high cytokine production; and 
the  CD56dim subset, which is mature, exhibits higher cytol-
ytic activity, but lower cytokine production [19].

NK cells are equipped with various germline-encoded 
activating and inhibiting receptors [20]. The function of 
NK cells is delicately regulated by the balance of the acti-
vating and inhibitory signals that are transmitted through 
their receptors [21]. Table 1 provides an overview of NK 
cell receptors.

NK cells express the HLA-specific activating receptors 
such as KIRs/CD158 (2DS1–2DS5 and 3DS1), NKG2C, 
and NKG2E. NKG2C and NKG2E are expressed as het-
erodimers with CD94. Upon interaction with HLA-E, 
they transmit activating signals through the DNAX-acti-
vation protein (DAP)-12 adaptor molecule [22–24]. The 
natural cytotoxicity receptors (NCRs) including NKp46, 

NKp44, and NKp30 are the major non-HLA specific 
activating NK receptors, which evoke  an immune 
response upon detection of cognate viral and cellular 
ligands [20, 25]. NKG2D is another non-HLA-specific 
activating NK cell receptor [26]. The UL16-binding pro-
tein (ULBP) and MHC class I chain-related proteins A 
and B (MICA/B), which are increased in the tumor, 
stressed, and infected cells, are representative of NKG2D 
ligands [27]. Additionally, some other molecules, such 
as 2B4, NTB-A, CD59, NKp80, and DNAX accessory 
molecule-1 (DNAM-1), are essentially coreceptors; in 
fact, they can intensify the NK cell triggering induced 
by NCRs or NKG2D (See Table 1) [28–32]. NK cells are 
also equipped with the CD16a (FcγRIIIa, a low-affinity 
Fc), which plays a crucial role in their antibody-depend-
ent cell-mediated cytotoxicity (ADCC) effector function. 
It is worth noting that CD16 is the only receptor that can 
activate NK cells without the need for further activation 
from other receptors [33].

Besides activating receptors, NK cells express inhibi-
tory receptors that modulate the strength of activat-
ing receptors and contribute to regulating immune 
responses and tolerance [34]. The CD94/NKG2A (CD94/
CD159a) heterodimer and members of the KIR/CD158 
family are two distinct classes of HLA-specific inhibitory 
receptors [35, 36]. The LIR-1/ILT2/CD85 is an inhibi-
tory receptor with broad specificity for both classical 
and non-classical MHC molecules [37–39]. Program-cell 
death receptor 1 (PD-1), Sialic acid recognizing Immu-
noglobulin-like Lectins (Siglecs)/p75/AIRM1/CD328, 
leukocyte-associated immunoglobulin-like receptor-1 
(LAIR-1)/p40/CD305, and IRp60/CD300a known as 
another non-HLA-specific inhibitory receptor that ham-
per NK cell-mediated antitumor immunity through the 
recognition of different ligands on the surface of cancer-
ous cells (See Table 1) [40, 41].

NK cells have diverse functions, including their natural 
antitumor and antiviral activities, as well as their regula-
tory roles in modulating immune responses and promot-
ing tissue growth. They are abundant in the TME, where 
they kill cancer cells in a variety of ways [21]. The anti-
tumor functions of NK cells include missing self-mech-
anisms, direct cytotoxicity, and activation of adaptive 
immune responses (Fig. 1) [42–47].

TME in NHLs: composition and functions
The development of B-cell lymphoma involves an intri-
cate interplay between tumor cells and the surrounding 
TME (Fig. 2). The microenvironment in B-cell lymphoma 
is fascinating because it has crucial functions in regulat-
ing the survival and growth of tumor cells, promoting 
immune evasion, and contributing to the development of 
resistance to treatment [48–52]. It is worth mentioning 
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that different cells within the TME can display pro-
tumorigenic or anti-tumorigenic functions, as shown in 
Table 2.

Intratumoral T lymphocytes constitute 50% of the total 
cells within the TME and are categorized based on the 

expression of CD4 or CD8. Typically,  CD4+ T lympho-
cytes support other immune cells, while  CD8+ cytotoxic 
T lymphocytes (CTLs) are known to trigger target cell 
killing by releasing perforin and granzyme B, expression 
of death ligands and IFN-γ and TNF-α production [53, 

Table 1 Overview of NK cells receptors

HN Hemagglutinin neuraminidases, PVR Poliovirus receptor, AICL Activation-induced C-type, SP-D Surfactant protein D, ADP Adiponectin, PCNA Proliferating cell 
nuclear antigen, SLAMF2 Signaling lymphocytic activation molecule 2, MIC MHC class I chain-related protein, ULBP UL16 binding protein 1

Receptors Molecular structure CD marker Ligand (s)

Activating receptors
 HLA-specific activating receptors Immunoglobin superfamily

  (I) Killer immunoglobin receptors (KIRs)

   • KIR2DS1 CD158h HLA-C2

   • KIR2DS2 CD158j HLA-C1

   • KIR2DL4 CD158d HLA-G

   • KIR2DS5 CD158g ?

   • KIR3DS1 CD158e2 HLA-F

  (II) CD94/NKG2 C-type lectin family

   NKG2C CD159c HLA-E

   NKG2E CD159e ?

 Non-HLA-specific activating receptors
  (I) Natural cytotoxicity receptors (NCRs) Immunoglobin superfamily

   • NKp46 (NCR1) CD335 Heparin, viral HA and HN

   • NKp44 (NCR2) CD336 viral HA and HN, NKp44L, PCNA

   • NKp30 (NCR3) CD337 B7-H6, BAT3, viral HA

  (II) NKG2D C-type lectin CD314 MIC-A, MIC-B, ULBP

  (III) Coreceptors

   • 2B4 Immunoglobin superfamily CD244 SLAMF2 (CD48)

   • NTB-A Immunoglobin superfamily CD352 NTB-A

   • DNAM-1 Immunoglobin superfamily CD226 PVR (CD155), Nectin-2 (CD112)

   • NKp80 C- type lectin-like family - AICL

  (IV) FcγRIII Immunoglobin superfamily CD16 IgG1, IgG2, IgG3

Inhibitory receptors
 HLA-specific inhibitory receptors
  (I) Killer immunoglobin receptors (KIRs) Immunoglobin superfamily

   • KIR2DL1 CD158a HLA-C2

   • KIR2DL2 CD158b HLA-C1

   • KIR2DL3 CD158b2 HLA-C1

   • KIR2DL5 CD158F ?
   • KIR3DL1 CD158e HLA-Bw4

   • KIR3DL2 CD158k HLA-A3, A11

  (II) CD94/NKG2 C-type lectin family

   • NKG2A CD158a HLA-E

  (III) Other

   • LIR-1(ILT2) Immunoglobin superfamily CD85 ?

 Non-HLA-specific inhibitory receptors
  (I) PD-1 Immunoglobin superfamily CD279 PD-L1/PD-L2

  (II) Siglec7/p75/AIRM1/ Immunoglobin superfamily CD328 Sialic acid

  (III) LAIR-1/p40 Immunoglobin superfamily CD305 Collagen, C1q, SP-D, ADP

  (IV) IRp60 Immunoglobin superfamily CD300a ?
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54]. CTLs are activated by antigen presentation through 
MHC-I molecules and the interaction of costimulatory 
molecules (B7-1 and B7-2) with CD28 [55, 56]. Con-
versely, inhibitory signals from molecules like CTLA-
4, PD-L1/PD-L2, and LAG-3 regulate the activation of 
CTLs [57, 58]. Clinical studies have shown that higher 
numbers of intratumoral  CD8+ T cells are linked to 
longer overall survival (OS) and disease-specific survival, 
regardless of other prognostic factors [59].  CD4+ T cells 
play a crucial role in regulating the immune response by 
boosting Ab production, attracting granulocytes to areas 
of inflammation, and supporting an efficient immune 
response by generating cytokines and chemokines 
[53]. These cells were categorized into effector  CD4+ T 
cells, follicular helper T (TFH) cells, and regulatory T 
cells (Tregs). Effector  CD4+ T cells polarized to TH1, 
TH2, and TH 17 cells based on the patterns of various 
cytokines (See Table  2) [60, 61]. TH1 cells aid the acti-
vation of macrophages, NK cells, and CTL, while TH2 
cells facilitate humoral immune responses by promoting 
B-cell growth and antibody production [62–64]. In B-cell 

