
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zhu et al. Biomarker Research           (2024) 12:56 
https://doi.org/10.1186/s40364-024-00607-8

Biomarker Research

†Chengpei Zhu, Yunchao Wang, Ruijuan Zhu and Shanshan Wang 
contributed equally to this work.

*Correspondence:
Hanping Wang
wanghp@pumch.cn
Xinting Sang
sangxt@pumch.cn
Xianzhi Jiang
jxz@moonbio.com
Haitao Zhao
zhaoht@pumch.cn

Full list of author information is available at the end of the article

Abstract
Background Accumulating evidence suggests that the gut microbiota and metabolites can modulate tumor 
responses to immunotherapy; however, limited data has been reported on biliary tract cancer (BTC). This study 
used metagenomics and metabolomics to identify characteristics of the gut microbiome and metabolites in 
immunotherapy-treated BTC and their potential as prognostic and predictive biomarkers.

Methods This prospective cohort study enrolled 88 patients with BTC who received PD-1/PD-L1 inhibitors from 
November 2018 to May 2022. The microbiota and metabolites significantly enriched in different immunotherapy 
response groups were identified through metagenomics and LC-MS/MS. Associations between microbiota and 
metabolites, microbiota and clinical factors, and metabolites and clinical factors were explored.

Results Significantly different bacteria and their metabolites were both identified in the durable clinical benefit (DCB) 
and non-durable clinical benefit (NDB) groups. Of these, 20 bacteria and two metabolites were significantly associated 
with survival. Alistipes were positively correlated with survival, while Bacilli, Lactobacillales, and Pyrrolidine were 
negatively correlated with survival. Predictive models based on six bacteria, four metabolites, and the combination of 
three bacteria and two metabolites could all discriminated between patients in the DCB and NDB groups with high 
accuracy. Beta diversity between two groups was significantly different, and the composition varied with differences 
in the use of immunotherapy.
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Background
Biliary tract cancers (BTCs) are rare aggressive tumors 
[1]. Most patients are diagnosed with advanced disease 
and have a median overall survival (OS) < 1 year [2]. The 
use of a combination of gemcitabine and platinum-based 
agents is the standard chemotherapy regimen for BTC 
[3]. Although combination chemotherapy may be initially 
effective, BTC eventually becomes chemotherapy-resis-
tant. Anti-PD-1/PD-L1 therapy is effective against vari-
ous solid tumors and is considered an alternative therapy 
for BTC; [4–6] however, clinical trials have demonstrated 
limited efficacy and variable responses. Determining 
which patients will respond positively to anti-PD-1/
PD-L1 therapy has become a major challenge.

Previous studies have shown that the gut microbi-
ome and microbe-derived metabolites influence the 
anti-PD-1/PD-L1 therapy response and can be used to 
predict therapy outcomes in non-small cell lung cancer 
(NSCLC), renal cell carcinoma (RCC), and melanoma 
[7, 8]. Microbiome studies of oral and gut microbiota 
in patients with melanoma receiving anti-PD-1 therapy 
showed significant differences in diversity and composi-
tion between responders and non-responders [9]. Fur-
thermore, fecal microbiota transplantation (FMT) from 
responsive patients into germ-free or antibiotic-treated 
specific pathogen-free mice can improve anti-PD-1 effi-
cacy [9]. A recent study reported that microbial metabo-
lites, such as short-chain fatty acids (SCFAs), influence 
the immune cell landscape and are associated with 
the anti-PD-1/PD-L1 therapy response in several solid 
tumors [7, 10]. However, the microbiome and microbe-
derived metabolites have not been well characterized in 
BTC.

Previously, we analyzed the gut microbiota in patients 
with hepatobiliary cancer receiving anti-PD-1-based 
therapy and found that the enrichment of specific bac-
teria may be associated with the efficacy of anti-PD-1 
therapy [11]. However, clinical studies have shown that 
the degree of malignancy and prognosis of hepatocellu-
lar carcinoma (HCC) and BTC differ substantially. Based 
on these findings, we prospectively and dynamically 
included patients with advanced BTC receiving anti-
PD-1/PD-L1 therapy to further investigate the associa-
tion between the gut microbiome, microbial metabolites, 
and clinical response (Supplementary Fig. S1).

Methods
Study cohort
From November 2018 to May 2022, we prospectively col-
lected fecal samples from 215 patients with advanced 
BTC in three clinical cohort studies (NCT03892577, 
NCT04010071, and NCT03895970) at Peking Union 
Medical College Hospital (PUMCH), as well as including 
our previous study [11]. Included patients met the fol-
lowing criteria: (i) treatment with PD-1/PD-L1 inhibitor; 
(ii) histologically or cytologically confirmed adenocarci-
noma (extrahepatic cholangiocarcinoma (ECC), intrahe-
patic cholangiocarcinoma (ICC), or gallbladder cancer 
(GBC)); and (iii) other criteria including adequate func-
tion of major organs, an Eastern Cooperative Oncology 
Group (ECOG) performance status of 0–2, and radio-
logically-evaluable lesions. The study excluded patients 
who had used antibiotics, underwent invasive biliary 
tract procedures, used other experimental drugs within 
4 weeks prior to study initiation, had undergone organ 
transplants, and those with combined cirrhosis or auto-
immune diseases. Finally, 127 patients were excluded for 
the above reasons, and 88 patients were enrolled in this 
study (Fig. 1).

