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Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy characterized by varied 
responses to treatment and prognoses. Understanding the metabolic characteristics driving DLBCL progression is 
crucial for developing personalized therapies.

Methods This study utilized multiple omics technologies including single-cell transcriptomics (n = 5), 
bulk transcriptomics (n = 966), spatial transcriptomics (n = 10), immunohistochemistry (n = 34), multiple 
immunofluorescence (n = 20) and to elucidate the metabolic features of highly malignant DLBCL cells and tumor-
associated macrophages (TAMs), along with their associated tumor microenvironment. Metabolic pathway analysis 
facilitated by scMetabolism, and integrated analysis via hdWGCNA, identified glycolysis genes correlating with 
malignancy, and the prognostic value of glycolysis genes (STMN1, ENO1, PKM, and CDK1) and TAMs were verified.

Results High-glycolysis malignant DLBCL tissues exhibited an immunosuppressive microenvironment 
characterized by abundant IFN_TAMs (CD68+CXCL10+PD-L1+) and diminished CD8+ T cell infiltration. Glycolysis 
genes were positively correlated with malignancy degree. IFN_TAMs exhibited high glycolysis activity and closely 
communicating with high-malignancy DLBCL cells identified within datasets. The glycolysis score, evaluated 
by seven genes, emerged as an independent prognostic factor (HR = 1.796, 95% CI: 1.077–2.995, p = 0.025 and 
HR = 2.631, 95% CI: 1.207–5.735, p = 0.015) along with IFN_TAMs were positively correlated with poor survival (p < 0.05) 

Single-cell and spatial transcriptomics 
reveal a high glycolysis B cell and tumor-
associated macrophages cluster correlated 
with poor prognosis and exhausted immune 
microenvironment in diffuse large B-cell 
lymphoma
Liyuan Dai1†, Guangyu Fan2†, Tongji Xie2, Lin Li3, Le Tang2, Haizhu Chen4, Yuankai Shi2* and Xiaohong Han5*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40364-024-00605-w&domain=pdf&date_stamp=2024-6-1


Page 2 of 25Dai et al. Biomarker Research           (2024) 12:58 

Introduction
Diffuse large B-cell lymphoma (DLBCL) is a highly 
aggressive and heterogeneous malignancy. Despite 
advancements in treatment outcomes with the R‐CHOP 
(rituximab plus cyclophosphamide, doxorubicin, vin-
cristine, and prednisone) regimen, 40% of patients expe-
rience poor survival outcomes within 5 years [1]. In the 
current era of immunochemotherapy, the International 
Prognostic Index (IPI) and revised IPI scoring systems, 
which rely on clinical data, do not account for important 
prognostic factors such as cytogenetics, genomics, and 
molecular mechanisms [2]. This emphasizes the neces-
sity to identify high-risk patients who may have poor 
responses to immunochemotherapy, necessitating the 
exploration of alternative treatment strategies.

The significance of metabolic pathways in the patho-
genesis of malignant lymphoma has been extensively 
reported [3, 4]. Metabolic reprogramming, a key hall-
mark of cancer, often involves aerobic glycolysis, also 
known as the ‘Warburg effect’ [5]. Cancer cells exhibit 
a preference for aerobic glycolysis over oxidative phos-
phorylation for glucose metabolism, resulting in the gen-
eration of adenosine 5’-triphosphate less efficiently and 
the creation of a highly acidic microenvironment. This 
metabolic characteristic forms the basis for the clinical 
utility of fluorodeoxyglucose positron emission tomog-
raphy computed tomography (FDG-PET/CT) imaging 
[6]. Tumor aerobic glycolysis can contribute to malig-
nant transformation and tumor progression [7]. For 
lymphoma, the maximum standardized uptake value of 
invasive lymphoma is higher than that of indolent lym-
phoma, indicating that the invasive activity of lymphoma 
depends on glucose uptake [6]. However, there are cur-
rently no reliable glycolysis biomarkers for predicting 
DLBCL prognosis.

The tumor microenvironment (TME) constitutes a 
microecosystem crucial for tumor survival, encompass-
ing tumor cells, stromal cells, and associated immune 
cells such as tumor-associated macrophages (TAMs), 
fibroblasts, T cells, and dendritic cells, along with their 
products including cytokines and chemokines [8]. 
Tumor metabolic heterogeneity can alter the TME, 
promoting immune evasion and cancer progression 
[9, 10]. Increased tumor glycolysis generates a highly 
acidic microenvironment, influencing the composition 

of infiltrating immune cells [11]. Glycolytic TME can 
promote metabolic reprogramming of TAMs, glycoly-
sis-produced lactate polarizes TAMs towards an immu-
nosuppressive M2 phenotype [12, 13], leading to elevated 
glycolytic metabolism [14], increased programmed death 
ligand−1 (PD-L1) expression in TAMs [15–17], and the 
formation of an immunosuppressive TME [18]. High gly-
colytic metabolism in TAMs can further promote tumor 
cell glycolytic metabolism and PD-L1 expression [19, 20]. 
Moreover, glycolysis characteristics correlate inversely 
with CD8+ T cell in solid tumor types and adversely 
affects memory T cell phenotypes [21]. Cascone et al. 
demonstrated that increased tumor glycolysis inhibit 
anti-tumor immunity by impairing T cell cytotoxic 
function and trafficking to the TME [10]. While several 
studies have reported on the role of TAMs in DLBCL 
[22–24], studies focusing on the reciprocal regulation 
between tumor cells and TAMs under conditions of high 
glycolytic metabolism in the TME are lacking.

Single-cell sequencing (scRNA-seq) technology enables 
the detection of tumor cell heterogeneity at a single-
cell resolution, identification of rare cells, delineation of 
cell subclusters, tracking of cell lineages, localization of 
mutated genes, and discovery of new biomarkers [25]. 
This approach offers a novel perspective for studying 
tumor metastases. Additionally, spatial transcriptomics 
(ST) complements the characterization of cellular com-
ponent in the spatial environment of single-cell omics, 
offering a high-throughput approach to explore tumor 
heterogeneity in spatial context [26]. We utilized scRNA-
seq, bulk RNA-seq, ST, immunohistochemistry,  and 
multiple immunofluorescence data from DLBCL tumor 
samples obtained from Gene Expression Omnibus (GEO) 
databases and the Cancer Hospital, Chinese Academy 
of Medical Sciences (CHCAMS) to investigate the role 
of high glycolysis metabolism in tumor cells and TAMs 
in DLBCL prognosis and immune microenvironment 
remodeling.

Methods
All the materials and tools in this study were listed in the 
Table. 1

in DLBCL. Immunohistochemical validation of glycolysis markers (STMN1, ENO1, PKM, and CDK1) and multiple 
immunofluorescence validation of IFN_TAMs underscored their prognostic value (p < 0.05) in DLBCL.

Conclusions This study underscores the significance of glycolysis in tumor progression and modulation of the 
immune microenvironment. The identified glycolysis genes and IFN_TAMs represent potential prognostic markers 
and therapeutic targets in DLBCL.

Keywords Single-cell transcriptomics, Spatial transcriptomics, Diffuse large B-cell lymphoma, Metabolism, Glycolysis
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DLBCL samples collection
For scRNA-seq, data from GSE182434, which encom-
passed four tumor samples from DLBCL and one ton-
sil sample from a patient with tonsillitis, were retrieved. 
Clinical data and metadata were obtained from the origi-
nal study [27].

For bulk RNA-seq, data from two GEO datasets (http://
www.ncbi.nlm.nih.gov/geo): GSE10846 (n = 164) [28] 
and GSE181063 (n = 802) [29] were extracted. Addition-
ally, datasets from the Cancer Genome Atlas (TCGA) 
and Genotype-Tissue Expression (GTEx) databases were 
included for analysis. The two RNA-seq datasets ana-
lyzed were collected from tissue samples before R-CHOP 
treatment, with accompanying survival data. TCGA and 
GTEx datasets comprised 47 DLBCL patients and 491 
healthy controls.

For ST, immunohistochemistry (IHC) and multiple 
immunofluorescence (mIF), formalin-fixed paraffin-
embedded (FFPE) samples were retrospectively collected 
from DLBCL patients before first-line R-CHOP treat-
ment, between 2010 and 2023 at the Cancer Hospital, 
Chinese Academy of Medical Sciences. Samples collected 
between 2019 and 2023 were utilized for ST, while those 
spanning from 2010 to 2020 were employed for IHC and 
mIF experiments. All samples were stored at room tem-
perature. FFPE samples used for ST were confirmed by 
two pathologists (Dr. Tongji Xie and Dr. Lin Li) through 
HE staining that malignant B cells constituted at least 
95% of the total B cell population.