NHL, the expression of both TH1 and TH2 cytokines at 
high mRNA levels has been reported [65]. Traditionally, 
the TH1 immune response is considered more effec-
tive at promoting antitumor immunity, while the TH2 
immune response may support tumor growth by pro-
moting angiogenesis and inhibiting the TH1-mediated 
immune response [66]. Higher levels of IL-4, indicative 
of a TH2 response, are associated with longer survival, 
while increased levels of IL-12, a cytokine involved in 
TH1 immunity, are linked to poorer prognosis in certain 
NHL types, suggesting that malignant B cells can mod-
ulate the effects of TH1 and TH2 cells in different lym-
phoma types [52, 67]. Besides, defects in TH17 cells have 
been observed in B cell NHL [52, 68, 69]. TFH cells play 
specific roles in B-cell clonal selection, maturation, and 
differentiation into memory cells or plasma cells within 
germinal centers [70]. TFH cells also facilitate B-cell 
activation, prevent malignant B cells from undergoing 
spontaneous apoptosis, and stimulate the proliferation 
of lymphoma cells [52, 71]. Tregs have a critical role in 
cancer by restricting immune activation and specific 

Fig. 1 Natural killer (NK) cell function within tumor microenvironment (TME). A) Missing-self recognition against tumor cells lacking MHC class 
I ligands for inhibitory NK receptors. B) Direct cytotoxicity against tumor cells mediated by releasing cytotoxic granules containing perforin/
granzymes, IFN-γ and TNF-α production, antibody-dependent cell-mediated cytotoxicity (ADCC) via CD16, and induction of apoptosis pathway 
through death receptor ligands like TRAIL/FasL. C) Triggering the adaptive antitumor immunity by recruiting dendritic cells via chemokines 
and then amplifying  CD4+ and  CD8+ T cells antitumor immune response
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immune responses [72]. In lymphoma biopsy samples, 
Treg cells are abundant and have been shown to suppress 
antitumor immunity by inhibiting other intratumoral 
 CD4+ and  CD8+ T-cell populations. TGF-β produced by 
lymphoma cells can stimulate the expression of FoxP3, a 
specific marker for Tregs, which can result in the conver-
sion of CD4 + /CD25- T cells into Tregs [73].

In addition to T cells, the immune TME in NHLs 
also contains tumor-associated macrophages (TAMs), 
tumor-associated neutrophils (TANs), and myeloid-
derived suppressor cells (MDSCs). TAMs are classified 
to anti-tumorigenic (M1 macrophages) and pro- tumo-
rigenic (M2 macrophages) [74]. M1 macrophages sup-
port the growth and differentiation of TH1 cells and 
NK cells, trigger CTLs cytotoxicity, and mediate ADCC 
[75–77]. Conversely, M2 macrophages hinder antitumor 
immunity and promote TH2 and Treg function, as well 
as CTL suppression [76, 78]. In B-cell lymphoma, TAMs 
play an important role in tumor progression, drug 
resistance, and recurrence via multiple mechanisms 
[78]. Similarly, in the early stages of tumor formation, 

TANs primarily exhibit the N1 phenotype in the pres-
ence of INF-β resulting in CTL activation and recruit-
ment and triggering ADCC. However, as the tumor 
progresses, TGF-β triggers the transition of TANs to 
the N2 phenotype. Neutrophils with an N2-like phe-
notype accompanied by tumor proliferation, blood ves-
sel formation, extracellular matrix (ECM) degradation, 
and hinder T-cell activation. In addition to their func-
tions, the N1 phenotype and N2 phenotype differ from 
each other in terms of cell surface markers (See Table 2) 
[50, 78–81]. MDSCs are a diverse group of cells that 
include monocytic MDSCs (M-MDSCs) and granulocytic 
MDSCs (PMN-MDSCs). MDSCs suppress CD4 + T 
cells, CD8 + T cells, and NK cells through direct cell 
contact and the production and activation of inhibitory 
molecules. Furthermore, MDSCs regulate the expansion 
and activation of Tregs, support tumor angiogenesis and 
metastasis, and can transform into TAMs at the tumor 
site. A high prevalence of the M-MDSC subpopulation 
has been linked to disease progression and decreased 
OS in B-cell NHL patients [50, 52, 73, 82].

Fig. 2 Schematic representation of tumor microenvironment (TME) constituents in non-Hodgkin lymphomas (NHLs). The TME comprises cellular 
and noncellular components. The cellular microenvironment consists of immune and nonimmune cells that can play pro- or antitumorigenic 
roles within the NHL milieu (see Table 2 for more details about the pro-tumorigenic and anti-tumorigenic cells in the TME). CTLs, effector CD4.+ 
T cells (TH1, TH2, TH17, TFH, and Treg cells), follicular dendritic cells (FDCs), natural killer (NK) cells, tumor-associated macrophages (TAMs), 
tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs) constitute the immune microenvironment. On the other 
hand, mesenchymal stromal cells (MSCs) and cancer-associated fibroblasts (CAFs) are involved in nonimmune microenvironments. The 
noncellular components include the extracellular matrix (ECM) as well as various cytokines, chemokines, and molecules produced by cancerous 
and noncancerous cells and executed by these cells to induce their stimulatory or inhibitory effect on bystander cells (see Sect. "TME in NHLs: 
Composition and Functions" for more details about the interaction between cells inside the TME)
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TME also contains stromal cells such as mesenchymal 
stromal cells (MSCs), which reduce cell death and sup-
port tumor growth by secretion of immune molecules. 
Within the lymphoma TME, MSCs recruit monocytes, 
macrophages, and neutrophils to the tumor site. Moreo-
ver, MSCs can differentiate into cancer-associated fibro-
blast (CAF)-like cells and secrete diverse chemokines 
that contribute to the homing and adhesion of lymphoma 
B cells [52, 83, 84]. CAFs, as another stromal cell, influ-
ence a variety of biological processes that advance can-
cer, including angiogenesis as well as the production 
and release of growth factors, cytokines, and exosomes. 
CAFs actively stimulate tumor cell growth, invasion, and 
inflammation, and contribute to resistance to treatment 
[50, 52].

Exosomes are an important part of the TME. In lym-
phomas, exosomes can decrease NK cell-mediated 
cytotoxicity, trigger immune cell death, and increase 
treatment resistance through the delivery of various mol-
ecules such as interleukins, PGE2, TGF-β, and microR-
NAs. Additionally, tumor-derived exosomes expedite the 
activation and growth of MDSCs [50, 52, 85, 86]. Apart 
from exosomes, chemokines and cytokines present in the 
TME can also support tumor growth and development. 
Many studies have shown that the serum level of solu-
ble IL-2Rα, which is produced by  CD4+  CD25+ T cells, 
is greater in B-cell NHL patients and is associated with a 
poorer prognosis [73, 87]. The secretion of TGF-β malig-
nant B cells leads to the suppression of TH1 and TH17 
cell growth and hinders the proliferation of T cells [73, 
88]. Serum IL-10 levels have been demonstrated to be 
increased in B-cell NHL patients and to be negatively 
correlated with prognosis [73]. In addition, chemokines 
released by MSCs in lymphoma, including CXCL13, 
CCL19/CCL21, and CXCL12, facilitate B-cell adhesion 
and homing [52].

NK cell defects in NHL
The NK cell defects in the TME of NHL include quan-
titative deficiency, distribution abnormalities, functional 
deficiency, the presence of an immunosuppressive TME, 
and tumor cell escape from NK cell surveillance. Figure 3 
summarizes NK cell defects in the TME of NHLs.

Quantitative deficiency
The absolute NK cell count (A-NKC) decreases in (Dif-
fuse large B cell lymphoma) DLBCL patients. Accord-
ing to Plonquet et al. investigation, one-third of DLBCL 
patients who present with 2 or 3 adverse prognostic 
factors of aaIPI have low NKC at diagnosis. Further-
more, they established that NKC was associated with 
a poorer response to treatment and shorter event-free 
survival (EFS) [89]. Similarly, flow cytometry analysis of 

 CD3−CD56+ and/or  CD16+ cells in the peripheral blood 
of DLBCL and (follicular lymphoma) FL patients demon-
strated that both DLBCL and FL patients had low NKC, 
which was correlated with a reduction in progression-
free survival (PFS) and OS [90]. Furthermore, a deficit 
in NKC was detected in other NHLs, such as primary 
central nervous system lymphoma (PCNSL). Lin et  al. 
conducted a study on 161 patients with PCNSL and 
found that individuals who responded to treatment had 
a higher median of circulating NKC and NK cell propor-
tion compared to those who did not respond. Their study 
revealed that PCNSL patients who have a higher baseline 
NKC display longer OS than those with a low NKC [91]. 
Consequently, NKC in NHL patients represents a prog-
nostic biomarker for the assessment of clinical outcomes.