The PD-1/PD-L1 inhibitor was administered intrave-
nously every 3 weeks at the recommended dose. Treat-
ment was terminated when disease progression or 
intolerable toxicities were observed. The study was fol-
lowed up until January 2023. The clinical response was 
assessed according to RECIST 1.1 at every 6–8 weeks 
[12]. The efficacy assessment included the confirmed 
complete response (CR), partial response (PR), stable 
disease (SD), and disease progression (PD). Patients with 
continuous CR, PR, or SD ≥ 6 months were classified into 
the durable clinical benefit (DCB) group, and those with 
SD < 6 months or PD into the non-durable clinical benefit 
(NDB) group [13]. Progression-free survival (PFS) was 
defined as the time from the start of PD-1/PD-L1 inhibi-
tor treatment to tumor progression or death. OS was 
defined as the overall time from the start of the PD-1/
PD-L1 inhibitor treatment until death from any cause. 
Fecal samples were collected before treatment, and 
on the day before each anti-PD-1/PD-L1 therapy with 
dynamic collection. All fresh fecal samples were immedi-
ately stored in sterile containers at -80 °C.

Metagenomic sequencing analysis
Bacterial genomic DNA was extracted using the Feces 
Genomic DNA Purification Kit (BIOER, China). DNA 

Conclusions Patients with BTC receiving immunotherapy have specific alterations in the interactions between 
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predictive biomarkers for clinical outcomes of anti-PD-1/PD-L1-treated BTC.
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concentration and purity were measured using a Qubit 
3.0 (Thermo Fisher Scientific, Waltham, MA, USA) and 
Nanodrop One (Thermo Fisher Scientific). Sequencing 
libraries were generated using NEB Next® Ultra™ DNA 
Library Prep Kit for Illumina® (NewEngland Biolabs, 
MA, USA) following the manufacturer’s recommenda-
tions. The library was sequenced on an Illumina Nova-
Seq 6000 platform and 150-bp paired-end reads were 
generated. Raw data were processed using fastp (v0.19.7) 
to acquire clean data [14]. Trimmed reads aligned to the 
Homo sapiens genome assembly hg37 [15] were removed 
using KneadData integrated Bowtie (https://hutten-
hower.sph.harvard.edu/kneaddata/) to obtain metage-
nomic DNA sequences. The MetaPhlAn tool (v4.0.3) was 
used to quantitatively profile the taxonomic composi-
tion of the metagenome [16], whereas HUMAnN (v3.0.0. 
alpha.4) was used to estimate the microbial metabolic 

and functional pathways [17]. Functional pathway analy-
sis included metabolic pathway (MetaCyc) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functions. 
Alpha diversity was performed to evaluate the complex-
ity for each sample using four indices: observed species, 
Simpson, Shannon, and inv. Simpson. Beta diversity 
calculations were applied to analyze the diversity in the 
samples for species complexity using principal coordi-
nate analysis (PCoA). The P-value for analysis of similari-
ties (ANOSIM) was obtained using a permutation test. 
Linear discriminant analysis Effect Size (LEfSe) was per-
formed using the nonparametric factorial Kruskal-Wallis 
rank sum test and linear discriminant analysis (LDA) to 
determine the differential taxa between groups.

Fig. 1 Study design
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Liquid chromatography (LC)-mass spectrometry (MS)/MS 
analysis
Briefly, fecal samples were directly added into extraction 
solution (methanol: acetonitrile: water = 2:2:1, contain-
ing isotope labeled internal standard mixture), shaken 
and mixed, and then centrifuged; the supernatant was 
collected and dried to obtain the metabolite extract. 
The samples were analyzed using an LC-MS/MS system. 
LC-MS/MS analyses were performed using an UHPLC 
(Vanquish, Thermo Fisher Scientific) with a UPLC BEH 
(2.1  mm×100  mm, 1.7  μm) Amide column coupled 
to Q Exactive HFX mass spectrometer (Orbitrap MS, 
Thermo). The auto-sampler temperature was 4  °C, and 
the injection volume was 3 µL. The QE HFX mass spec-
trometer was used for its ability to acquire MS/MS spec-
tra on information-dependent acquisition mode in the 
control of the acquisition software (Xcalibur, Thermo). 
Metabolites were detected in both negative and positive 
ion models. The ESI source conditions were set as follow-
ing: sheath gas flow rate as 30 Arb, Aux gas flow rate as 
25 Arb, capillary temperature 350 °C, full MS resolution 
as 60,000, MS/MS resolution as 7500, collision energy as 
10/30/60 in NCE mode, spray Voltage as 3.6 (positive) 
or-3.2  kV (negative), respectively. All procedures fol-
lowed the manufacturer’s instructions.

The raw data were converted to mzXML format using 
ProteoWizard [18] and were preprocessed as follows: fil-
tering a single peak to remove noise, the deviation value 
was filtered based on the relative standard deviation 
(RSD, namely coefficient of variation, CV); filtering a sin-
gle peak, only the peak area data with one group of null 
values not more than 50% or all groups of null values not 
more than 50% were retained; simulate missing values in 
the raw data (missing value recoding), the numerical sim-
ulation method was filled by the minimum half method; 
data normalization, an internal standard (IS) was used for 
normalization.

Principal component analysis (PCA) was performed 
using SIMCA software. To further reveal differences 
between groups, orthogonal partial least squares-dis-
criminant analysis (OPLS-DA) modeling was performed, 
and the quality of the model was tested by seven-fold 
cross validation. Student’s t test with a P-value less than 
0.05 was used to screen differential metabolites, and 
the variable importance in the projection (VIP) of the 
first principal component of the OPLS-DA model was 
greater than 1. The KEGG and PubChem (https://pub-
chem.NDBi.nlm.nih.gov/) were used to annotate the 
metabolites.