Inclusion criteria comprised DLBCL patients with 
available samples before first-line R-CHOP chemo-
therapy, having received at least two cycles of R-CHOP 
with complete clinical data. Exclusion criteria included 
DLBCL patients with secondary primary cancers, pri-
mary central nervous system DLBCL, or DLBCL con-
verted from indolent lymphoma. The efficacy of R-CHOP 
was assessed using the 2014 Lugano criteria. Based on 
the 24-month event-free survival (EFS24), considered a 
robust endpoint for disease-related outcomes in DLBCL 
treated with immunochemotherapy [30], DLBCL patients 
were categorized into relapsed (R) and non-relapsed (NR) 
groups.

In total, 64 DLBCL patients were collected across three 
cohorts, the ST (n = 10), IHC (n = 34), and mIF (n = 20) 
cohorts. Six out of ten patients in the ST cohort and all 
patients in the IHC and mIF cohorts were followed-up for 
over two years. Detailed patient characteristics are pro-
vided in Table S1, and the study’s flowchart is depicted in 
Fig. 1. This study has been approved by the Ethics Com-
mittee of the National Cancer Center/National Clinical 
Research Center for Cancer/Cancer Hospital, Chinese 
Academy of Medical Sciences & Peking Union Medical 
College (No. 23/262–4004). All experiments were exe-
cuted according to the Declaration of Helsinki.

Single-cell RNA sequencing data analysis
Quality control, multi sample integration and batch effect 
correction
Scrutiny was implemented on cell quality, involving filter-
ing based on the presence of detected genes (minimum: 
300, maximum: 6000), mitochondrial gene percentage 
(0–15%), hemoglobin gene percentage (0–0.1%), and 
ribosomal gene percentage (minimum: 1–100%). Addi-
tionally, any genes expressed in fewer than three cells 
were excluded. Then the “harmony” (v 0.1.1) package [31] 
facilitated the integration of expression data across vari-
ous patients. Initially, expression matrices from different 
patients underwent normalization, scaling, and identifi-
cation of variable features using the regularized negative 
binomial regression (“SCTransform”) [32] function of 
“Seurat” (v 5.0.1) package [33]. Subsequently, principal 
components analysis (PCA) was employed to reduce the 
data to a lower-dimensional space defined by the first 20 
principal components (PCs). Following this, utilizing the 
patient ID as the batch factor, the “RunHarmony” func-
tion corrected batch effects in the low-dimensional PC 
representation.

Chromosomal copy number variations and gene set 
functional enrichment
Evaluation of chromosomal copy-number variations 
(CNVs) was conducted using the “inferCNV” (v 1.14.2) 
package [34], computing CNV scores across cells within 
each cell type. Furthermore, irGSEA (v 2.1.5) was 
employed for rank-based gene set enrichment analysis 
(GSEA).

Clustering and dimensionality reduction
Following data preprocessing and integration, distinct 
cell subclusters of tumor B cells and macrophages were 
individually isolated. Employing the “FindClusters” func-
tion with a resolution of 0.15 for B cells and 0.3 for mac-
rophages and monocytes, the data were segmented. The 
“RunUMAP” function facilitated the visualization of a 
two-dimensional representation of the initial 30 PCs 
through uniform manifold approximation and projection 
(UMAP). Marker genes for each cell type were identi-
fied using the “FindAllMarkers” function, selecting those 
detected in a minimum of 25% of cells within the clus-
ter, displaying a p-value < 0.05 in the Wilcoxon test, and 
demonstrating a differential expression threshold of 0.25 
log fold change (log FC). Visualization functions like Dot-
Plot, VlnPlot, and DoHeatmap were utilized to illustrate 
the differentially expressed genes.

Transcription factor activity
The transcription factor (TF) activity was inferred using 
DoRothEA (v 1.7.3) package [35]. Specifically select-
ing high-confidence TFs (“A”, “B”, and “C”) based on 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Reagent/Resource Reference or Source Catalog 
Number

Single-cell RNA Sequencing
Single-cell RNA sequencing samples GSE182434 Ref.[27]
CellMarker http://biocc.hrbmu.edu.cn/CellMarker/ N/A
Panglao DB https://panglaodb.se/ N/A
Harmony (v 0.1.1) package https://rdocumentation.org/packages/harmony/versions/0.1.1 Ref.[31]
Seurat (v 5.0.1) package https://github.com/satijalab/seurat Ref.[33]
InferCNV (v 1.14.2) package https://github.com/broadinstitute/inferCNV/wiki Ref.[34]
irGSEA (v 2.1.5) package https://github.com/chuiqin/irGSEA N/A
Dorothea (v 1.7.3) package https://github.com/saezlab/dorothea Ref.[35]
scMetabolism (v 0.2.1) package https://github.com/wu-yc/scMetabolism Ref.[36]
HdWGCNA (v 0.2.23) package https://smorabit.github.io/hdWGCNA/ Ref.[37]
Monocle3 (v 1.3.1) package http://cole-trapnell-lab.github.io/monocle3/ Ref.[38]
Cellchat (v 1.6.1) package https://github.com/sqjin/CellChat Ref.[39]
MSigDB http://www.gsea-msigdb.org/gsea/index.jsp N/A
ClusterGVis (v 0.1.0) package https://github.com/junjunlab/ClusterGVis N/A
Bulk-RNA Sequencing
Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo N/A
RNA sequencing samples GSE10846 Ref.[28]
RNA sequencing samples GSE181063 Ref.[29]
Survival (v 3.5-7) package https://cran.r-project.org/web/packages/survival/index.html N/A
Ggrisk (v 1.3) package https://github.com/yikeshu0611/ggrisk N/A
Survminer (v 0.4.9) package https://github.com/kassambara/survminer/ N/A
TimeROC (v 0.4) package https://cran.r-project.org/web/packages/timeROC/ Ref.[40]
Maxstat (v 0.7–25) package https://cran.r-project.org/web/packages/maxstat/ Ref.[41]
ESTIMATE (v 1.0.13) package https://r-forge.r-project.org/R/?group_id=2237 Ref.[42]
Spatial Transcriptomics
Formalin-fixed paraffin-embedded samples CHCAMS N/A
Hematoxylin S330930-2 Dako
Eosin HT110216 Sigma-Aldrich
Glycerol 15,514,011 Thermofisher
HCl H1758 Sigma-Aldrich
Visium Spatial Gene Expression for FFPE reagent kit 1,000,338 (human transcriptome) 10×Genomics
GSVA (v 1.46.0) package https://github.com/rcastelo/GSVA Ref.[43]
CARD (v 1.1) package https://github.com/YMa-lab/CARD Ref.[46, 47]
SPATA2 (v 2.0.4) package https://github.com/theMILOlab/SPATA2 Ref.[50]
SPATA (v 0.1.0) package https://github.com/theMILOlab/SPATA Ref.[50]
Immunohistochemistry
Formalin-fixed paraffin-embedded samples CHCAMS N/A
Rabbit anti-human STMN1 IgG antibody ab52630 Abcam
Rabbit anti-human ENO1 IgG antibody ab227978 Abcam
Rabbit anti-human PPIA IgG antibody ab126738 Abcam
Rabbit anti-human PKM IgG antibody ab137791 Abcam
Rabbit anti-human CDK1 IgG antibody ab133327 Abcam
HRP-labeled goat anti-rabbit IgG secondary 
antibody

GB23303 Servicebio

hematoxylin G1004 Servicebio
Microscope Nikon E100
CaseViewer 2.4 3DHISTECH Hungary
Multiple Immunofluorescence
Formalin-fixed paraffin-embedded samples CHCAMS N/A
Rabbit anti-human CD8 IgG antibody ab237709 Abcam
Rabbit anti-human CD68 IgG antibody ab303565 Abcam
Rabbit anti-human CXCL10 IgG antibody ab306587 Abcam

Table 1 Reagents and tools table
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“dorothea_hs” regulons provided by the “DoRothEA” 
package, Viper scores were calculated, scaled, and inte-
grated into the Seurat object as the “Dorothea” attribute. 
To enable a comparison of TF score activities, mean and 
standard deviation were computed for scaled viper scores 
within each cell type. TFs were ranked based on the vari-
ance of their respective viper scores. The top 20 TFs 
exhibiting highly variable scores in each cell type were 
chosen for visualization.

Cell metabolic activity and hdwgcna analysis
The “scMetabolism” [36] (v 0.2.1) package, designed for 
quantifying single-cell metabolism, systematically evalu-
ated and scored clusters within individual metabolic 
pathways (n = 79) from conventional single-cell matrix 
files using a vision algorithm. High-dimensional weighted 
gene co-expression network analysis (hdWGCNA) (v 
0.2.23) package [37] was employed to delineate the key 
molecular characteristics of highly malignant B cells. 
Utilizing a soft threshold of 5, a scale-free network was 
constructed for optimal connectivity, resulting in the 
identification of 10 gene modules.