Functional deficiency
Cancer cells have been observed to employ a wide range 
of mechanisms to escape from the innate immune pres-
sure exerted by NK cells, including abnormalities in NK 
cytotoxicity function [92]. In the context of NHLs, NK 
cells have impaired degranulation capacity. According 
to previous studies, NK cells exhibit defects in the pro-
duction and exocytosis of cytotoxic granules containing 
perforin and granzyme [93, 94]. In a protein quantifica-
tion study involving 12 patients with NHL, it was dis-
covered that while the gene expression levels of perforin 
and granzyme B were higher in NHL patients compared 
to the control group, the intracellular levels of perforin in 
NK cells were lower in NHL patients [93]. Furthermore, 
a separate study conducted by Baychelier et  al. found 
that patients who developed NHL after undergoing lung 
transplantation exhibited an accumulation of NK cells 
with low expression of perforin and impaired degranu-
lation against NHL target cells [94]. Other aspects of 
NK cell hypofunction include decreased cytokines pro-
duction, e.g. IFN-γ and TNF-α, the overexpression of 
suppressor receptors such as T-cell immunoreceptors 
with immunoglobulin and ITIM domains (TIGIT), and 
the decreased expression of activating receptors such 
as TIM-3 [95]. It should be noted that TIGIT has been 
associated with NK cell exhaustion [96]. In addition, 
decreased CD16 expression in NK cells and impaired 
ADCC activity were observed in newly diagnosed and 
refractory NHL patients [95, 97].

NK cells in refractory NHL exhibit downregulated 
expression of activating receptors, including NKp30, 
NKp46, and NKG2D. Further investigation revealed that 
de novo NHL development was correlated with increased 
NKG2A and CD62L expression but reduced inhibitory 
KIR and CD57 receptor expression [94]. Essa et al. dem-
onstrated that DLBCL patients with advanced stages of 
the disease have significantly lower NKp44 levels than 
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patients with earlier stages of DLBCL. This decrease in 
NKp44 may be attributed to the high level of IL6 and 
TGF-β in the advanced stages of the disease, which in 
turn downregulate NK activating receptors [98]. The 
expression of CD16 and NKG2D activating receptors 
on the surface of  CD56dim cells was also reported to be 
decreased after rituximab treatment [99] (Fig. 3A).

Immunosuppressive TME
Successful interaction between NK cells and dendritic 
cells (DCs) and the production of chemokines are 
required to induce effective antitumor immunity by NK 
cells (Fig. 1). This process is negatively affected by TME, 
especially cellular and soluble components of the TME, 
which are associated with the escape of cancer cells due 
to the lack of effective immune responses [100]. Several 
immune suppressive cells, like MDSC, TAMs, and Tregs 
negatively interfere with NK cell activation and function. 
In a phase 2 clinical trial conducted by Bachanova et al., 

the frequencies of MDSCs and Tregs were investigated 
about adoptive NK cell therapy response in patients with 
NHL. Results from the trial indicated that patients who 
exhibited higher frequencies of MDSCs and Tregs, along 
with the adoptive NK cells, had a poorer response to 
therapy [95]. Similarly, Sato et al. demonstrated that the 
accumulation of MDSCs leads to NK cell depletion in 
NHL patients [101]. Increased numbers of MDSCs were 
reported in DLBCL, MZL, MCL, high‐grade B‐cell lym-
phoma (HGBL), PCNSL, and FL. Interestingly, MDSCs 
are markedly increased in high-grade NHLs and may 
be a potential prognostic marker [102]. The inhibitory 
effect of MDSCs on NKG2D expression and IFN-γ pro-
duction in NK cells was confirmed in both in  vivo and 
in vitro experiments [103]. The downregulation of other 
types of NK cell activating receptors, such as NKp30 and 
NKp46, was also detected [104, 105]. Further analysis in 
a murine lymphoma model revealed that MDSCs, which 
can secrete IL-10, reduced the frequency of NK cells 

Fig. 3 Possible mechanisms of natural killer (NK) cell defects in non-Hodgkin lymphomas (NHLs). The NK cell defects within the TME of NHLs 
include functional deficiency, the presence of an immunosuppressive TME, and tumor cell escape from NK cell surveillance (as well as quantitative 
deficiency and distribution abnormalities that are not shown in Fig. 2). See Sect. "NK cell defects in NHL" for more information). A) NK cell functional 
defects include decreased expression of activating receptors, overexpression of suppressor receptors, decreased ADCC mechanisms, decreased 
IFN-γ production, and impaired degranulation capacity. B) Immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory 
T cells (Tregs), and M2 macrophages hinder NK cell function through the production of immunosuppressive factors or the expression of inhibitory 
receptors. C) NHL cells evade NK cell-mediated cytotoxicity via resistance to the perforin/granzyme-mediated apoptosis pathway, resistance 
to death receptor-mediated apoptosis pathways, and inhibition of NK cell activation



Page 9 of 44Bakhtiyaridovvombaygi et al. Biomarker Research           (2024) 12:66  

[101]. Additionally, the coculture of MDSCs with NK 
cells has been shown to negatively affect the degranula-
tion capacity of these cells through the TIGIT/CD155 
pathway [105].

Tregs are another immunosuppressive cell type 
that limits adoptive NK cell therapy in NHL patients. 
Increased numbers of Tregs expressing high levels of 
Foxp3 following high-dose chemotherapy and IL2 admin-
istration before adaptive NK cell infusion interfere with 
NK cell expansion [106]. Treg infiltration in the TME 
could be justified via Indoleamine-2,3-dioxygenase 
(IDO). IDO is an immunosuppressive enzyme that cata-
lyzes the conversion of tryptophan to kynurenine [107]. 
NHL patients who overexpress IDO simultaneously 
exhibit increased levels of FoxP3, a Treg marker [108]. 
In addition, IDO not only inhibits NK cell proliferation 
but also decreases activating receptors [107]. In a study 
conducted by Ninomiya et  al., it was found that 32% of 
DLBCL patients exhibit overexpression of IDO, which 
is associated with unfavorable clinical outcomes [109]. 
Additionally, Yoshikawa et al. reported elevated levels of 
tryptophan-derived kynurenine in DLBCL patients [110].

Crosstalk between M2 macrophages and NK cells is 
another barrier to NK cell function in the TME. M2 
macrophages limit NK cells’ function by triggering the 
expression of inhibitory receptors immunoglobulin-
like transcript 2 (ILT2/ CD85j), an NK cell inhibitory 
receptor [111]. In NHL, a high density of M2 mac-
rophages in DLBCL of the central nervous system 
(CNS-DLBCL) has been detected and accounted for 
poor clinical outcomes [15].

Among other immunosuppressive factors, TGF-β has 
been investigated in NHL, and previous studies revealed 
TGF-β signaling Dysregulation in mantle cell lymphoma 
(MCL), FL, and DLBCL. The TGF-β signaling cascade 
is dysregulated through various mechanisms, such as 
altered receptor expression, disrupted SMAD signal-
ing, and disturbances in epigenetic and genetic pro-
cesses [112]. TGF-β inhibits IFN-γ expression, affects 
the metabolic pathway of NK cells, and reduces NKG2D 
and NKp30 expression, which are essential for tumor cell 
recognition and elimination, as well as for the effective 
interaction between natural NK cells and DCs [113, 114]. 
Interestingly, MDSCs and M2 macrophages participate 
in NK cell exhaustion by producing TGF-β1 (Fig.  3B) 
[103, 115].