Statistical analysis
Permutational multivariate analysis of variance (PER-
MANOVA; permutations = 9999, R 4.2.0, vegan pack-
age [19]) was performed to investigate the effect of each 

clinical characteristic based on the Bray-Curtis distance 
matrix of the species abundance profiles of the samples. 
Canonical correspondence analysis (CCA) (R 4.2.0, vegan 
package) was used to assess the effects of each clini-
cal characteristic based on the species abundance pro-
file of the samples. Spearman’s correlation coefficients 
between differential enriched features were determined. 
Survival curves were estimated using the Kaplan-Meier 
method and compared using the log-rank test. Patients 
were categorized into high- and low-abundance groups 
based on the mean values of the relative abundances of 
different taxa. Survival-related taxa can be categorized 
as either beneficial for survival (high-abundance in DCB 
group, or low-abundance in NDB group) or not condu-
cive to survival (low-abundance in DCB group, or high-
abundance in NDB group). Finally, the survival benefits 
were categorized based on the combined expression of 
gut bacterial and metabolite profiles. A group exhibiting 
both benefits was classified as the good group, a group 
with no benefits was categorized as the poor group, and a 
group displaying one benefit and one lack of benefit was 
classified as the moderate group. Predictive models were 
built to differentiate the DCB and NDB groups based on 
the microbial features (species level), metabolic features, 
and a combination of the two types of data. The train and 
test sets were randomly assigned in a ratio of 2:1. Dif-
ferent numbers of taxa were selected to build a random 
forest model, key species or metabolites screened using 
MeanDecreaseAccuracy and MeanDecreaseGin, five-
fold cross-validation, and a receiver operating character-
istic (ROC) curve created to evaluate the optimal model 
describing the main differential species or metabolites 
between DCB and NDB groups by R (v4.2.0, randomFor-
est, and pROC package), as described previously [20]. 
Based on the microbial model, a total of six features were 
selected from 60 species, while based on the metabolite 
model, four features were selected from 24 metabolites. 
Based on these six species and four metabolites, five fea-
tures including three species and two metabolites were 
ultimately selected to construct a combined predictive 
model of bacteria and metabolites. Unless otherwise 
stated, all statistical analyses were conducted using R 
software (version 4.2.0), and P values < 0.05 were consid-
ered statistically significant.

Results
Patient characteristics
A total of 215 patients with BTC receiving anti-PD-1/
PD-L1 inhibitor were prospectively studied, and 88 
(mean [SD] age, 60.8 [10.1] years; 52 [59.1%] male) were 
enrolled in this study (Fig.  1). The median follow-up 
time was 25.1 (95% confidence interval (CI): 16.2–31.2) 
months. Patient characteristics of the metagenomic and 
LC-MS/MS analysis sets are shown in the Table  1. All 

https://pubchem.NDBi.nlm.nih.gov/
https://pubchem.NDBi.nlm.nih.gov/
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Metagenomic analysis set (n = 88) LC-MS/MS analysis set (n = 54)
Characteristic No. of patients DCB (%) NDB (%) No. of patients DCB (%) NDB (%)
Pathology
 ICC 55 23 (48.9) 32 (78.0) 34 13 (44.8) 21 (84.0)
 GBC 17 13 (27.7) 4 (9.8) 11 7 (24.1) 4 (16.0)
 ECC 16 11 (23.4) 5 (12.2) 9 9 (31.0) 0
Response
 Partial response 26 26 (55.3) NA 16 16 (55.2) NA
 Stable disease 36 21 (44.7) 15 (36.6) 24 13 (44.8) 11 (44.0)
 Progressive disease 26 NA 26 (63.4) 14 NA 14 (56.0)
Sex
 Female 36 23 (48.9) 13 (31.7) 20 12 (41.4) 8 (32.0)
 Male 52 24 (51.1) 28 (68.3) 34 17 (58.6) 17 (68.0)
Age, y
 ≥ 60 51 28 (59.6) 23 (56.1) 32 16 (55.2) 16 (64.0)
 < 60 37 19 (40.4) 18 (43.9) 22 13 (44.8) 9 (36.0)
Hepatitis
 Yes 16 6 (12.8) 10 (24.4) 9 1 (3.4) 8 (32.0)
 No 72 41 (87.2) 31 (75.6) 45 28 (96.6) 17 (68.0)
ECOG
 0 56 33 (70.2) 23 (56.1) 33 21 (72.4) 12 (48.0)
 1 30 14 (29.8) 16 (39.0) 19 8 (27.6) 11 (44.0)
 2 2 0 2 (4.9) 2 0 2 (8.0)
Child–Pugh
 A 68 38 (80.9) 30 (73.2) 41 24 (82.8) 17 (68.0)
 B 20 9 (19.1) 11 (26.8) 13 5 (17.2) 8 (32.0)
Grade
 Poor 25 16 (34.0) 9 (22.0) 16 10 (34.5) 6 (24.0)
 Moderate 32 18 (38.3) 14 (34.1) 21 12 (41.4) 9 (36.0)
 Well 7 2 (4.3) 5 (12.2) 3 0 3 (12.0)
 NA 24 11 (23.4) 13 (31.7) 14 7 (24.1) 7 (28.0)
TNM stage
 II 7 5 (10.6) 2 (4.9) 2 2 (6.9) 0
 III 40 20 (42.6) 20 (48.8) 26 14 (48.3) 12 (48.0)
 IV 41 22 (46.8) 19 (46.3) 26 13 (44.8) 13 (52.0)
Vascular invasion
 Yes 19 9 (19.1) 10 (24.3) 11 5 (17.2) 6 (24.0)
 No 67 38 (80.9) 29 (70.7) 43 24 (82.8) 19 (76.0)
 NA 2 0 2 (4.9)
Intrahepatic metastasis
 Yes 56 31 (66.0) 25 (61.0) 41 24 (82.8) 17 (68.0)
 No 31 16 (34.0) 15 (36.6) 13 5 (17.2) 8 (32.0)
 NA 1 0 1 (2.4) 0 0 0
Tumor number
 1 20 13 (27.7) 7 (17.1) 4 4 (13.8) 0
 2 10 3 (6.4) 7 (17.1) 5 1 (3.4) 4 (16.0)
 3 2 1 (2.1) 1 (2.4) 1 0 1 (4.0)
 > 3 36 23 (48.9) 13 (31.7) 26 18 (62.1) 8 (32.0)
 NA 20 7 (14.9) 13 (31.7) 18 6 (20.7) 12 (48.0)
Size#