Pseudotime analysis and cell-cell communication
Pseudotime analysis was executed using the R pack-
age “Monocle3” (v 1.3.1) [38]. Dimensionality reduction 
via the UMAP method facilitated visualization, and the 
“plot_cells” function aided in visualization. Additionally, 
the “graph_test” function was utilized to identify differ-
entially expressed genes along the pseudotime trajectory.

The “Cellchat” (v 1.6.1) package [39] was utilized to 
explore cell-cell communication. Specific categories 
like “Secreted Signaling”, “ECM-Receptor”, and “Cell-
Cell Contact” within the Cellchat database underwent 
examination, applying a minimum cell count criterion 
of 3. Markers for the “hallmark_glycolysis” pathway 

were obtained from the Molecular Signature Database 
(MSigDB). Visualization of dynamic trends within meta-
bolic pathways was achieved using the “ClusterGVis” 
(v 0.1.0) package, employing the k-means clustering 
method. Differences between groups were analyzed using 
Mann-Whitney U tests.

Bulk RNA sequencing in GEO datasets
Datasets GSE10846 (platform GPL570, n = 164) and 
GSE181063 (platform GPL14951-11332, n = 802) were 
annotated for comprehensive analysis. Raw data under-
went rigorous quality control using the “Affy” pack-
age within R software. This involved the computation 
of average values for multiple probes corresponding 
to a single gene. For comparative analysis of messenger 
RNA (mRNA) expression of seven prognostic markers in 
TCGA and GTEx, Gene Expression Profiling Interactive 
Analysis 2 platform (GEPIA2) (http://gepia2.cancer-pku.
cn/#index) was employed. Univariate and multivariate 
Cox analyses were conducted for overall survival (OS) 
using “survival” (v 3.5-7) package. Visualization of the 
results included scatter plots, risk score heatmaps, and 
time-dependent receiver operating characteristic (ROC) 
curves generated through the use of the “ggrisk” (v 1.3), 
“survminer” (v 0.4.9), and “timeROC” [40] (v 0.4) pack-
ages, respectively. Optimal cutoff values for distinguish-
ing high- and low-expression groups were determined 
utilizing the “Maxstat” (v 0.7–25) package [41] in R soft-
ware. ESTIMATE package [42] (v 1.0.13) was used to cal-
culate the stromal and immune content (stromal score, 
immune score, and ESTIMATE score) in all patients with 
DLBCL. Furthermore, leveraging marker genes specific 
to each cell type, single-sample Gene Set Enrichment 
Analysis (ssGSEA) scores were computed across cell 
types within GEO datasets using the “GSVA” (v 1.46.0) 
package [43].

Reagent/Resource Reference or Source Catalog 
Number

Rabbit anti-human PD-L1 IgG antibody 13,684 S Cell Signaling 
Technology

Rabbit anti-human TGFβ1 IgG antibody ab215715 Abcam
HRP-labeled goat anti-rabbit IgG secondary 
antibody

GB23303 Servicebio

Automated immunohistochemistry stainer Leica Bond RX N/A
Automated digital pathology scanning system Vectra Polaris N/A
QuPath https://qupath.github.io N/A
Software
IBM SPSS Statistics 24 https://www.ibm.com/support/pages/ N/A
R(4.2.1) https://www.R-project.org/ N/A
Metascape https://metascape.org/gp/index.html N/A
Sanger plot website http://www.sangerbox.com N/A
GEPIA2 http://gepia2.cancer-pku.cn/#index N/A
Novaseq 6000 https://www.illumina.com.cn/systems/sequencing-platforms/novaseq.html Illumina

Table 1 (continued) 
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Fig. 1 Flow chart of this study and identification of malignant B cell subgroups and CNV score comparison of scRNA-seq in GSE182434. A UMAP plot 
of cell types and samples distribution. B. Hallmark and pathways of different cell types determined by GSEA. C. UMAP plot of PCA clustering result of B 
malignant cells and other cell types grouping. D. Dot plot for expression levels of cell markers across B malignant subclusters (B0-B4). E. Chromosomal 
landscape of inferred CNVs among B malignant subclusters. F. Comparison of inferred CNV scores across B malignant subclusters. G. UMAP plot of cell 
types including high and low malignant B cells. H. Comparison of inferred CNV scores between high and low malignant B cell types. I. Hallmark and path-
ways of high and low malignant B cell types determined by GSEA. (Abbreviation: CNVs: copy number variations; scRNA-seq: single-cell RNA-sequencing; 
UMAP: uniform manifold approximation and projection; GSEA: gene set enrichment analysis; PCA: principal component analysis; DLBCL: diffuse large 
B-cell lymphoma; MB: malignant B cells)
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Spatial transcriptomics analysis
Experiment procedure
This study utilized the Visium technology platform by 
10x Genomics, with all experimental materials sourced 
from this platform (https://www.10xgenomics.com/
products/spatial-gene-expression). Detailed procedures 
are presented in Table S2.

Data preprocessing
Each sequenced ST library was processed and aligned 
to the GRCh38 human reference genome using Space 
Ranger software (version 2.0.0) developed by 10x 
Genomics. Subsequently, unique molecular identifier 
(UMI) counts were aggregated for each specific spot. To 
distinguish tissue overlaying spots from the background, 
identification of tissue overlaying spots was performed 
based on image analysis. Only barcodes linked to these 
tissue overlaying spots were preserved, resulting in the 
generation of filtered UMI count matrices. Moreover, we 
manually excluded spots not covered by tissue yet unde-
tected by Space Ranger, further refining the UMI count 
matrices.

Samples integration
Individual data were imported into R for samples inte-
gration, processing the filtered UMI count matrix using 
the R package Seurat (version 4.1.0). The “SCTrans-
form” method was used for UMI count matrix normal-
ization. After merging ten slices for joint analysis, PCA 
was employed to project data into a lower-dimensional 
space encompassing the first 20 PCs. To rectify batch 
effects, the “RunHarmony” function was applied, utiliz-
ing patient ID as the batch factor to mitigate the influ-
ence of batch effects [44, 45].

CARD deconvolution and celltype annotation
The “CARD” (v 1.1) package [46, 47] was employed to 
deconvolute ST data based on four DLBCL scRNA-seq 
count datasets within GSE182434. A “CARD” object was 
generated utilizing the “CreateCARDObject” function, 
followed by application of the “CARD_deconvolution” 
function with default parameters to compute the results.

Following preprocessing steps such as SCTransform, 
PCA, and data integration via harmony, ST spots were 
stratified into discrete clusters using the “FindClusters” 
function with a resolution parameter set at 0.5. UMAP 
visualization of the first 30 PCs using “RunUMAP” pro-
vided a two-dimensional representation of the identi-
fied clusters. Marker gene identification was performed 
via “FindAllMarkers” following “PrepSCTFindMarkers”, 
considering genes detected in at least 25% of cells within 
the cluster, exhibiting a Wilcoxon test p-value < 0.05, and 
demonstrating a differential expression threshold of 0.25 
logFC. Marker genes were cross-referenced with known 

cell types using the CellMarker (http://biocc.hrbmu.edu.
cn/CellMarker/) [48] and Panglao DB (https://panglaodb.
se/) [49] databases.

InferCNVs and SPATA2
Inferred CNVs analysis followed the process simi-
lar to scRNA-seq.  The “SPATA2” (v 2.0.4) package 
[50] was employed to validate the precision of cell type 
annotations at the inferCNV level. Functions such as 
“initiateSpataObject_CountMtr”, “runCnvAnalysis”, 
“plotCnvLineplot”, and “SPATA2::plotSurface” were uti-
lized to compute chromosomal copy-number variations 
and generate visual representations illustrating CNV 
variations.

Intratumoral heterogeneity score
Following the methodology outlined in reference [51], 
an examination of intratumoral heterogeneity (ITH) was 
performed. ITH assessment involved evaluating indi-
vidual cells within the tumor using PCA coordinates as 
distinctive features. The process computed the distance 
from each feature to the centroid, establishing an average 
distance of all cells to the centroid, characterizing intra-
tumoral cellular heterogeneity within the sample.

Gene set enrichment analysis and SPATA
The methodology for conducting irGSEA analysis was 
consistent with the scRNA-seq process. To visualize 
hallmark pathways, the “SPATA” (v 0.1.0) package was 
conducted. The “initiateSpataObject_10X” function was 
employed to generate a “spata_obj” followed by the utili-
zation of the “SPATA::plotSurfaceComparison” function 
for visualization.