Evasion mechanism
Resistance to apoptosis
Tumor cells in NHLs may escape from NK cell-mediated 
cytotoxicity through resistance to perforin/granzyme-
mediated apoptosis. For this purpose, tumor cells may 
exhibit elevated intrinsic levels of proteinase inhibitor 9 

(PI9), which functions to restrict the proteolytic action of 
granzyme B and secure their survival [116]. In this line, 
Bladergroen et  al. verified that P19 was overexpressed 
in different types of T/B-NHL, such as extranodal T-cell 
NHL, enteropathy type T-cell NHL, NK/T-cell nasal-type 
lymphoma, and DLBCL [116]. Furthermore, cancer cells 
may escape apoptosis by inactivating apoptotic pathways 
activated by death receptors. The death ligands FasL/
CD95L and TRAIL, which are members of the TNF fam-
ily, are expressed in NK cells. These ligands interact with 
their respective receptors, Fas/CD95 and TRAIL-R, pre-
sent on the surface of target cells. Upon interaction, the 
death domain (DD) is activated, initiating the apoptotic 
signaling cascade and ultimately leading to apoptosis 
[117]. According to previous studies, loss of Fas/CD95 
expression was found in some FL and diffuse B/T-cell 
lymphomas [118], mucosa-associated lymphoid tissue 
lymphomas (MALTLs) [119], and cutaneous B-cell lym-
phomas (CBCLs) [120], which are associated with poor 
prognosis. In addition, mutations in Fas/CD95 have been 
reported in GC-derived B-cell lymphomas, such as pri-
mary nodal DLBCL, MALT-type lymphomas, FL, and 
anaplastic large cell lymphoma (ALCL) [121, 122]. A 
somatic mutation in TRAIL-R, which is correlated with 
the loss of chromosome 8p21-22, has also been detected 
in NHLs (Fig. 3C) [123].

Inhibition of NK cell activation
CD58 or lymphocyte-function antigen 3 (LFA-3) is 
known as an NK cell activator that interacts with CD2 
on the NK cell surface [124–126]. Based on this specu-
lation, mutations or deletions in CD58 also prevent NK 
cell function, which has been reported in DLBCL and 
FL [125, 126]. HLA-G is an inhibitory molecule in both 
membrane-bound and soluble isoforms that suppresses 
NK cells through interaction with its ILT2 [127]. The 
serum level of soluble HLA-G increased in NLHs such as 
DLBCL, FL, and peripheral T-cell lymphoma, which may 
disrupt NK cell function and be involved in lymphoma 
development [128]. Notably, HLA-G expression in lym-
phoma is a double-edged sword with protective and 
destructive effects [129]. To explore the evasion mecha-
nisms, strategies that disturb NK cell receptors are also 
considered. The investigation by Satwani et  al. revealed 
that, incubation of NHL cells with romidepsin enhanced 
NK cell cytotoxicity. Subsequently, they reported that 
romidepsin increases the surface expression of the 
NKG2D ligands MIC A/B on lymphoma cells. Based on 
the results of this study, impairment of NK cell func-
tion may be related to decreased expression of activat-
ing receptor ligands such as MIC A/B [130]. The immune 
checkpoints PD-1 and PD-L1 also restrict NK cell func-
tion, and PD-1/PD-L1 axis blockade unleashes NK cell 
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cytotoxicity [127]. Research conducted by Laurent et al. 
revealed that DLBCL cells exhibit notably elevated lev-
els of PD-1 and PD-L1/2 compared to FL cells. Nota-
bly, some DLBCL tumor cells coexpress both PD-1 and 
PD-L1/2. Interestingly, there are more PD-L1/2-positive 
lymphoma cells in the activated B-cell (ABC) subtype 
of DLBCL (ABC-DLBCL) than in the GC subtype (GC-
DLBCL) [129]. Similarly, Kiyasu et al. reported that PL-1 
is frequently expressed in tumor cells in DLBCL and is 
associated with poor prognosis [131].

NK cell immunotherapy in NHLs
In NHL, the A-NKC of the autograft directly influ-
ences clinical outcomes of following HSCT [132]. In 
a randomized, double-blind phase III clinical trial, 
patients with NHL who received an autograft with 
an A-NKC ≥ 0.5 ×  109 cells/kg demonstrated 5-year 
OS and 5-year PFS rates of 87% and 71%, respec-
tively. In contrast, patients infused with an autograft 
A-NKC < 0.5 ×  109 cells/kg experienced 5-year OS rates 
of 55% and 5-year PFS rates of 32% [133]. With a 10.6-
year median follow-up in the final update, the 13-year 
OS rates demonstrated a significant difference between 
groups, with a rate of 46% for the cohort infused with 
autograft A-NKC ≥ 0.09 ×  109 cells/kg compared to 36% 
for the group infused with A-NKC < 0.09 ×  109 cells/kg 
(P-value < 0.02) [134]. Faster and robust recovery of NK 
cells following HSCT is another factor that can affect 
clinical outcomes [135]. Porrata et al. reported that NHL 
patients with an A-NKC ≥ 80 cells/µL on day 15 after 
autologous HSCT had longer OS and PFS than patients 
with lower counts (not reached vs 5 months, p0.001; not 
reached vs 3 months, p0.0001, respectively) [136]. These 
findings suggest that the early post-HSCT recovery of 
NK cells may play a crucial antitumor role in the poten-
tial graft-versus-tumor (GVT) effect, given that NK cells 
are the only immune effector cells that reach normal 
numbers and function post-HSCT [137].

Several early studies have employed the administration 
of low-dose subcutaneous rlL-2 to promote the recovery 
and cytotoxic activity of NK cells as an effective approach 
to eradicate residual disease and prevent relapse follow-
ing autologous HSCT in NHL patients [138, 139]. In a 
clinical trial involving patients with R/R high-grade NHL, 
researchers demonstrated that the administration of a 
low dose of rlL2 early after autologous HSCT for a dura-
tion of one year is well-tolerated and leads to the in vivo 
expansion of  CD16+/CD56+ NK cells. Significantly, 
compared to their baseline quantity and function before 
starting treatment, the expanded  CD56bright NK cell sub-
sets exhibited enhanced activity against K562 cells (an 
NK-sensitive cell line) and CD16-mediated redirected 
killing activity against P815 target cells (an NK-resistant 

cell line). All ten patients who participated in the trial 
remained free from relapse for a period ranging from 5 
to 34 months (median 16 months) after initiating rIL2 
therapy. Notably, two patients who still had residual dis-
ease following HSCT experienced complete disease dis-
appearance after rIL2 treatment [138]. Building upon 
the encouraging outcomes of these early studies, clinical 
trials have explored the adoptive transfer of ex vivo acti-
vated autologous NK cells or lymphokine-activated killer 
cells as a therapeutic approach for patients with lym-
phoma [140, 141]. The adoptive transfer of autologous 
NK cells was found to be feasible and safe, although only 
a limited antitumor effect was observed [142]. This limi-
tation primarily stemmed from the matching of inhibi-
tory receptors on autologous NK cells with self-MHC 
class I present on tumor cells, leading to "self" recogni-
tion signals that dampen NK cell activation and subse-
quent antitumor effects [142]. Furthermore, the adoptive 
transfer of autologous NK cells is costly and frequently 
requires multiple apheresis procedures, and the dose of 
injected NK cells is limited to approximately  107/kg [143]. 
To overcome these limitations, researchers have recently 
used allogeneic NK cells for lymphoma immunotherapy. 
In the phase 1 clinical trial conducted by Green Cross 
LabCell Corporation, the safety and possible efficacy of 
allogeneic NK cells were assessed in patients with malig-
nant lymphoma or advanced solid tumors. In this study, 
allogeneic NK cells (namely, MG 4101) were obtained 
from random healthy unrelated donors and expanded in 
culture bags supplemented with IL-2, irradiated autolo-
gous feeder cells, and OKT3. Multiple doses of MG4101 
were administered in the dose range of 1 ×  106 cells/kg 
to 3 ×  107 cells/kg without any signs of GVHD or serious 
toxicity. Among the 17 evaluable patients, only 8 exhib-
ited stable disease (SD), while the disease progressed 
in the remaining patients. The median PFS for patients 
with SD was 4 months, ranging from 2 to 18 months 
[144]. The results of this study indicated that the use of 
alloreactive NK cells alone was not sufficient to elimi-
nate the disease mass completely. As a result, researchers 
explored the combination of NK cells with other strate-
gies to enhance their therapeutic effectiveness in subse-
quent studies [135].