 ≥ 5 cm 41 19 (40.4) 22 (53.7) 26 12 (41.4) 14 (56.0)
 < 5 cm 47 28 (59.6) 19 (46.3) 28 17 (58.6) 11 (44.0)
Alpha fetoprotein
 ≥ 20 U/mL 6 4 (8.5) 2 (4.9) 3 2 (6.9) 1 (4.0)

Table 1 Clinical characteristics of the study population in Metagenomic and LC-MS/MS analysis sets
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patients were treated with PD-1/L1 inhibitors in combi-
nation with different types of molecular targeted therapy, 
and 11 patients also received chemotherapy (Supple-
mentary Table S1). PERMANOVA analysis suggested 
that sex, age, and therapeutic regimen of the cohort had 
no significant effect on gut microbiota (Supplementary 
Table S2).

Integrated analysis of the microbiome and microbe-
derived metabolites in anti-PD-1/PD-L1 based 
immunotherapy in patients with BTC
The alpha diversity was not different between DCB and 
NDB groups; however, the beta diversity showed signifi-
cant differences between the groups (Supplementary Fig. 
S2). The numbers of common and unique species were 
703 and 198 for DCB and NDB, respectively (Supple-
mentary Fig. S3A). At the phylum level, the highest pro-
portions in both DCB and NDB groups were Firmicutes 
and Bacteroidetes, and the Bacteroidetes/Firmicutes ratio 
significantly differed (Supplementary Table S3; Supple-
mentary Fig. S3B-C). The top 20 species accounted for 
approximately 49.3%, and 42.6% in the DCB and NDB 
groups, respectively; the highest abundance was in Esch-
erichiacoli (7.76%) and Faecalibacteriumprausnitzii 
(6.59%) in the DCB and NDB groups, respectively (Sup-
plementary Table S4; Supplementary Fig. S3D). The com-
positions of species in each baseline sample and other 
level taxa are shown in Supplementary Tables S5−8 and 
Supplementary Fig. S3.

We further identified 135 enriched taxa between the 
DCB and NDB groups, including four phyla, 11 classes, 
14 orders, 21 families, 25 genera, and 60 species, using 
the LEfSe analysis (LDA > 2.0, P < 0.05) (Supplemen-
tary Fig. S4). The details of 60 species and their relative 
expression levels in DCB and NDB are shown in Fig. 2A 
and Supplementary Fig. S4. The distribution differences 
of species among GBC, ICC, and ECC were not obvi-
ously different, and the phylum corresponding to the dif-
ferential taxa was mainly Firmicutes (Fig. 2B). A total of 
135 different taxa showed an extremely high correlation 
between the different levels of taxa (Fig. 2C), and the co-
expression network diagram based on species enriched in 
the DCB and NDB groups showed a high degree of inter-
nal interaction (Fig. 2D). The quality control of LC-MS/
MS, and screening of differential metabolites are shown 
in Supplementary Fig. S5. Most metabolites detected 
were not different, while 24 were significantly different 
in DCB versus NDB (Fig.  2E; Supplementary Table S9). 
Chord plot analysis showed a higher internal correla-
tion for 24 metabolites between DCB and NDB (Fig. 2F). 
Twenty-one patients (DCB, 11; NDB, 10) underwent 
dynamic collection of fecal samples (points 1–6). 
Dynamic point analyses suggest changes in species diver-
sity and composition with the use of immunotherapy 
(Supplementary Tables S10-12; Supplementary Fig. S6). 
In DCB, the Alistipes tended to be stable overall, whereas 
in NDB, Bifidobacterium tended to stabilize, suggesting 
that the two may be involved in immunotherapy.