Cell metabolic activity and celltype score
The methodology employed for Metabolism analysis was 
the same as scRNA-seq analysis. Calculations for gly-
colysis (GLC) risk score and activated CD8+ T score uti-
lized the “AddModuleScore” function within the “Seurat” 
package.

Immunohistochemistry validation
All patient samples underwent hematoxylin-eosin (HE) 
staining and were meticulously reviewed and con-
firmed by two experienced pathologists to identify can-
cer lesions. IHC was performed on FFPE samples after 
dewaxing and heat-induced antigenic repair. Samples 
were washed and incubated with a 3% hydrogen perox-
ide solution to quench endogenous peroxidase activity. 
FFPE samples were incubated with primary rabbit anti-
human IgG antibodies specific to stathmin 1 (STMN1, 
ab52630, Abcam), enolase 1 (ENO1, ab227978, Abcam), 
peptidylprolyl isomerase A (PPIA, ab126738, Abcam), 
pyruvate kinase M (PKM, ab137791, Abcam), and cyclin 

https://www.10xgenomics.com/products/spatial-gene-expression
https://www.10xgenomics.com/products/spatial-gene-expression
http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
https://panglaodb.se/
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dependent kinase 1 (CDK1, ab133327, Abcam) at dilu-
tions of 1:1000, 1:1000, 1:50, 1:500, and 1:250. respec-
tively, following blocking with rabbit serum. After 
washing, FFPE samples were incubated with a 1:200 
dilution of HRP-labeled goat anti-rabbit IgG secondary 
antibody (GB23303, Servicebio) for 50 min at room tem-
perature. Diaminobenzidine color development was used 
to visualize the results, and the nuclei were re-stained 
using hematoxylin (G1004, Servicebio). Results were 
then interpreted under a white light microscope (E100, 
Nikon) and proteins were quantified using CaseViewer 
2.4 (3DHISTECH, Hungary) software.

Protein expression were quantified by H Score. H Score 
was calculated based on the intensity of the stain and the 
percentage of positive tumor cells, with scores ranging 
from 0 to 300. Stain intensity was classified as negative (0 
scores), weak (1 score), moderate (2 scores), and strong 
(3 scores) stain, and the percentage of positive cells was 
scored from 0 to 100. H Score was calculated as the prod-
uct of intensity and percentage. H Scores below 60 were 
determined as low expression, while H Scores greater 
than or equal to 60 were considered high expression.

Multiple immunofluorescence validation
FFPE tissue sections of 4–5 μm thickness were prepared, 
followed by dewaxing and rehydration. Antigen retrieval 
was performed, and endogenous peroxidase activity was 
blocked with antibody blocking solution. All immuno-
histochemical procedures were performed using the fully 
automated immunohistochemistry stainer, Leica Bond 
RX. Sequential immunostaining was performed for each 
target antigen, including primary antibodies against rab-
bit anti-human IgG antibody CD8 (ab237709, dilution 
1:500, Abcam), CD68 (ab303565, dilution 1:500, Abcam), 
CXCL10 (ab306587, dilution 1:2000, Abcam), PD-L1 
(13,684  S, dilution 1:800, Cell Signaling Technology), 
and TGFβ1 (ab215715, dilution 1:500, Abcam), followed 
by incubation with secondary antibodies: HRP-labeled 
goat anti-rabbit IgG secondary antibody (GB23303, 
dilution 1:500, Servicebio) for CD8, CD68, CXCL10, 
PD-L1, and TGFβ1. Tyramide signal amplification (TSA) 
wase employed, followed by microwave treatment to 
remove the TSA-antibody complex, enabling subse-
quent rounds of antibody labeling. iF570-Tyramide was 
for CD68, iF480-Tyramide was for CD8, iF780-Tyramide 
was for CXCL10, iF520-Tyramide was for PD-L1, and 
iF690-Tyramide was for TGFβ1. Following immunos-
taining, cell nuclei were counterstained with 4’,6-diamid-
ino-2-phenylindole (DAPI), and slides were coverslipped 
for scanning. The whole-slide scanning was conducted by 
the automated digital pathology scanning system, Vectra 
Polaris. QuPath (https://qupath.github.io) software was 
employed for quantification of the number and percent-
age of positive cells.

Results
Study design
The overall study design, as illustrated in Fig. 1, consisted 
of two-phase: external datasets discovery and verification 
in scRNA-seq (n = 5) and GEO datasets (n = 966) cohorts 
and internal validation of glycolysis markers and TAMs 
in ST (n = 10), IHC (n = 34), and mIF (n = 20) cohorts. 
First, using the scMetabolism algorithm and clustering 
of B cells and TAMs at the single-cell level in DLBCL, 
we found that high glycolytic metabolism was associ-
ated with the malignancy of tumor B cells and identified 
a subset of TAMs with high glycolytic activity. Through 
hdWGCNA and gene set scoring, we identified key 
genes involved in glycolytic metabolism. Validation at 
the transcriptomic level indicated that a high glycolytic 
metabolism score and higher levels of glycolytic TAMs 
are associated with poorer prognosis and a lower infil-
tration of CD8+ T cells. Subsequent validation using ST, 
IHC, and mIF cohorts from CHCAMS further confirmed 
that a high glycolytic metabolism score and higher levels 
of glycolytic TAMs correlate with poorer prognosis and 
reduced CD8+ T cell infiltration. Detailed clinical charac-
teristics were shown in Table S1.

Identification of a highly malignant B cells in DLBCL by 
scRNA-seq
Prior to harmony integration, while patient samples 
exhibited distinct separation in the UMAP plot, there 
was no significant segregation among cell types (Fig. S1A, 
B). However, following harmony integration, distinct 
cell types were clearly segregated, accompanied by con-
fluent patient sample distributions (Fig.  1A). InferCNVs 
analysis unveiled that B cells exhibited the highest CNV 
scores among various cell types (p < 0.0001) (Fig. S1C, 
D). Subsequent comparison between malignant tumor 
and benign B cells, as classified in the original study [27], 
revealed significantly higher CNV scores in malignant B 
cells compared to benign B cells (p < 0.0001) (Fig. S1E, 
F). Functional enrichment analysis underscored dis-
tinct features of B cells, particularly marked by enrich-
ment in E2F-targets, G2M-checkpoint, MYC-targets, 
DNA-repair, and fatty-acid metabolism hallmark path-
ways, while exhibiting reduced activity in angiogenesis, 
allograft-rejection, inflammatory-response, and TNFA-
signaling-via-NFKB pathways (p < 0.05) (Fig. 1B).

PCA clustering revealed five distinct subtypes of malig-
nant B cells (Fig. 1C), as depicted in the dot plot (Fig. 1D). 
Detailed differential gene expression among these B cell 
subtypes were presented in Fig. S2A. Previous studies 
have reported that CNV levels are positively correlated 
with the malignancy of T-cell [52] and B-cell [53] lym-
phomas. So InferCNVs analysis was performed across B 
cell subtypes. InferCNVs analysis further illustrated that 
B1, B3, and B4 subtypes exhibited higher CNV scores 

https://qupath.github.io
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compared to B0 and B2 subtypes (p < 0.05) (Fig.  1E, F). 
Consequently, grouping B1, B3, and B4 as highly malig-
nant B cell types, and B0 and B2 as low malignant B cell 
types was established (Fig.  1G). The highly malignant B 
cells demonstrated significantly higher CNV scores com-
pared to the low malignant B cells (p = 1.4e-118) (Fig. 1H) 
and exhibited enriched activity in E2F-targets, G2M-
checkpoint, MYC-targets, and DNA-repair hallmark 
pathways (p < 0.05) (Fig.  1I). Detailed clinical character-
istics and the distribution of 15 cell types among four 
DLBCL patients and one tonsillitis patient are presented 
in Table S3.

Highly malignant B cells reveals elevated glycolysis 
metabolic activity
The analysis of metabolic activity among various cell 
types revealed that macrophages and monocytes exhib-
ited predominant metabolic activity across a majority 
(36/79) of metabolic pathways (Fig.  2A). Specifically, B 
cells demonstrated elevated activity in purine metabo-
lism, thiamine metabolism, butanoate metabolism, 
steroid biosynthesis, glycine, serine and threonine 
metabolisms, and one-carbon pool by folate(Fig.  2A). 
Exploring the correlation between metabolic pathways 
and malignant degree unveiled 18 metabolic pathways 
with positive correlations (p < 0.05 and r > 0.3) with CNV 
scores (Fig.  2B and C; Table S4). A cluster analysis cat-
egorized the 79 metabolic pathways among benign B 
cells, low malignant B cells, and highly malignant B cells 
into six distinct categories (Fig. 2D). Notably, the major-
ity (15/18) of pathways displaying positive correlations 
were clustered in cluster 5, which exhibited a consistent 
upward trend among the three groups. The analysis of 
the 18 metabolic pathways indicated that glycolysis/glu-
coneogenesis pathway had significantly elevated activ-
ity in all three groups (p < 0.05) (Fig.  2E). This pathway 
displayed a clear increasing trend across B cells, low 
malignant B cells, and high malignant B cells (Fig.  2E). 
The UMAP plot and barplot depicting B0-B4 cells fur-
ther supported this marked elevation (p < 0.05) (Fig.  2F, 
G). Additionally, the metabolic level of glycolysis/glu-
coneogenesis was elevated in monocytes/macrophages 
(Fig. 2A, F).