NK cells combined with mAbs
Over the past two decades, the therapeutic effects of at 
least 570 monoclonal antibodies (mAbs) have been inves-
tigated in clinical trials. Among them, 79 therapeutic 
mAbs, including 30 mAbs for the treatment of hemato-
logical malignancies, have received approval from the 
United States food and drug administration (FDA) and 
are currently commercially available [145]. When mAbs 
bind to their targets, they can kill cancer cells through a 
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variety of mechanisms, including programmed cell death 
(PCD), complement-dependent cytotoxicity (CDC), 
and ADCC [146]. Among these mechanisms, ADCC is 
an effective immune mechanism that is triggered when 
therapeutic mAbs are employed to eliminate cancer 
cells [147]. During the ADCC process, the FC region of 
the antibody is ligated to its corresponding FC receptor 
(FcR) on the plasma membrane of immune effector cells, 
while the Fab portion of the antibody attaches to target 
antigens on the surface of the cancer cell [148]. Human 
NK cells serve as crucial effector cells in the context of 
ADCC by expressing CD16A, which is a low-affinity 
receptor for IgG1 and IgG3 antibodies [149]. Given the 
likelihood that the efficacy of ADCC-mediated tumor cell 
elimination relies on the ratio of effector to target cells, 
the number and function of NK cells have been investi-
gated as potential biomarkers to predict the response to 
anti-CD20 immunotherapy in NHL patients [90, 150]. 
Klanova et  al. reported that low peripheral blood NKC 
in FL and DLBCL patients receiving anti-CD20 mAbs 
(rituximab or obinutuzumab) plus chemotherapy were 
linked to shorter PFS in both FL and DLBCL patients 
and diminished OS specifically in FL patients [90] Hence, 
the number of NK cells in individuals with lymphoma is 
important for determining their prognosis [151].

The administration of adoptive NK cells to enhance the 
ADCC capabilities of mAbs is a growing area of interven-
tion that has been explored in recent years [152]. There 
are several ongoing and completed clinical trials explor-
ing the safety and effectiveness of combining mAbs with 
infusions of autologous or allogeneic NK cells in patients 
with NHL (Tables 3 and 4). In a recent phase I study, Tan-
aka et  al. investigated the infusion of ex  vivo-expanded 
autologous NK cells in combination with rituximab-con-
taining chemotherapy in patients with relapsed  CD20+ 
malignant lymphoma [153]. Expanded autologous NK 
cells with high expression of NKp30, NKp44 and CD16 
were intravenously infused (up to 10 ×  106 cells/kg) into 
lymphoma patients one day after rituximab-combined 
salvage chemotherapy. The combination was safe and 
feasible, and among the nine lymphoma patients, seven 
achieved complete response (CR), with a median dura-
tion of 44 months (range: 6–56 months). However, it is 
difficult to determine the precise contribution of autolo-
gous NK cells to the clinical response, given that chemo-
therapy was administered to eight of nine patients after 
NK cell infusion [153]. In another study on chemother-
apy-refractory NHL patients, allogeneic NK cell therapy 
(dose of 0.5–3.27 ×  107 cells/kg) in combination with IL-2 
and rituximab was found to be safe and effective in 4 of 15 
evaluable patients, with 2 patients achieving CR lasting 3 
and 9 months and 2 patients obtaining partial response 
(PR) [95]. Moreover, in a recent phase I study employing 

ex vivo-expanded allogeneic NK cells (namely, MG4101) 
plus rituximab after lymphodepleting chemotherapy for 
R/R NHL patients, Yoon et  al. demonstrated that the 
treatment was well tolerated and led to a PR in 4 patients 
and a CR in 1 patient, yielding an overall response rate 
(ORR) of 55.6% [154]. Notably, one patient achieved a 
lasting CR that extended beyond 806 days [154].

In addition to autologous or allogeneic peripheral 
blood (PB)-derived NK cells, an increasing number of 
clinical trials have scrutinized the safety and efficacy of 
other NK cell sources, including cord blood (CB) [6, 155, 
157], induced pluripotent stem cells (iPSCs) [158], and 
immortalized NK cell lines [162], for NHL immunother-
apy. For example, in a phase 1/2 clinical trial, the safety 
and clinical activity of AB-101 (an allogeneic, nongeneti-
cally modified, CB-NK cell product) has been evaluated 
as a monotherapy and combined with rituximab for the 
treatment of R/R NHL patients [155]. The results from 
this study indicated that the concurrent administration 
of both agents was safe, resulting in an ORR of 67% in 6 
patients (CR observed in 3 patients and PR in 1 patient), 
in contrast to an ORR of 27% in cohorts receiving AB-101 
alone [155]. Another study by Katayoun Rezvani’s group 
assessed the efficacy of ex  vivo-expanded CB-NKs in 
combination with rituximab and high-dose chemother-
apy in NHL patients who were candidates for autologous 
HSCT [157]. Patients received rituximab and high-dose 
chemotherapy from days 13 through 7, lenalidomide 
from days 7 through 2, and CB-NK cells  (108/kg) on day 5 
before to autologous HSCT. CB-NK cells were detectable 
in vivo for two weeks, regardless of their HLA mismatch 
status. Importantly, no adverse events attributable to the 
CB-NK cells were observed. At a median follow-up of 47 
months, the rates of relapse free survival (RFS) and OS 
were 53% and 74%, respectively [157].

NK-92 is an immortalized IL-2-dependent  CD16− NK 
cell line that was isolated and successfully established by 
Klingman et al. in 1992 from a patient suffering from lym-
phoma. NK-92 cells exhibit potent cytotoxicity against 
several cancer cells, a phenomenon primarily ascribed 
to the overexpression of numerous activating recep-
tors, concurrent downregulation of almost all inhibitory 
receptors, and heightened expression of perforin and 
granzyme. Furthermore, NK-92 cells can continuously 
proliferate with a doubling time of 2–4 days, are easily 
obtainable, and have a homogeneous phenotype [163, 
164]. However, due to their cancerous nature, NK-92 
cells must be mitotically inactivated prior to infusion into 
patients to inhibit undesired clonal proliferation, which 
restricts their persistence and expansion in vivo, and allo-
geneic administration demands very high doses of NK-92 
cells [165]. In 2008, Arai et al. demonstrated for the first 
time the feasibility and safety of administering NK-92 
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cells (up to 3 ×  109) to cancer patients [166]. Recently, a 
phase I dose-escalation study using NK-92 cells (1 ×  109 
cells/m2, 3 ×  109 cells/m2 and 5 ×  109 cells/m2) for refrac-
tory hematological malignancies that relapsed after 
autologous HSCT was conducted by Williams et al. [162]. 
A total of 12 patients were enrolled in this trial, including 
2 patients with HL and 5 patients with NHL. The infu-
sions of irradiated NK-92 cells were well-tolerated even 
at high doses and resulted in CR in one HL patient and 
a minor response (defined as 10–30% regression of tar-
get tumor lesions without the occurrence of new lesions 
or progression of nontarget lesions) in 2 NHL patients. 
Notably, in this study, no NK-92 cells were detected more 
than 15 min after infusion [162]. As mentioned earlier, 
NK-92 cells are highly dependent on exogenous IL-2 for 
survival and lack the CD16 receptor, thus impeding their 
capacity to mediate ADCC [167]. To address this, NK-92 
cells have been modified to internally express IL-2 and 
the high-affinity CD16 receptor [168, 169]. Currently, this 
product, designated high-affinity NK (haNK), is being 
investigated in several clinical trials for solid tumors 
[170, 171]. Furthermore, preclinical data indicated 
that the combination of haNK cells withmAbs, such as 
daratumumab for multiple myeloma (MM) and rituxi-
mab for NHL, may have a synergistic effect. However, 

further clinical investigation is required to validate these 
approaches for NHL [163].

NK cells derived from iPSCs (iNKs) are another prom-
ising avenue for NK cell therapy and have the poten-
tial to address challenges commonly encountered with 
other sources of NK cells (Fig. 4) [172]. To generate iNK 
cells, somatic cells are first differentiated into iPSCs 
and then into  CD34+ hematopoietic stem and progeni-
tor cells (HSPCs). Subsequently, NK cells differentiate 
from HSPCs using cytokines (IL-3, IL-7, IL-15, SCF, and 
FLT3L) or stromal-based feeder cell lines and are then 
cocultured with feeder cells for further expansion [173, 
174]. Currently, iPSC-based NK cell platforms have been 
evaluated in several clinical trials as monotherapies or 
in combination with mAbs for the treatment of hema-
tological malignancies or solid tumors [158, 175–177]. 
As an example, FT516 is an iPSC-derived NK cell prod-
uct modified to express high-affinity, cleavage-resistant 
Fc receptor (CD16A), with a preliminary report of 18 
patients with R/R B-cell lymphoma in combination with 
rituximab demonstrating safety, with no evidence of 
GVHD, ICANS or CRS. Patients received two cycles of 
treatment consisting of a conditioning regimen (fludara-
bine and cyclophosphamide, each for 3 days), a single 
dose of rituximab and three weekly cycles of FT516 (four 
patients received 90 million cells/dose, seven patients 

Fig. 4 Overview of the advantages and limitations of different sources of NK cells



Page 24 of 44Bakhtiyaridovvombaygi et al. Biomarker Research           (2024) 12:66 

received 300 million cells/dose, and seven patients 
received 900 million cells/dose) accompanied by IL-2 (6 
MIU after each dose of FT516). Of the 18 patients, 10 
patients were naive to treatment with autologous CD19-
targeted CAR-T cells, and eight patients were previously 
treated with autologous CD19-targeted CAR-T-cell 
therapy. A total of 8/10 naive patients achieved an ORR 
(including 5 patients who achieved CR), and 3/8 patients 
previously treated with CD19-targeted CAR-T-cell ther-
apy achieved an OR and CR [158, 177].