Metagenomic analysis set (n = 88) LC-MS/MS analysis set (n = 54)
Characteristic No. of patients DCB (%) NDB (%) No. of patients DCB (%) NDB (%)
 < 20 U/mL 79 42 (89.4) 37 (90.2) 49 26 (89.7) 23 (92.0)
 NA 3 1 (2.1) 2 (4.9) 2 1 (3.4) 1 (4.0)
CA19−9
 ≥ 200 U/mL 24 10 (21.3) 14 (34.1) 16 6 (20.7) 10 (40.0)
 < 200 U/mL 63 37 (78.7) 26 (63.4) 38 23 (79.3) 15 (60.0)
 NA 1 0 1 (2.4) 0 0 0
Total bilirubin
 ≥ 17 umol/L 35 20 (42.6) 15 (36.6) 24 13 (44.8) 11 (44.0)
 < 17 umol/L 53 27 (57.4) 26 (63.4) 30 16 (55.2) 14 (56.0)
Direct bilirubin
 ≥ 7 umol/L 33 13 (27.7) 20 (48.8) 22 9 (31.0) 13 (52.0)
 < 7 umol/L 55 34 (72.3) 21 (51.2) 32 20 (69.0) 12 (48.0)
Bile acids
 ≥ 10 umol/L 35 21 (44.7) 14 (34.1) 19 10 (34.5) 9 (36.0)
 < 10 umol/L 50 23 (48.9) 27 (65.9) 32 16 (55.2) 16 (64.0)
 NA 3 3 (6.4) 0 3 3 (10.3) 0
Therapeutic regimen
 IM + MTT 77 40 (85.1) 37 (90.2) 48 25 (86.2) 23 (92.0)
 IM + MTT + CHEMO 11 7 (14.9) 4 (9.8) 6 4 (13.8) 2 (8.0)
#Maximum tumor diameter. DCB, durable clinical benefit; NDB, non-durable clinical benefit; ICC, intrahepatic cholangiocarcinoma; GBC, gallbladder cancer; 
ECC, extrahepatic cholangiocarcinoma; ECOG, Eastern Cooperative Oncology Group; TNM, tumor node metastasis; CA19-9, Carbohydrate antigen 19 − 9; IM, 
immunotherapy; MTT, molecular targeted therapy; CHEMO, chemotherapy

Table 1 (continued) 



Page 7 of 16Zhu et al. Biomarker Research           (2024) 12:56 

Differentially enriched microbiome and microbe-derived 
metabolites were associated with survival benefit in 
anti-PD-1/PD-L1 based immunotherapy in patients with 
BTC
In total, 20 taxa were statistically associated with sur-
vival benefit; the most abundant taxon were Alistipes and 
Bacillus in DCB and NDB, respectively (Fig. 3A; Supple-
mentary Table S13). Bacilli, Lactobacillales, and Alistipes 
were identified as candidate biomarkers for predicted 
survival, using LDA > 4.0; their relative expression levels 
are shown in Fig.  3B. The relative proportion of Bacilli 
in the GBC subtype was high, whereas the proportion of 
Alistipes was similar in the different types (Fig. 3C).

Patients with enriched Bacilli had significantly worse 
PFS (median PFS: 4.20 vs. 6.43 months, P < 0.01) and OS 
(median OS: 9.07 vs. 13.53 months, P = 0.004; Fig.  3D). 
Lactobacillales was also associated with worse PFS 
(median PFS: 4.13 vs. 6.43 months, P < 0.01) and OS 
(median OS: 9.03 vs. 13.53 months, P = 0.005; Fig. 3D). A 

survival benefit was observed in patients with enriched 
Alistipes (median PFS: 8.13 vs. 5.23 months; P = 0.049; 
median OS: 19.3 vs. 10.2 months, P = 0.032; Fig.  3D). 
After combining Alistipes with Bacilli or Lactobacillales, 
differences in OS and PFS between the different expres-
sion groups were more obvious, indicating that the com-
bination of different taxa was more reliable for predicting 
the effect and survival of patients with BTC on immuno-
therapy (Fig.  3E). Subsequently, differential metabolites 
were similarly analyzed for survival. Patients with low 
abundance of pyrrolidine benefited more a higher rate 
of survival (median PFS: 6.77 vs. 3.70 months, P = 0.018; 
median OS: 16.2 vs. 7.8 months, P = 0.0028; Fig.  4A). 
Patients with high abundance of 4-[(hydroxymethyl)
nitrosoamino]-1-(3-pyridinyl)-1-butanone had a longer 
median PFS and OS compared to those low abundance 
(median PFS: 17.5 vs. 5.0 months, P = 0.0023; median OS: 
NA vs. 8.93 months, P = 0.0024; Fig.  4B). These results 
indicat that substance metabolism may be related to 

Fig. 2 Significantly different microbiome and microbe-derived metabolites in anti-PD-1/PD-L1 based immunotherapy of BTC. (A) LEfSe identified signifi-
cantly different abundant species in the DCB and NDB group (LDA > 2.0, P < 0.05). The red dots represent enrichment in the DCB group, and the cyan dots 
represent enrichment in the NDB group. (B) Ternary phase diagram for the prominent species. The different colored dots show the phylum correspond-
ing to species. (C)Taxonomic cladogram from LEfSe showed different taxa enriched in the DCB and NDB groups (LDA > 2.0, P < 0.05). (D) Cooccurrence 
network of different species based on the Spearman correlation algorithms. The red dots represent enrichment in the DCB group, and the cyan dots 
represent enrichment in the NDB group. Red lines indicate positive correlations, and blue lines indicate negative correlations. (E) Significantly different 
metabolites between DCB and NDB groups. (F) Chord plot analysis for DCB vs. NDB comparisons using the Spearman correlation algorithms. The red 
connecting band indicates a positive correlation, and the blue connecting band indicates a negative correlation
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Fig. 3 Association between gut microbiome and microbe-derived metabolites with survival. (A) Survival-associated significantly different taxa (n = 20). 
(B) Relative abundance comparison of Bacilli, Lactobacillales, and Alistipes between the DCB and NDB groups (Wilcoxon test). (C) Ternary phase diagram 
for the significantly different taxa. The different colored dots show survival associated taxa. (D) Progression-free survival (PFS) and overall survival (OS) de-
pended on the relative abundance of Bacilli, Lactobacillales, and Alistipes. (E) PFS and OS of two combined taxa. Good signature: coexistence of enriched 
Alistipes and depleted Bacilli/Lactobacillales. Poor signature: coexistence of depleted Alistipes and enriched Bacilli/Lactobacillales. Moderate signature: 
coexistence of depleted both or enriched both two bacteria (Alistipes + Bacilli, or Alistipes + Lactobacillales)
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treatment efficacy and survival. In addition, we found 
a clear survival benefit when both taxa and metabolites 
beneficial for survival were present (Fig. 4C).