Glycolysis metabolic gene selection and IFN_TAMs 
demonstrated cell-cell communication with highly 
malignant B cells and CD8+ T cells
To identify marker genes associated with glycolysis/
gluconeogenesis, differential analyses were conducted 
among benign B cells, low malignant B cells, and highly 
malignant B cells (Fig.  3A). Highly malignant B cells 
exhibited elevated levels of HIST1H4C, IGKVID-39, 
TUBA1B, APOD, GSTM1, ATP5MC3, STMN1, TUBB, 
TUBB4B, and JCHAIN, while showed decreased levels 

of GNB2L1, AC090498.1, ATP5E, LTB, ATP5L, ATP5G2, 
TXNIP, ZFP36L1, TSC22D3, and BTG1 (Fig. 3A). And the 
transcription factor of low malignant B cells, and highly 
malignant B cells were shown in Fig. S2B, which showed 
high transcription factor activity in MYC, NFKB2, ATF6, 
MYCN, FOSL2, HSF1, HHEX, YY1, FOXA1, and GLI2 
in high malignant B cells. Functional analysis showed 
that highly malignant B cells were enriched in the aero-
bic glycolysis pathway (Fig. 3B). A total of 101 genes were 
identified as highly expressed in high malignant B cells 
compared with low malignant B cells and normal B cells, 
meeting the criteria of average log2FC > 1.0 and p < 0.05 
(Fig.  3C and Table S5). Eight genes (STMN1, HSPA5, 
ENO1, LDHA, TPI1, CDK1, PKM, and PPIA) were found 
to overlap with the hallmark_glycolysis geneset (Fig. 3C). 
hdWGCNA was employed to delineate the key molecu-
lar characteristics of highly malignant B cells. Utilizing a 
soft threshold of 5, a scale-free network was constructed 
for optimal connectivity, resulting in the identification of 
10 gene modules (Fig. S3A-E). Modules HMB1, 3, 5, 7, 9, 
and 10 exhibited positive correlations (p < 0.05, R ≧ 0.28) 
with CNV score and glycolysis score (Fig.  3D), and co-
expression networks demonstrated their cohesive asso-
ciation (Fig. 3E). The first 25 eigengenes of each module 
indicated contributions from STMN1, ENO1, LDHA, 
TPI1, CDK1, PKM, and PPIA to the HMB1, 3, 5, 7, 9, and 
10 modules (Fig. 3F). Pseudotime analysis revealed a dif-
ferentiation trajectory from low-grade malignant B cells 
and then to highly malignant B cells (Fig. 3G). Notably, all 
seven marker genes along with the cell proliferation gene 
proliferation marker protein Ki-67 (MKI67) displayed 
elevated expression levels (Fig. 3H). The UMAP plots fur-
ther validated their higher expression in highly malignant 
B cells (Fig. S3E).

As shown in Fig.  2F, elevated glycolysis/gluconeogen-
esis pathways were detected in monocytes/macrophages. 
Given the heightened metabolic activity of macrophages 
and monocytes in DLBCL, macrophages and monocytes 
were clustered into five distinct clusters (Fig.  4A, Table 
S6), with representative markers illustrated in Fig.  4B. 
Based on previous literature classifications [54–58] of 
macrophages, monocytes, and dendritic cells, we cat-
egorized five cell types using specific markers as mono-
cytes (FCN1+ S100A8+ APOBEC3A+), dendritic cells_1 
(CLEC10A + CD1C+ CD1E+), lipid-associated tumor-
associated macrophages (LA_TAMs) (APOC1 + APOE+ 
ACP5+ CCL18+), interferon-primed_TAMs (IFN_TAMs) 
(PD-L1+ PD-L2+ CXCL10+), and dendritic cells 2 
(CLEC9A + THBD+). Enhanced TF activities for RELA, 
NFKB1, and HIF1A (known as glycolytic promoting fac-
tors) were specifically observed in IFN_TAMs (Fig. 4C). 
IFN_TAMs exhibited higher glycolysis/gluconeogenesis 
activity than LA_TAMs (p < 0.0001) (Fig.  4D). CXCL10, 
CCL2, CCL8, PD-L1, IL4I1, PFKFB3, TGFB1 and CD44 
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Fig. 2 Metabolism altas of samples in single-cell RNA-sequencing. A Metabolism enrichment of different cell types by heatmap. B. Correlation between 
inferred CNV scores and metabolism pathway scores. C. 18 metabolism pathway scores correlation with inferred CNV scores (r > 0.3 and p < 0.05). D. 
Clusters of metabolism pathway (n = 79) from benign B cells, low malignant B cells, to high malignant B cells. E. Comparison of 18 metabolism pathway 
scores among benign B cells, low malignant B cells, and high malignant B cells. F. UMAP plot of glycolysis / gluconeogenesis pathway score. G. Barplot 
of glycolysis / gluconeogenesis pathway scores in benign B cells and B0-B4 subgroups (Abbreviation: CNV: copy number variation; MB: malignant B cells; 
UMAP: uniform manifold approximation and projection. Mann-Whitney test was performed between groups.)
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Fig. 3 Identifcation of glycolysis / gluconeogenesis maker genes in high malignant B cells. A Volcano plot of differential genes among the benign B cells, 
low malignant B cells, and high malignant B cells. B. Functional analysis of highly expressed genes in high malignant B cells by Metascape. C. Identification 
of eight commonly genes overlapped across three groups and glycolysis hallmark genes. D. Module trait correlation showed the relationships between 
modules, CNV score, and Glycolysis score. E. Network visualization of 10 modules of high maligant B cells.(The modules highlighted in red and underlined 
are modules associated with CNV score and Glycolysis score.) F. The first 25 eigengenes of each module. G. Trajectory of different malignant B subclusters 
predicted by monocle. H. Genes expression level in single spot ordered along the pseudotime for MKI67 and seven glycolysis / gluconeogenesis gene 
markers (STMN1, ENO1, LDHA, TPI1, CDK1, PKM, and PPIA). (Abbreviation: HMB: high malignant B cells; CNV: copy number variation; UMAP: uniform manifold 
approximation and projection. *** p < 0.001.)
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Fig. 4 Macrophage subgroups identification and Cell-cell Communications in single-cell RNA-sequencing. (A) UMAP plot of PCA clustering result of 
macrophage and samples clustering. (B) Dot plot for cell marker expression levels. (C) Heatmap representation of top 20 highly variable transcription 
factor activities. (D) Top 5 higher metabolic pathways in IFN_TAMs compared with LA_TAMs. (E) Comparison of CXCL10, CCL2, CCL8, PD-L1, PD-L2, IL4I1, 
PFKFB3, TGFB1 and CD44 gene expression in LA_TAMs and IFN_TAMs. (F) Top 5 higher metabolic pathways in LA_TAMs compared with IFN_TAMs. (G) 
Comparison of CCL18, PTGDS, CHI3L1, APOE, APOC1, and ACP5 gene expression in LA_TAMs and IFN_TAMs. H-I. Heatmap of cell-cell communication 
network for incoming and outgoing signaling analysis. J. Heatmap of the relative importance of cell groups in the MIF signaling network based on four 
network centrality degrees. K. Circular plot of the quantity or intensity of interactions among various cell groups in PD-L1-PDCD1 and PD-L2-PDCD1 
networks (Abbreviation: UMAP: uniform manifold approximation and projection; PCA: principal component analysis; IFN_TAMs: interferon-primed tumor-
associated macrophages; LA_TAMs: lipid-associated tumor-associated macrophages; MIF: macrophage migration inhibitory factor. Mann-Whitney test 
was performed between groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, not significant.)
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Fig. 5 (See legend on next page.)
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genes exhibited higherlevels (p < 0.05) in IFN_TAMs than 
LA_TAMs, while the difference of PD-L2 level was not 
significant (Fig.  4E). While fatty acid-related metabolic 
pathways, such as arachidonic acid metabolism, linoleic 
acid metabolism, and alpha-Linolenic acid metabolism 
pathways were higher in LA_TAMs than IFN_TAMs 
(Fig. 4F), along with higher expression (p < 0.05) in CCL18 
and PTGDS gene in LA_TAMs, while the difference of 
CHI3L1, APOE, APOC1, and ACP5 levels were not signif-
icant (Fig. 4G). Analysis based on specific pathways and 
ligand receptors unveiled intricate interactions among 
malignant B cell subtypes and other cell types in DLBCL. 
A total of 54 pathways among 18 cell types were detected, 
with the macrophage migration inhibitory factor (MIF) 
pathway emerging as a prominent mode of both incom-
ing and outgoing signaling (Fig.  4H, I) in malignant B 
cells. Specifically, highly malignant B cells were identified 
as the prominent senders, while IFN_TAMs exhibited the 
strongest receptivity to the MIF pathway (Fig. 4J). Nota-
bly, IFN_TAMs displayed a specific interaction pattern 
with CD8+ T cells and follicular helper T cell (TFH) via 
the PD-L1-PDCD1 and PD-L2-PDCD1 ligand receptors 
(Fig. 4K).