NK cells combined with bispecific antibodies
Bispecific killer engagers (BiKEs) were created with the 
intention of having one "arm" that binds to CD16 on NK 
cells and the other "arm" that targets a specific antigen 
on tumor cells [178]. The engager serves as a replace-
ment for traditional antibody-Fc interactions in facilitat-
ing the immunological synapse between tumor cells and 
NK cells, thereby promoting NK activation and the kill-
ing of tumor cells [179]. Therefore, the use of BiKEs could 
enhance the function of NK cells by creating a stronger 
interaction when binding to anti-CD16 compared to the 
interaction between CD16 and the natural Fc portion of 
antibodies [180]. Moreover, BiKEs are nonimmunogenic 
and have rapid clearance properties, making them easy to 
engineer to target known tumor antigens. In addition to 
these advantages, BiKEs may offer advantages over mAbs 
due to their smaller size, which allows for better distri-
bution in the body. This approach is especially beneficial 
for treating solid tumors [181–183]. Currently, several 
clinical trials are being conducted to evaluate the effec-
tiveness of BiKEs in combination with NK cell therapy as 
a treatment for patients with lymphoma. Some of these 
trials focused on AFM13 [159, 184]. AFM13 is a tetrava-
lent, bispecific innate cell engager that targets CD16A/
CD30 and activates innate immune cells such as NK 
cells and macrophages [185]. AFM13 acts as a mediator 
by binding to CD16A on NK cells and to CD30 on lym-
phoma cells, which aids in the recruitment and activa-
tion of NK cells in proximity to tumor cells [186]. AFM13 
was initially tested as a single therapy in a phase 1 clini-
cal study for patients with R/R lymphoma [187]. The 
study showed that AFM13 treatment was safe and well-
tolerated and led to positive tumor responses in several 
patients [187]. CB-NK cells precomplexed with AFM13 
were recently tested within an ongoing phase I/II clini-
cal trial for patients with refractory CD30-positive lym-
phomas. Forty-two patients (37 patients with HL and 5 
patients with NHL with a median of seven prior lines of 
therapy) received fludarabine/cyclophosphamide fol-
lowed by CB-NK cells precomplexed with AFM13 and 
three weekly IV infusions of AFM13. The results of this 
study showed that AFM13 in combination with NK cells 

was safe for patients with no instances of CRS, ICANS, or 
GVHD and resulted in an ORR of 92.8% and a CR rate of 
66.7%. All four patients who had previously failed CD30 
CAR-T-cell therapy achieved a CR [159].

NK cells combined with CAR  structure
The CAR construct plays a crucial role in activating 
cells that have been transduced with CAR. The CARs 
employed in CAR-NK cells are often analogous to those 
utilized in CAR-T cells. A CAR consists of four essen-
tial components: an extracellular binding domain, a 
hinge region, a transmembrane domain, and one or 
more intracellular signaling domains (Fig.  5). Single-
chain antibody variable fragments (scFvs) originate from 
a tumor-specific antibody and have the ability to bind 
to a particular antigen displayed on the surface of can-
cer cells. Moreover, the intracellular signaling domains 
are obtained from the cytoplasmic domains of ITAMs 
found in TCRs or other stimulating receptors [188]. The 
extracellular binding domain of CAR-modified effector 
cells enhances specificity by targeting tumor-associated 
antigens (TAAs). The hinge region serves as a connec-
tion between the extracellular binding domain and the 
transmembrane domain. The intracellular signaling 
domains in different generations of CARs possess differ-
ent compositions, which affects the potency of the acti-
vation signal transmitted and consequently influences 
the cytotoxic capability against tumor cells (Fig. 5) [189]. 
The first generation of CARs consisted of only the CD3-ζ 
activation signaling domain. Subsequent generations of 
CARs incorporated one or two supplementary costimu-
latory molecules, including CD28, ICOS, 4-1BB, CD27, 
OX40, and CD40. CD28 and 4-1BB are the predomi-
nant molecules utilized among this group of molecules 
[190, 191]. Researchers have utilized other molecules as 
activation signaling domains for NK cells, in addition to 
the commonly used CARs that are applicable for both 
CAR-T cells and CAR-NK cells. CD244 (2B4), a member 
of the signaling lymphocyte activation molecule (SLAM) 
family, can also serve as a costimulatory molecule. The 
overexpression of 2B4 in NK cells leads to an enhanced 
ability to amplify signals and increased innate cytotoxic-
ity against tumor cells [192]. DAP-12 is present on NK 
cells and plays a role in transmitting signals through the 
NK-activating receptors NKG2C and NKp44. Addition-
ally, DAP-10 is involved in signal transmission through 
NKG2D [193, 194]. Hence, DAP-12 and DAP-10 can 
transmit intracellular signals in CAR-NK cells. In addi-
tion, NK cells modified with DAP-12-based CARs exhib-
ited superior performance compared to that of NK cells 
modified with CD3-ζ-based CARs [193]. Recent research 
has indicated that NKG2D ligands are overexpressed 
in several hematological malignancies. Hence, the 
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NKG2D-DAP-10-CD3-ζ CAR, which specifically targets 
NKG2D ligands, holds significant promise for the treat-
ment of blood malignancies [195].

Transduction of the CAR gene into NK cells encom-
passes viral transduction, namely, retrovirus-based and 
lentivirus-based approaches, as well as transfection 
techniques such as electroporation, lipofection, and 
their combination with transposon systems (Fig. 5) [11]. 
CAR constructs are commonly integrated into a retro-
virus or lentivirus-based expression vector. These vec-
tors are then used to transduce primary NK cells or NK 
cell lines, with NK-92 being the most frequently used. 
The transduction of retroviral vectors shows a high 
level of effectiveness (ranging from 43 to 93%) in pri-
mary NK cells. However, the occurrence of insertional 
mutagenesis and its negative consequences significantly 
limit the use of this method in clinical applications 
[196]. However, lentivirus-based transduction is con-
sidered to be a safer method. Although its transduc-
tion efficiency in peripheral blood mononuclear cell 
(PBMC)-derived NK cells ranges from 8 to 16%, there is 
still an opportunity for improvement [197]. RNA trans-
fection methods are economical strategies that have 
greater efficacy in transferring genes. However, the pro-
duction of CAR constructs using this method is tempo-
rary, lasting for approximately 3–5 days. Although the 
short therapeutic time frame is a limitation, the tempo-
rary nature of CAR therapy may lower the occurrence 

of CAR-associated adverse effects, such as on-target 
off-tumor effects [195, 197, 198]. The integration of 
DNA into cells using transposon systems, such as Pig-
gyBac (PB) and sleeping beauty (SB), in combination 
with transfection methods has emerged as an appeal-
ing strategy for generating cells that express transgenes 
in a safer and more stable manner [199, 200]. The SB 
transposon vector has proven to be a cost-effective and 
efficient means of gene transfer. However, its suitability 
for use with CAR-NK cells has not yet been evaluated 
[201].