Multi-omics classification for discriminating patients in the 
DCB and NDB group
We next assessed the potential value of using the gut 
microbiota and metabolites as predictive biomarkers to 

differentiate between DCB and NDB groups. Random 
forest analysis was performed based on fecal taxonomic 
(species abundance) or metabolic features. Model con-
struction analyses were performed using a train set of 36 
baseline samples and a test set of 18 samples, all of which 
were concurrently underwent metagenomic and LC-MS/
MS analysis (Supplementary Table S14). We selected dif-
ferent numbers of taxa to build a random forest model, 

Fig. 4 Metabolites, and combined gut microbiome and metabolites were associated with survival. (A) Progression-free survival (PFS) and overall survival 
(OS) depended on the fold change of pyrrolidine. (B) PFS and OS depended on the fold change of 4-[(hydroxymethyl)nitrosoamino]-1-(3-pyridinyl)-
1-butanone. (C) PFS and OS of combined Alistipes and 4-[(hydroxymethyl)nitrosoamino]-1-(3-pyridyl)-1-butanone. High abundance of both was marked 
as Good group, both low marked as Low group, one high and one low, is marked as the Moderate group
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screened the key species or metabolics by MeanDe-
creaseAccuracy and MeanDecreaseGin, cross-validated 
the model, and drew a ROC curve to evaluate the optimal 
model describing the main differential species or meta-
bolics between the DCB and NDB groups (Supplemen-
tary Table S15).

We identified a bacterial signature composed of six 
bacterial species that could distinguish patients with 
DCB and NDB (area under the curve (AUC) = 89.69% 
[95% CI :78.87-100%]) (Fig.  5A-C, Supplementary Table 
S15). In addition, the efficacy of another random forest 
model based on four identified fecal metabolites showed 
similar results (AUC = 86.25% [95% CI :74.38-98.12%]) 

(Fig.  5D-F, Supplementary Table S15). Notably, using 
three species and two metabolites, the combined model 
yielded an AUC of 95.94% (95% CI :90.41-100%) in dis-
criminating between patients with DCB and NDB groups 
(Fig.  5G-I, Supplementary Table S15). Furthermore, we 
independently verified the performance of the above 
models in the test set independently. The microbial 
model could still effectively differentiate patients for DCB 
and NDB groups with an AUC of 72.22% (95% CI: 45.86-
98.58%) (Fig. 5B), and the metabolite model with an AUC 
of 75.31% (95% CI: 50.81-99.81%) in the test set (Fig. 5E). 
Accordingly, we found that the combined marker panel 
could differentiate patients with DCB and NDB groups 

Fig. 5 Clinical outcomes classification based on the signatures of gut microbiome and metabolome. Random forest classifiers composed of bacteria, 
metabolites and their combination were constructed to discriminate patients with DCB and NDB groups. The selected features (A), receiver operating 
characteristic (ROC) curve in train and test sets (B), and the MeanDecreaseAccuracy of selected features (C) based on bacteria (species level). The selected 
features (D), ROC curve in train and test sets (E), and the MeanDecreaseAccuracy of selected features (F) based on metabolites. The selected features (G), 
ROC curve in train and test sets (H), and the MeanDecreaseAccuracy of selected features (I) based on combination bacteria and metabolites
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with an AUC of 83.95% (95% CI: 61.81-100%) in the test 
set (Fig. 5H).

Pathways and correlations between microbes and 
metabolites
To investigate the mechanism through which intestinal 
microbes may be involved in immunotherapy, 22 KEGG 
pathways (LDA > 2.0, P < 0.05, Supplementary Table S16), 
129 KO genes (Supplementary Fig. S7A), and 45 metacy-
clic pathways were analyzed (Supplementary Table S17). 
The beta diversity was statistically significant based on 
the KEGG and metacyclic pathways, indicating that the 
difference between the DCB and NDB was greater than 
the within-group difference (Supplementary Fig. S7B-D).

The KEGG pathway, KO gene, and KO gene contri-
bution to the KEGG pathway were analyzed using a 

Sankey bubble plot (Fig. 6A). The most abundant KOs in 
DCB and NDB were citric acid and metabolic pathways, 
respectively. The DCB group was significantly enriched 
in energy-related pathways, including the citric acid cycle 
(ko0020), sphingolipid metabolism (ko00600), glyoxylate 
and dicarboxylate metabolism (ko00630), and fructose 
and mannose metabolism (ko00051) (Fig.  6A, Supple-
mentary Table S16). The dominant metabolic pathways 
in DCB were related to nucleotide metabolism, whereas 
the NDB group was mainly composed of lipid metabo-
lism pathways (Supplementary Table S17). The underly-
ing mechanisms by which the gut microbiome influences 
the immunotherapy efficacy and survival benefits may be 
driven by specific bacterial species involved in different 
metabolic pathways.