Prognostic value of glycolysis markers, IFN_TAMs, and 
LA_TAMs
Expression levels of STMN1, ENO1, LDHA, TPI1, CDK1, 
PKM, and PPIA mRNAs were significantly higher in 
DLBCL patients (n = 47) compared to healthy con-
trols (n = 491) based on the TCGA and GTEx datas-
ets (p < 0.05) (Fig.  5A). All seven genes were associated 
with OS through univariate Cox regression and Kaplan-
Meier curves (p < 0.05) in GSE181063 (Figs.  5B and S4). 
A risk score model based on the seven glycolysis mark-
ers was constructed. The risk score was calculated using 
the formula: risk score = Σ (Expression * Coefficient). 
The coefficients were calculated by the COX regression 
in the “rms” package. Based on the optimal cutoff value, 
samples were stratified into high- and low-risk score 
groups (Fig.  5C). The high-risk score group exhibited 
significantly worse OS (p < 0.05) (Fig.  5D) compared to 
the low-risk score group. In multivariate Cox analyses, 
low risk score remained an independent predictor of OS 
(hazard ratio = 0.755; 95% CI, 0.590–0.966) (Fig. 5E). The 
risk score model showed consistent performance with 

area under the curves (AUCs) for predicting 1, 3, 5, and 
7-year OS rates of 0.63, 0.61, 0.6, and 0.6, respectively 
(Fig.  5F). Comparable results were observed for OS in 
GSE10846, where the risk score remained an indepen-
dent factor for OS (Fig. 5G, H). The AUCs for predicting 
1, 3, 5, and 7-year OS rates were 0.65, 0.66, 0.63, and 0.85 
(Fig. 5I). According to ESTIMATE algorithms, low risks-
core patients performed higher (p < 0.05) stromal score, 
immune score, and ESTIMATE score(Fig. 5J). The high-
risk score group exhibited an exhausted immune envi-
ronment, indicated by reduced infiltration of activated 
CD8+ T cells and natural killer cells (Fig. 5K) by ssGSEA 
analysis, which maker genes for celltypes were shown in 
Table S7. And activated CD8+ T cells showed a trend of 
negative association with riskscore (p = 4.3e-12, r = − 0.24) 
(Fig. 5L). Moreover, IFN_TAMs were predictive of OS in 
GSE181063 and GSE10846 datasets (p < 0.05) (Fig. 6A, B), 
indicating that patients with longer OS exhibited lower 
IFN_TAMs levels. While patients with higher LA_TAMs 
were associated with superior OS (p < 0.05) (Fig. 6A, B). 
Furthermore, IFN_TAMs were positively correlated with 
PD-L1 gene expressions (p = 4.1e-68, r = 0.56, and p = 1.0e-
15, r = 0.57) (Fig. 6A, B). When combining GLC score and 
IFN_TAM for risk stratification, it can effectively predict 
OS (p < 0.01) (Fig. 6C).

ST landscape of DLBCL
To validate the prognostic role of glycolytic biomarkers 
and IFN_TAM at the spatial transcriptomic level, as well 
as the relationship between glycolytic levels, IFN_TAM, 
and CD8+ T cell infiltration, spatial transcriptomic analy-
sis was performed on tissue samples from 10 patients 
with DLBCL before R-CHOP treatment.

Firstly, quality control analysis of ten DLBCL sam-
ples revealed the detection of 4275–4992 spots, with 
a median of 4584–7343 detected genes per spot and 
sequencing saturation ranging from 53 to 86% (Table 
S8). The nCounts of ten samples were depicted in Fig. S5. 
Post-harmony integration, distinct cell types exhibited 
clear segregation, and patient sample distributions were 
effectively integrated compared to pre-harmony condi-
tion (Fig. S6). Based on PCA clustering in Fig. S7A, along 
with referencing single-cell annotation databases (Cell-
Marker and PanLao DB), nine distinct cell types were 
identified. Notably, B cells and macrophages exhibited 

(See figure on previous page.)
Fig. 5 Performance of seven glycolysis / gluconeogenesis markers in predicting OS in GSE181063 (n = 802) and GSE10846 (n = 164), and relationship 
between risk score and immune landscape in bulk-RNA seq. A Comparisons of seven glycolysis / gluconeogenesis genes’ mRNA expression in DLBCL 
(n = 47) and HCs (n = 491). B and E. Univariate and Multivariate Cox analysis for OS in GSE181063. C-D. Scatter and heatmaps for the seven markers-based 
risk score and Kaplan-Meier curves of OS in GSE181063. F and I. Time-dependent ROC curves for OS of the seven markers-based risk score in GSE181063 
and GSE10846. G. Kaplan-Meier curves of OS based on seven markers-based risk score in GSE10846. H. Multivariate Cox analysis for OS in GSE10846. J. 
Comparisons of Estimate, Stromal and Immune scores among high riskscore and low riskscore patients in GSE181063. K. Distribution of 28 immune cell 
types in high and low risk groups in GSE181063. L. Correlation between riskscore and activated CD8+ T cell in GSE181063. (Abbreviation: DLBCL: diffuse 
large B-cell lymphoma; HC: healthy controls; OS: overall survival; ROC: receiver operating characteristic; ECOG: Eastern Cooperative Oncology Group; IPI: 
International Prognostic Index. Mann-Whitney test was performed between groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, not significant.)
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higher nCounts compared to other cell types (Fig. S7B). 
Representative cell markers are outlined in Figs. S7C, S8 
and Table S9 for B cell, T cell, NKT cell, fibroblast, mac-
rophage, neutrophil, plasma cell, muscle and endothe-
lial cells. Consistency between the results from CARD 
deconvolution and manual annotation was illustrated in 
Fig. S9, such as in the representative data shown in Fig. 
S7D for sample 2. The distribution of cell types across 
samples is detailed in Table S10 and Fig. S10A, B.

Regarding intratumoral and intracellular heterogeneity, 
the ITH scores were significantly higher in germinal cen-
ter B-cell (GCB) samples compared to non-GCB samples 
across all cell types (Fig. S10C, D; Table S11). InferCNVs 
analysis indicated that B cells possessed the highest CNV 
score, with malignant cells (B cells) exhibiting higher 
CNV scores (p < 0.0001) compared to benign cells (non-B 
cells) (Fig. S11A-C). Similar trends were observed in rep-
resentative samples, such as sample 2 (Fig. S11D), with 
notable variations observed in chromosome 3, visually 
represented in Fig. S11E, F. These demonstrated the con-
cordance between the inferCNV and SPATA2 results, as 
well as the consistency between manual annotation and 
CARD-identified cell clusters.

Validation of prognosis value for glycolysis markers and 
IFN_TAM in ST, IHC, and mIF cohorts
Functional enrichment analyses for nine cell types, 
including comparisons between B cells and non-B cells, 
revealed consistent outcomes with scRNA-seq results. 
Notably, B cells exhibited enrichment in E2F-targets, 
G2M-checkpoint, MYC-targets, DNA-repair, and 
mTORC1-signaling hallmark pathways (p < 0.05) (Fig. 
S7E, F), which were reflected in the UMAP plot (Fig. 
S7G, H). Moreover, consistent with scRNA-seq findings, 
both B cells and macrophages displayed elevated meta-
bolic activity (Fig. 7A), with higher activity in glycolysis/
gluconeogenesis and oxidative phosphorylation metabo-
lism observed in B cells compared to non-B cells (Fig. 7B, 
C). The glycolysis/gluconeogenesis score calculated using 
scMetabolism confirmed this observation (Fig. 7D). Five 
of seven glycolysis/gluconeogenesis marker genes, ENO1, 
PPIA, STMN1, PKM and CDK1 were identified in ST. The 
glycolysis/gluconeogenesis (GLC) score based on these 
genes consistently showed higher scores (p < 0.0001) in 
B cells across all ten samples when compared to non-B 
cells (Fig.  7E, F). Notably, GLC scores were higher in R 
samples (n = 2) compared to NR samples (n = 4) (p < 0.001) 
in all cells and B cells (Fig. 7G, H).