CAR-NK cells are safer than CAR-T cells. The 
enhanced safety of CAR-NK cells can be attributed to two 
primary factors. CRS and neurotoxicity are frequently 
adverse effects of CAR-T-cell therapy [202]. The cytokine 
storm triggered by CAR-T cells, specifically TNF-α, is 
primarily facilitated by proinflammatory cytokines such 
as IL-1 and IL-6 [203]. CAR-NK cells secrete a variety of 
cytokines, such as IFN-γ and GM-CSF, which differ from 
the cytokines produced by CAR-T cells. Second, CAR-T 
cells can cause life-threatening GVHD due to HLA limi-
tations. On the other hand, NK cells, which are consid-
ered important cells that initiate the GVT response early 
on, can potentially prevent GVHD by eliminating recipi-
ent antigen-presenting cells and CTLs [204]. Further-
more, CAR-NK cells may exhibit superior effectiveness 
in targeting and destroying cancerous cells compared 
to CAR-T cells. CAR-NK cells possess the ability to 

Fig. 5 An overview of (A) CAR-NK cell therapy workflow in NHLs, (B) CAR structure and generation and (C, D) various methods of delivering CAR 
into NK cells
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identify and execute their cytotoxic functions via both 
their designed and innate killing capabilities. By utilizing 
CARs, effector cells can enhance their ability to selec-
tively target and eliminate a specific antigen with greater 
efficiency. Unlike CAR-T cells, CAR-NK cells retain the 
inherent ability of NK cells to destroy target tumor cells 
even when the expression of specific tumor antigens is 
reduced [205]. Moreover, the production of CAR-NK 
cells is more convenient than that of CAR-T cells. Due 
to the absence of the risk of GVHD, NK cells can be 
obtained from either a donor who is a match or a donor 
who has an HLA mismatch, hence expanding the pool of 
potential donors and enhancing the overall quality of the 
end products [206].

Recently, CAR-NK cell therapy has been assessed in 
various clinical trials for the treatment of lymphoma 
(Tables  5 and 6). CB-CAR-NK cells are presently 
employed in a clinical trial at MD Anderson Cancer 
Center, specifically targeting CD19 cells, and yield-
ing highly favorable outcomes. 37 patients with R/R 
CD19-positive malignancies were enrolled in this trial 
and treated with CB-CAR-NK cells in two phases: 
a dose-escalation phase and an expansion phase. In 
the dose-escalation phase (n = 11), patients received 
a conditioning regimen (fludarabine and cyclophos-
phamide, each for 3 consecutive days) followed by the 
infusion of CB-CAR-NK cells (three patients received 
10 ×  104 cells/kg, four patients received 10 ×  105 cells/
kg, and four patients received 10 ×  106 cells/kg). In the 
expansion phase (n = 26), patients were first treated 
with 10 ×  106 cells/kg CB-CAR-NK. Then, the trial 
was amended to include a second expansion cohort 
in which patients received a single flat dose of 8 ×  108 
cells/kg CB-CAR-NK. A retroviral vector including an 
anti-CD19-CD28-CD3-ζ CAR, an IL-15 gene, and a 
suicide switch was utilized for transduction. None of 
the patients developed neurotoxicity or GVHD, and 
only one patient developed mild CRS (grade I). The 
ORR (including PR and CR) on days 30 and 100 for the 
37 patients was 48.6%. The 1-year OS and PFS were 68% 
and 32%, respectively. Compared with non-responders, 
patients who achieved OR had higher levels and longer 
persistence of CB-CAR-NK cells [6, 207].

Goodridge et  al. created a CAR-NK product called 
FT596. This product was derived from iPSCs. The 
iPSCs were modified to consistently produce anti-CD19 
CAR, a high affinity and non-cleavable CD16 Fc recep-
tor, and a combination of a membrane-bound IL-15 and 
an IL-15Rα fusion protein. In a Raji xenograft mouse 
model, the combination of FT596 with rituximab 
resulted in a substantial increase in the elimination 
of Raji tumor cells. In addition, when a mouse model 

that had been engrafted with human CD34 cells, FT596 
showed enhanced longevity and safety compared to 
primary CAR19 T cells [211]. This platform has been 
translated into a multicenter, phase I clinical trial as 
monotherapy or in combination with rituximab to treat 
patients with R/R B-cell lymphoma [210]. A total of 20 
patients underwent two treatment regimens, includ-
ing 10 in regimen A (FT596 alone) and 10 in regimen B 
(FT596 cells combined with rituximab). Among the 17 
evaluable patients, clinical response was observed in 9 
patients (5 from regimen A and 4 from regimen B), 7 of 
whom achieved CR. Notably, no dose-limiting toxicity, 
ICANS, or GVHD of any grade was observed. Interest-
ingly, 2/4 of patients treated with CAR-T-cell therapy at 
doses ≥ 9 ×  107 cells/kg achieved CR [210]. An extended 
follow-up period will provide insight into the durabil-
ity and efficacy of this platform. More recently, simi-
lar peripheral blood-derived anti-CD19 CAR-NK cells 
(named NKX019, a cryopreserved product utiliz-
ing OX40/CD3-ζ signaling domains and expressing a 
membrane-bound form of IL-15 for activation) were 
investigated in a phase I trial as a monotherapy for 19 
patients with R/R B-cell malignancies. Patients received 
a daily lymphodepletion regimen of fludarabine and 
cyclophosphamide for 3 days. Next, they received three 
infusions of NKX019 at 3 dose levels, with doses rang-
ing from 300 million to 1.5 billion cells per infusion. 
During the follow-up period, no dose-limiting toxic-
ity, neurotoxicity, CRS or GVHD was reported. Among 
the 14 patients with NHL, 8 achieved CR; however, 3 
patients with indolent lymphoma subsequently experi-
enced relapse after a remission period of greater than 6 
months [208, 212].

What’s Next? CIML NK cells
NK cells following exposure to happens, viral infection or a 
combination of cytokines achieve memory properties. NK 
cells preactivated with IL-12/15/18 have been described 
as cytokine-induced memory-like (CIML) NK cells [213]. 
CIML NK cells present distinctive characteristics, such 
as high proliferative capacity, sensitivity to low doses of 
IL-2, increased IFN-γ production, resistance to TGF-β, 
elevated glycolysis, and oxidative phosphorylation, which 
distinguishes them from conventional NK cells (cNK cells) 
[214–217]. In addition, the long-term life span and adaptive 
immune features of CIML NK cells have drawn attention 
to the use of these cells in cancer immunotherapy. Recent 
findings from preclinical and clinical trials have shown that 
CIML NK-based immunotherapy has produced promising 
results and also offers a safe approach to preventing GVHD, 
CRS, and neurotoxicity [218]. In the context of hemato-
logical malignancies, CIML NK cell-based immunotherapy 
has aided in the discovery of novel treatments for various 
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cancers, particularly myeloid disorders. Similarly, adoptively 
transferred CIML NK cells trigger CR in 44% of R/R acute 
myeloid leukemia (AML) patients [219].

Another clinical trial by Shapiro et  al. revealed that 
CIML NK cell infusion into an immune-compatible 
microenvironment in posttransplant relapsed AML, 
MDS, and MPN patients resulted in satisfactory expan-
sion and persistence [220]. Similarly, CIML NK cells 
injected into pediatric/young adults with post-HCT-
relapsed AML patients significantly expand and persist 
in a compatible milieu. Furthermore, this clinical trial 
established that AML patients were treated with donor 
lymphocyte infusions (DLIs), and CIML NK cells showed 
promising outcomes [221].

Unlike for myeloid disease, the therapeutic approach 
involving CIML NK cells in lymphoid malignancies has 
received less attention. One of these few studies was per-
formed on a rat model of T-ALL, namely, Roser leuke-
mia (RL). In this in vivo experiment, RL was treated with 
cNK cells, and NK cells were stimulated with IL12/15/18 
(CIML NK cells). Based on these results, RL is resistant 
to cNK cells but not to CIML NK cells. Therefore, CIML 
NK cells could be introduced as a possibility for immuno-
therapeutic clinical trials in T-ALL patients [222].

The role of CIML NK cells in lymphoma was studied by 
Ni et  al. in mice injected with RMA-S lymphoma cells. 
Tumor-bearing mice were treated with IL-12/15/18–preac-
tivated NK cells and IL-15–pretreated NK cells. The results 
highlighted that compared with IL-15–pretreated NK cells, 
IL-12/15/18–preactivated NK cells display greater frequency, 
persistence, proliferation, and functional killing activity at the 
tumor site [223]. In another study, Gang et al. further inves-
tigated CIML NK cell incorporation in lymphoma. They 
preactivated NK cells with IL-12/15/18 and then developed 
them to express the anti-CD19 CAR structure. The 19-CAR-
CIML NK cells exhibited improved in  vitro cytotoxicity 
against Raji cells and  CD19+ primary lymphoma cells, as 
illustrated by elevated IFN-γ production and degranula-
tion capacity. In addition, 19-CAR-CIML NK cells exhibited 
satisfactory durability, expansion, and effector function in a 
human lymphoma xenograft mouse model [224].