Fig. 6 Functional annotation and correlations of significantly different gut microbiome and microbe-derived metabolites for metagenomic and LC-MS/
MS analysis. (A) Sankey bubble plot shows differences in the Kegg pathway, ko gene, and ko gene’s contribution to the Kegg pathway. (B) Correlations of 
Kegg pathway with survival associated differentially taxa (Spearman’s rank correlation with two-tailed P values). (C) Enrichment metabolic pathways for 
differential metabolite annotation. (D) Correlations between microbes and metabolites based on differential analysis (Spearman’s rank correlation with 
two-tailed P values). *P < 0.05; **P < 0.01; ***P < 0.001
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The association analysis between KEGG pathways and 
differential survival taxa showed that three survival-
related differential taxa were closely associated with 
multiple KEGG pathways, including glycine, serine, and 
threonine metabolism (KO00260) (Fig.  6B). Combined 
with the KEGG pathway database, and metabolite anno-
tation analysis, six pathways were enriched after annota-
tion, including KO00260 (Fig.  6C, Supplementary Table 
S18). The co-occurrence network of the enriched meta-
bolic pathways is shown in Supplementary Fig. S8A. The 
KO00260 pathway, which co-plotted the differential KO 
genes and metabolites, may play an important role in 
microorganisms, their metabolites, and immunotherapy 
responses (Supplementary Fig. S8B). Most enriched taxa 
were associated with differential metabolites that were 
relatively highly expressed in the DCB group (Fig.  6D, 
Supplementary Fig. S8). Alistipes was positively corre-
lated with metabolites mostly enriched in the DCB group, 
such as 4-[(hydroxymethyl)nitrosoamino]-1-(3-pyridyl)-
1-butanone, and negatively correlated with metabolites 
enriched in the NDB group, such as pyrrolidine.

Gut bacterial enrichment is affected by multiple clinical 
factors
Multiple tumor-associated factors, such as Dbil, Tbil, 
Child-Pugh score, Eastern Cooperative Oncology Group 
(ECOG) performance status, hepatitis, and vascular inva-
sion (VI), that significantly influenced the distribution 
of the gut microbiome are shown by CCA (Supplemen-
tary Table S19; Supplementary Fig. S9). Hepatitis and 
VI correlated negatively with a favorable response, and 
species, such as s__Firmicutes_bacterium and s__Fuso-
bacterium_nucleatumwas, were enriched in the DCB 
group. Simultaneously, the effects of clinical factors on 
20 survival-associated taxa were analyzed using CCA 
(Supplementary Table S20; Supplementary Fig. S9). We 
analyzed the association between survival-associated 
taxa and metabolites with clinical factors, and found that 
some clinical factors were closely associated with differ-
ent species and metabolites (Supplementary Fig. S10). 
The heterogeneous effects of clinical factors on the intes-
tinal microbiota indicate that the clinical response and 
survival benefit of immunotherapy depend on the entire 
gut microbiome diversity and taxonomic community 
richness.

Discussion
Immunotherapy has achieved favorable results in many 
solid tumors; however, many tumors have demonstrated 
resistance to immune checkpoint inhibitor (ICI) therapy, 
and treatment outcomes vary greatly among patients. 
Evidence has shown that the gut microbiota have impact 
on immunotherapy. With the advancement of genomic 
and metabolomic technologies, the role of intestinal 

microbiota in tumorigenesis and treatment is gradually 
being recognized. However, the role and mechanisms of 
intestinal taxon participation remain unclear.

Evidence has emerged that intestinal microbiome can 
modulate the outcomes of ICI therapy through two major 
mechanisms: antigen-specific and antigen-independent 
[7]. There is an important link between gut microbiota 
and the immune system [21, 22]. The intestinal microbi-
ome can not only regulate intestine local immunity, but 
also systemic immunity. Microbe-associated molecular 
patterns (MAMPs) and bacterial metabolites, such as 
SCFAs and bile acids, exert immunomodulatory effects 
on immune cells through receptors, such as TLRs and 
TGR5 [23]. The present study screened microbiota and 
metabolites that differed between the DCB and NDB 
groups in BTC immunotherapy, many of which can pre-
dict survival (such as Alistipes, Bacilli, and pyrrolidine) 
and are potential predictive biomarkers (the model com-
bination of three bacteria and two metabolites) for pre-
dicting immunotherapy efficacy. These conclusions have 
also been confirmed in other cancers [24]. The micro-
biota was highly correlated with metabolites, suggest-
ing that microorganisms participate in multiple immune 
response processes through metabolic pathways, such as 
the glycine, serine and threonine metabolism (KO00260 
pathway).