Concerning the exhausted immune microenvironment, 
evaluating IFN_TAMs infiltration revealed higher levels 
(p < 0.0001) in R samples (Fig. 8A, B), higher expression 
of PD-L1 in TAMs of R samples (Fig. 8C), paralleling the 
trend observed in GLC scores (p < 0.0001) (Fig. 8D).This 
trend was consistent across all cell types, as exemplified 

by the representative NR sample S3 and R sample S10 
in spatial plots (Fig.  8E, F). Furthermore, the compari-
son of activated CD8+T cell scores between R and NR 
samples exhibited lower scores (p < 0.0001) in R samples 
(Fig. 8G, H). The activated CD8+ T score demonstrated 
a trend of negative association with the GLC score (R = 
-0.1, p < 2.2e-16) (Fig. 8G). This trend was visually repre-
sented in spatial plots, exemplified by the representative 
NR sample S3 and R sample S10 (Fig.  8I). Interestingly, 
the trend of activated CD8+T cell scores contrasted with 
the GLC scores across all ten samples (Figs. 7H and 8H).

Five glycolysis / gluconeogenesis proteins (STMN1, 
CDK1, ENO1, PKM and PPIA) expression were assessed 
in 34 DLBCL FFPE samples (Table S1, Fig.  9, and S12). 
Representative examples of STMN1, CDK1, ENO1, PKM 
and PPIA expression ranging from negative, weak, mod-
erate to strong were shown in Fig. S12A. The expression 
of STMN1, CDK1, ENO1, and PKM proteins showed 
predictive value for OS and PFS (p < 0.05) (Fig.  9A, B). 
Representative IHC staining of STMN1, CDK1, ENO1, 
and PKM in a patient with short PFS and OS (PFS = 7 
months, OS = 9 months) and a patient with longt PFS and 
OS (PFS = 135 months, OS = 135 months) were shown in 
Fig.  9C. PPIA expression couldn’t predict OS (p > 0.05), 
while showed predictive value for PFS (p < 0.05) (Figure 
S12B). And vlnplot exhibited that all of these five markers 
had higher levels in B cell type in GSE182434 (Fig. S12C).

In the mIF cohort, the intensity of IFN_TAMs dem-
onstrated predictive value for PFS (p < 0.01) (Fig.  9D). 
Additionally, the intensity of IFN_TAMs was higher in 
patients who experienced relapse (p < 0.01) (Fig.  9E). 
Moreover, samples with higher levels of IFN_TAMs 
exhibited lower CD8+ T cell infiltration (p < 0.05, R = 
-0.471) (Fig. 9F) and higher TGFβ1 infiltration (p < 0.05, 
R = 0.465) (Fig. 9F). Representative mIF staining of IFN_
TAMs and CD8+ T cells in a patient with short PFS 
(PFS = 2.7 months) and a patient with long PFS (PFS = 90 
months) are shown in Fig. 9G.

Discussion
Several studies have focused on the glycolysis metabo-
lism and DLBCL prognosis, including metabolism-asso-
ciated gene signature and plasma metabolites [59–61]. 
13 metabolic gene signatures were found to be associated 
with poor prognosis in DLBCL [59]. He et al. discovered 
and validated 14 metabolism-associated genes for the 
prognostic prediction in DLBCL [60]. And higher abun-
dance of plasma malate, which was essential for cancer 
growth by contributing to elevated glycolytic flux, was 
found to be correlated with poorer survival [61]. The 
aforementioned studies were all based on bulk-RNA-seq 
for screening metabolic genes. However, whole tissues 
reflect average gene expression levels, failing to eluci-
date differences among various cellular heterogeneities 
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Fig. 6 (See legend on next page.)
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within tumors. Single-cell transcriptomics and spatial 
transcriptomics effectively address these issues. Further-
more, these studies lack elucidation on the role of glyco-
lytic metabolism levels in malignant cells, exploration of 
tumor immune microenvironment differences caused by 
metabolic heterogeneity, and independent validation of 
clinical samples.

This study comprehensively applied multi-omics to 
identify a highly malignant tumor cell type and IFN_
TAMs. DLBCL tissues with high glycolysis activity 
exhibited an immunosuppressive microenvironment, 
manifested by abundant IFN_TAMs, and low CD8+ T 
cell infiltration. Through scRNA-seq, we identified highly 
malignant DLBCL cell subgroups with enhanced gly-
colysis, with seven glycolysis genes identified (LDHA, 
TPI1, PPIA, STMN1, CDK1, ENO1, and PKM). Addition-
ally, IFN_TAMs showed high metabolic activity across 
all celltypes, closely interacting with high-malignancy 
tumor cells identified within datasets. The glycolysis 
score, derived from glycolysis genes and IFN_TAMs 
infiltration, emerged as an independent prognostic fac-
tor for DLBCL. ST confirmed elevated glycolytic activ-
ity in malignant cells (over 95% malignant B cells) and 
IFN_TAMs, particularly in relapsed patients. Prognostic 
value of four glycolysis genes (STMN1, CDK1, ENO1, and 
PKM) was further validated by IHC, emphasizing their 
predictive power for overall and progression-free sur-
vival. This comprehensive analysis sheds light on DLBCL 
development mechanisms and metabolic targets, offering 
insights for precise immune therapies targeting tumor-
specific metabolic pathways.

In our study, four glycolysis genes (ENO1, STMN1, 
PKM, and CDK1) have been previously reported to be 
associated with cancer progression and drug resistance. 
Enolase 1 (ENO1), plays a vital role as a glycolytic enzyme 
in cellular energy metabolism and is overexpressed in 
more than 70% of human cancers [62]. ENO1 promotes 
glycolytic metabolism, oncogenic signaling, tumor 
migration, invasion, and metastasis [63–65]. In lym-
phoma, ENO1 expression was generally high and being 
eight times higher than that observed in benign lymphoid 
tissues [66]. And ENO1 can promote tumor cell prolifer-
ation and alter the phosphatidylinositol 3-kinase/Akt sig-
naling pathway between cells, mediating drug resistance 
[67]. In peripheral T-cell lymphoma, high ENO1 expres-
sion in tissues is positively correlated with low overall 
survival rates [68]. In DLBCL, our previous studies found 

that high ENO1 protein levels in plasma were positively 
correlated with disease progression within two years, 
lower PFS, and OS [69]. Consistent with our findings, 
higher ENO1 protein expression in DLBCL patients’ 
tumor tissues indicated poorer survival. Stathmin 
(STMN1) is a structural microtubule-associated protein 
that binds to tubulin dimers, preventing their aggregation 
and thus destabilizing microtubules. It is overexpressed 
in many malignant tumors, such as non-small-cell lung 
cancer, and hepatocellular carcinoma, serving as a bio-
marker for malignant progression, recurrence, and resis-
tance to adjuvant therapy (e.g. paclitaxel and vinblastine) 
[70–72]. STMN1 is also highly expressed in hematologi-
cal malignancies [73]. In follicular lymphoma, STMN1 
can further serve as a sensitive marker to distinguish pri-
mary cutaneous follicular lymphoma from primary cuta-
neous marginal zone lymphoma [74, 75]. Pyruvate kinase 
(PKM) gene encodes two proteins, PKM1 and PKM2. 
PKM1 is upregulated in tissues requiring large energy 
supplies, such as heart, brain, and muscles, while PKM2 
is expressed in all proliferating cells, especially tumors 
and embryonic tissues [76, 77]. Upregulated expression 
of PKM2 gene in cancer cells can confer resistance to 
drugs (e.g. cisplatin and erlotinib) [78, 79]. In DLBCL, 
high PKM2 protein levels were associated with recur-
rence and poor survival [80], which was consistent with 
our findings. Cyclin-dependent kinase 1 (CDK1) is a ser-
ine/threonine kinase that controls the cell cycle progres-
sion from the G2 phase to the M phase, playing crucial 
roles in controlling cell division [81]. Dysregulation of 
CDKs is considered a hallmark event in almost all cancer 
types and it was also associated with tumor chemoresis-
tance [82].