Finally, the challenges in NK cell-based immunother-
apy in NHLs, the highly appreciated features of CIML 
NK cells, and promising results from current preclini-
cal studies have prompted us to develop new therapeu-
tic options based on CIML NK cells. Hopefully, we will 
witness a fundamental revolution in the management of 
patients with NHL.

to harness their full therapeutic benefits. There are still 
efforts to obtain a considerable number of NK cells for 
therapeutic purposes and to ensure that the obtained NK 
cells are fully functional and capable of effectively target-
ing and killing abnormal cells. This requires careful selec-
tion and expansion of NK cells, which can be technically 
challenging in the laboratory [225, 226]. Most PB-derived 
NK cell expansion protocols can be categorized into 
feeder-cell or feeder-free systems [227].

Feeder cells
The production of a significant amount of NK cells from 
a small initial quantity relies on feeder cells. These feeder 
cells, whether naturally or through additional modifica-
tions, present ligands for NK cell receptors. When com-
bined with cytokines, this interaction drives a substantial 
expansion of NK cells outside the body, enabling the 
generation of a large number of NK cells for therapeu-
tic purposes [228]. Various types of cells, such as EBV-
transformed lymphoblastoids and genetically engineered 
HEK293 or K562 cell lines, are utilized as feeder cells. 
Among these, genetically modified K562 cells are the 
most commonly employed [227]. For example, when a 
mixed lymphocyte population is infected with Epstein‒
Barr virus (EBV) in vitro, it results in an immortalized cell 
line that exhibits characteristics similar to those of pro-
liferating B cells. With the expression of different ligands 
(4-1BBL), CD155, CD48, and CD58) that have specific 
receptors (4-1BB, DNAM-1, 2B4, and CD2, respectively) 
on activated NK cells, EBV-bearing  lymphoblastoid  cell 
lines  (LCLs) play essential roles in NK cell expansion 
and stimulation [228]. Using this method, an average of 
1,000–2,000-fold expansion of NK cells was reported to 
be observed over a period of 14 days [229]. The addition 
of IL-21 and IL-2 reportedly improved the expansion effi-
cacy [227, 230, 231]. In another method, irradiated feeder 
cells were employed to amplify NK cells in laboratory 
settings. The K562 leukemia cell line has been altered to 
display particular ligands linked to antigen-presenting 
cells (CD64, CD86, and truncated CD19, CD137L, 4-1BB 
ligand, and membrane-bound IL-21). The irradiated 
K562-mbIL21-41BBL cells seemed to be very effective at 
rapidly increasing the number of NK cells in RPMI media 
(containing 10% FBS). These modified cells expanded NK 
cells 47,967-fold in 21 days [232]. Nevertheless, using 
feeder cells can pose challenges due to licensing intri-
cacies, difficulties in sourcing, and the requirement for 
their elimination from the culture. Challenges such as 
incomplete irradiation of feeder cells (which might lead 
to teratoma) and separating and thoroughly eliminating 
cancer cells from the culture environment to avoid injec-
tion into patients are additional difficulties [233].

NK cell expansion
NK cells offer significant potential for immunotherapy in 
NHL treatment, but there are still obstacles to overcome 
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Feeder-free expansion methods
Expanding NK cells without the need for feeder cells has 
benefits compared to traditional methods, especially in 
terms of lower contamination risks and improved regu-
latory compliance. Additionally, other benefits, such as 
reducing costs through a more straightforward process 
and even decreasing cytotoxicity, have been reported 
[227]. Feeder-free NK cell expansion systems rely on 
cytokines and stimulating supplements or antibod-
ies. Ex  vivo cultured NK cells treated with IL-15 and 
nicotinamide exhibited stable CD62L expression, which 
was linked to increased FOXO1 levels. Nicotinamide 
enhanced NK cell metabolism, cytotoxicity, and cytokine 
production, leading to improved outcomes in adoptive 
transfer experiments. Recently, Cichocki et al. performed 
a phase 1 clinical trial in patients with relapsed or refrac-
tory NHL using rituximab in association with NK cells 
expanded with IL-15 and nicotinamide. The final result 
showed a 74% response rate in 19 patients [156]. Gluk 
et  al. conducted two phase I studies to assess the com-
bination therapy of rituximab and IL-2 (4.5–14 million 
international units) in relapsed or refractory B-cell NHL 
to boost ADCC through NK cell activation. The results 
showed that adding IL-2 to rituximab treatment is safe 
and effective, particularly with thrice-weekly IL-2 dos-
ing, leading to increased NK cell counts  and associated 
with treatment response [234]. In conclusion, obtaining 
a sufficient number of functional NK cells for therapeutic 
purposes remains a challenge. Despite the advancements 
made in feeder-free NK cell expansion, further investiga-
tions are needed to optimize this process and ensure its 
utility in clinical applications.

Conclusion
In this comprehensive review, we first provided an over-
view of NK cells, including their function, characteris-
tics, development, and maturation. We then delved into 
the complex tumor microenvironment and the interplay 
between various presented cells that can either support 
or hinder the antitumor activity of NK cells in NHL.

Building on these findings, we explored various strat-
egies to enhance the therapeutic potential of NK cells 
because based on the findings reported in the literature, 
the function and number of NK cells are defective in 
NHL patients. Therefore, it would be beneficial to bolster 
the innate immune response by injecting and activating 
NK cells. Also, combinations of NK cells with multiplex 
immunotherapy strategies such as mAbs, BiKEs, and 
CARs could be effective and have been investigated in 
numerous clinical trials. The mAbs and BiKEs augmented 
NK cell-killing activity mediated by ADCC. However, 
BiKEs simultaneously bind to the tumor antigen and the 
NK cell surface Fc receptor, potentially creating a bridge 

between NK cells and tumor cells and allowing them to 
act more effectively than mAbs. The use of NK cells engi-
neered with a CAR structure is another type of NK cell-
based immunotherapy for NHLs. CAR-NK cells, when 
equipped with cytokine receptors or cytokine genes, have 
demonstrated enhanced proliferation and prolonged sur-
vival in the patient’s bloodstream. They can target TAAs 
with particular specificity and result in improved treat-
ment responses. CIML NK cells with adaptive immune 
characteristics and long lifespans are also appropriate for 
this application, but they have not been well assessed in 
NHLs.

By reviewing the available clinical trial data, we con-
cluded that NK cell-based approaches are generally 
well-tolerated, with no major safety concerns observed 
specifically GVHD. Overall, the available clinical trial 
data provide an encouraging foundation for the contin-
ued investigation and development of NK cell-based 
immunotherapies for the management of NHLs. The 
safety profile demonstrated in these studies, coupled 
with the potential for improved clinical outcomes, war-
rants further exploration of NK cell-based approaches, 
either as standalone therapies or in combination with 
other modalities, to improve the treatment landscape for 
patients with this complex hematological malignancy.
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OS  Overall survival
PCNSL  Primary central nervous system lymphoma
TIGIT  T-cell immunoreceptors with Ig and ITIM domain
HGBL  High‐grade B‐cell lymphoma
ILT2  Inhibitory receptors immunoglobulin-like transcript 2
CNS-DLBCL  DLBCL of the central nervous system
DD  Death domain
MALTL  Mucosa-associated lymphoid tissue lymphoma
CBCL  Cutaneous B-cell lymphoma
ALCL  Anaplastic large cell lymphoma
LFA-3  Lymphocyte-function antigen 3
HLA  Human leukocyte antigen
ABC-DLBCL  Activated B-cell-DLBCL
GC-DLBCL  Germinal center-DLBCL
GVT  Graft-versus-tumor
SD  Stable disease
FDA  Food and drug administration
CR  Complete response
PR  Partial response
ORR  Overall response rate
PB  Peripheral blood
CB  Cord blood

iPSC  Induced pluripotent stem cell
RFS  Relapse free survival
haNk  High affinity NK cell
MM  Multiple myeloma
iNK  NK cells derived from iPSCs
HSPC  Hematopoietic stem and progenitor cell
BiKE  Bispecific killer engager
scFv  Single-chain antibody variable fragment
TAA   Tumor-associated antigen
SLAM  Signaling lymphocyte activation molecule
PBMC  Peripheral blood mononuclear cell
cNK cell  Conventional NK cell
CIML NK cell  Cytokine-induced memory-like NK cells
AML  Acute myeloid leukemia
DLI  Donor lymphocyte infusion
RL  Roser leukemia
ALL  Acute lymphocytic leukemia
LCL  Lymphoblastoid cell line
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