Increased alpha diversity of the intestinal taxa in 
patients who respond to ICI has been previously 
reported [9, 25]. Studies have shown that greater baseline 
diversity is associated with good clinical response [26]. In 
this study, we observed no difference in alpha diversity; 
however, obvious differences in beta diversity between 
the DCB and NDB groups at the initiation of treatment 
were noted. Shaikh et al. reported that the alpha diver-
sity of different cancers did not consistently predict the 
response to ICI [27]. Three studies also showed that the 
composition and diversity of the gut microbiota cor-
related with the efficacy of ICI immunotherapy [9, 28, 
29]. Prospective studies have confirmed a significant 
association between the intestinal microflora diversity 
and immunotherapy efficacy in patients with NSCLC 
[25, 30], HCC [31], melanoma [32], and RCC [33]. Ret-
rospective studies have suggested that in advanced solid 
tumors, antibiotic use may reduce the response to ICI, 
thereby affecting survival, and that antibiotic-induced 
dysbiotic intestinal flora may be causally associated with 
poor ICI efficacy [34, 35]. High alpha diversity with a 
good immune response at baseline in HCC has been 
reported; however, it tended to be consistent between the 
two groups after 6 weeks of treatment [36], which may 
be associated with the late development of resistance 
in patients who respond well to immunotherapy. The 
current study is the first to confirm that differences in 
immunotherapy efficacy and drug resistance in patients 
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with BTC may be associated with changes in micro-
bial diversity. This enabled us to alter the distribution of 
intestinal taxa in patients with BTC through oral probiot-
ics and FMT in the future to achieve a breakthrough in 
treatment. Our study also found significant differences 
in the Bacteroidetes/Firmicutes ratio between the DCB 
and NDB groups, with higher ratios responding better to 
immunotherapy; this conclusion has been confirmed in 
other tumors [37, 38]. 

Moreover, Bacteroidetes, Alistipes, Alistipes putredi-
nis, and Alistipesdispar were the main components of 
the DCB group in this study. Patients with high Alistipes 
expression had significantly better OS and PFS compared 
to those with low expression. Alistipes putredinis was also 
found to be enriched in the treatment response group in 
NSCLC receiving immunotherapy [25]. High Alistipes 
onderdonkii expression is associated with lasting clini-
cal benefits in advanced NSCLC [39]. Alistipes may help 
protect against certain conditions such as liver fibrosis, 
colitis, cancer immunotherapy, and cardiovascular dis-
eases [40–43]. Studies have reported a causal relationship 
between the increased relative abundance of Alistipes 
and decreased triglyceride concentrations [43]. Decreas-
ing the abundance of Alistipes in patients with fibrotic 
diseases such as nonalcoholic steatohepatitis and nonal-
coholic fatty liver disease leads to a decrease in SCFAs. 
SCFAs have anti-inflammatory effects, and Alistipes can 
produce propionic acid by expressing methylmalonyl-
CoA epimerase [44]. However, other studies suggested 
Alistipes may be responsible for colorectal cancer and 
is associated with psychiatric symptoms of depression 
[45]. In mouse models of liver cancer, Alistipes did not 
only promote acetate and propionate production, but 
also inhibit intestinal Th17 cells, ultimately reducing the 
recruitment of Th17 cells to the liver, affecting the pro-
cess of liver cancer [46]. Although Alistipes is highly 
expressed in patients with BTC treated with immuno-
therapy and can be used as a potentially better predic-
tor of survival, further studies are needed to confirm its 
mechanism.

There were some limitations in this study. First, the 
sample size was relatively small, which may have affected 
the interpretation of results. No other studies on BTC 
immunotherapy cohorts with intestinal microbiota have 
been reported; therefore, larger cohorts from multiple 
centers, regions, and populations are needed to con-
firm the reliability of this study in the future. Although, 
additional analyses suggest there is no clear difference 
between cholangiocarcinoma and GBC (Supplemen-
tary Fig. S11), larger sample sizes will be needed in the 
future to separate and individually study the changes 
in intestinal microbiota and metabolites during immu-
notherapy for different locations of BTC. Second, the 
cohort design was flawed. In addition to the DCB and 

NDB groups, healthy population controls, metabolomics 
analysis of blood samples, and transcriptomics analysis of 
tumor tissue should be included. In addition, antibiotic 
consumption has been associated with poor response 
to immunotherapeutic PD-1 blockade in melanoma; 
thus, an antibiotic arm may strengthen the connec-
tion of immunotherapy to the gut microbiome in BTC. 
Gut fungi may also play a reciprocal role with bacteria 
in disease development. We performed simultaneous 
ITS2 sequencing of 54 samples (29 in the DCB and 25 in 
the NDB groups) to detect fungi, which resulted in very 
small differences in fungi between the two groups and 
fewer associations with differential bacteria and metabo-
lites. This result suggested that fungi are relatively stable 
in whether BTC patients benefit from immunotherapy 
(Supplementary Fig. S12). Third, the results of the study 
are mainly based on observational, descriptive bioinfor-
matics analyses of a research cohort, and lack in-depth 
biological validation and mechanistic studies. Valida-
tion experiments are needed to confirm the relationship 
between gut microbiota dysbiosis and the efficacy and 
survival benefit of anti-PD-1/PD-L1 therapy in patients. 
Finally, the screened prognostic and predictive markers 
need to be further verified in other large cohorts, and the 
mechanism underlying the influence of related microbi-
ota on immunotherapy needs to be supported by further 
basic research.

Conclusions
To the best of our knowledge, this study represents the 
first integrated multi-omics effort to explore immu-
notherapy-related changes in the gut microbiota and 
metabolites in patients with BTC. Significant differences 
were demonstrated in gut microbial diversity at baseline 
and dynamic points between the DCB and NDB groups. 
Patients with BTC receiving immunotherapy have spe-
cific alterations in the microbiome and metabolites inter-
actions. Our findings suggest that the gut microbiota and 
metabolites have potential as prognostic and predictive 
biomarkers for the clinical outcomes of anti-PD-1/PD-
L1-treated BTC.
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