The heightened glycolytic metabolism in invasive 
tumor cells induces hypoxia, lactate accumulation, and 
other factors, influencing the tumor immune micro-
environment [83].TAMs constitute up to 50% of the 
immune cell population within tumor tissues, with M2 
phenotype predominantly present, especially in hypoxic 
regions [84]. Previous studies have implicated TAMs in 
the tumorigenesis and invasive progression of DLBCL 
[22–24]. Meta-analyses revealed that high-density M2 
TAMs within the tumor microenvironment are indicative 
of poorer OS in DLBCL [85]. Furthermore, Ma RY et al. 
identified IFN_TAMs through scRNA-seq, characterized 
by heightened glycolytic activity, while its role in DLBCL 
remains unexplored. The specific metabolic pathways of 

(See figure on previous page.)
Fig. 6 Performance of IFN_TAMs and LA_TAMs in predicting OS and association with PD-L1 in GSE181063 (n = 802) and GSE10846 (n = 164). (A) Kaplan-
Meier analysis for OS based on IFN_TAMs and LA_TAMs (calculated by ssGSEA), and correlation between IFN_TAMs and PD-L1 in GSE181063. (B) Kaplan-
Meier analysis for OS based on IFN_TAMs (calculated by ssGSEA) and LA_TAMs (calculated by ssGSEA), and correlation between IFN_TAMs and PD-L1 in 
GSE10846. (C) OS stratified by the glycolysis markers-based risk score combined with the IFN_TAM. (Abbreviation: IFN_TAMs: interferon-primed tumor-as-
sociated macrophages; LA_TAMs: lipid-associated tumor-associated macrophages; OS: overall survival; HH: IFN_TAMs high and glycolysis markers-based 
risk score high; M: IFN_TAMs high and glycolysis markers-based risk score low or IFN_TAMs low and glycolysis markers-based risk score high; LL: IFN_TAMs 
low and glycolysis markers-based risk score low.)
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Fig. 7 Metabolism altas and GLC score prognosis value validation of DLBCL in spatial transcriptomics. A-B. Metabolism enrichment of different cell 
types, and B cells and normal cells by heatmap. C. Highly expressed hallmark pathway scores of B cells using UMAP plot. D. Violin plot of glycolysis / 
gluconeogenesis pathway score across cell types. E. Comparison of GLC score in B cells and non-B cells. F. Spatial plot of GLC score in 10 DLBCL samples. 
G-H. Violin plot of GLC score in all cells and B cells between NR (n = 4), R (n = 2) and other samples (n = 4) (Abbreviation: GLC: glycolysis; DLBCL: diffuse large 
B-cell lymphoma; UMAP: uniform manifold approximation and projection; NB: non-B cell; R: relapsed patients, patients without EFS24; NR: non-relapsed 
patients, patients with EFS24. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, not significant.)
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Fig. 8 DLBCL samples with high glycolysis / gluconeogenesis activity were characterized by immunosuppressive microenvironment in spatial transcrip-
tomics. A-B. Vlnplot and representative spatial plots of IFN_TAMs between NR (n = 4), R (n = 2) and other samples (n = 4). C-D. PD-L1 expression and GLC 
score of TAMs in samples by violin plot. E. Vlnplot of PD-L1 expression in all cells between NR (n = 4), R (n = 2) and other samples (n = 4). F. Representative 
spatial plots of PD-L1 expression in NR (S3) and R (S10) group. G-H. UMAP and violin plot of activated CD8+ T score in NR (n = 4), R (n = 2) and other samples 
(n = 4), along with the correlation between GLC score and activated CD8+ T score. I. Representative spatial plots of activated CD8+ T score in NR (S3) and 
R (S10) group (Abbreviation: DLBCL: diffuse large B-cell lymphoma; UMAP: uniform manifold approximation and projection; TAMs: tumor-associated mac-
rophages; GLC: glycolysis; R: relapsed patients, patients without EFS24; NR: non-relapsed patients, patients with EFS24. Mann-Whitney test was performed 
between groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, not significant.)
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Fig. 9 (See legend on next page.)
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TAMs are closely associated with their phenotype and 
function. TAMs’ glycolytic metabolism progressively 
intensifies during tumor growth [86]. The interaction 
between lactate-mediated tumor cells and TAMs is recip-
rocal. Tumor-derived lactate activates HIF-1α to promote 
TAMs glycolysis, M2 polarization, and tumor-promoting 
functions [14]. Additionally, lactate derived from TAMs 
provides energy metabolic substrates, promoting tumor 
progression. For instance, bladder cancer cells can re-
educate M2 TAMs through lactate secretion, activating 
HIF-1α to promote TGF-β secretion. M2 TAMs, in turn, 
can enhance bladder cancer cell glycolysis through trans-
forming growth factor-beta (TGF-β) [87]. Furthermore, 
lactate can upregulate PD-L1 expression by increasing 
HIF-1α expression or modulating NF-κB signaling path-
ways in TAMs [16]. Tumor-derived hyaluronic acid frag-
ments can also upregulate PFKFB3 expression in TAMs, 
promoting glycolysis and PD-L1 expression [17]. PD-L1 
expression in tumor cells can also be elevated by TGF-
β1 secreted by TAMs, which can upregulates PKM2 and 
activates STAT1 [20]. This metabolic shift and PD-L1 
expression, can diminish CD8+ T cell and natural killer 
cell infiltration [88], suppress the memory and antitumor 
functions of CD8+ T cells [83], and facilitate the infiltra-
tion of immunosuppressive cells, ultimately impeding 
antitumor immunity and promoting tumor progression. 
The IFN_TAMs we identified exhibited heightened glyco-
lytic activity, as well as elevated expression levels of PD-
L1, PFKFB3, and TGFB1 genes, coupled with increased 
activity of the HIF-1α transcription factor. Higher IFN_
TAMs infiltration were also correlated with inferior sur-
vival in DLBCL.

Targeting glycolysis in cancer therapy is a burgeoning 
area of research for developing anticancer drugs. In solid 
tumor types, inhibiting tumor glycolysis can augment 
immune cell infiltration and enhance immunotherapy 
effectiveness [89]. Preclinical models have demonstrated 
the efficacy of a lactate transporter glycolysis inhibitor 
(AZD3965) in increasing immune cell infiltration in solid 
tumors, advancing to Phase I clinical trials [90]. Biologi-
cal experiments also evaluated AZD3965 and OXPHOS 
inhibitor IACS-010759 effects on eight B-cell lymphoma 
cell lines, AZD3965 significantly reduced lymphoma cell 
growth (60-98%) across four cell lines compared to mod-
est growth inhibition (5-45%) with oxidative phosphory-
lation inhibition [91]. And AZD3965 could also inhibit 

TAMs polarization [90]. This finding underscores the role 
of glycolysis regulation in B-cell lymphoma proliferation. 
Additionally, metformin shows promise in sensitizing 
treatment and improving DLBCL patient prognosis pre-
clinically and clinically [92]. Moreover, ongoing studies 
target the identified genes (ENO1, STMN1, PKM, CDK1), 
with therapies like enolase 1 depletion demonstrating 
efficacy across various tumor types by inhibiting gly-
colysis, growth, proliferation, migration, metastasis, and 
sensitizing tumors to chemotherapy and radiotherapy 
[63]. Targeting STMN1 and PKM2 also shows promise 
in reducing cell growth, metastasis, and increasing tumor 
cell apoptosis [93, 94]. Despite these advancements, 
developing tumor-specific glycolysis inhibitors remains 
challenging amidst the critical role of the glycolysis path-
way in immune cell function.

There are some limitations to this study. Firstly, both 
single-cell transcriptomics and spatial transcriptomics 
technologies inherently have dropout rates, which may 
result in the omission of genes with lower expression lev-
els during glycolysis gene screening. And the inability of 
ST to effectively distinguish between malignant and non-
malignant B cells is also a limitation. Moreover, further 
in vivo and in vitro experiments are necessary to fully 
understand the biological functions and potential mecha-
nisms of glycolysis risk genes, IFN_TAMs, and their asso-
ciation with immune microenvironment.

Conclusion
In summary, our study identified a highly invasive tumor 
cell and TAMs subgroup characterized by enhanced gly-
colysis metabolic activity in DLBCL. Glycolysis marker 
genes and IFN_TAMs were identified and constructed 
to be predictive of survival. Additionally, we observed 
that heightened glycolytic metabolism correlates with an 
immunosuppressive TME, marked by IFN_TAMs infil-
tration, and diminished CD8+ T cell infiltration.
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Fig. 9 Prognostic value of four glycolysis / gluconeogenesis (STMN1, ENO1, CDK1, PKM, and PPIA) proteins in IHC cohort (n = 34, 100X) and IFN_TAMs 
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