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Abstract 

Background Cerebral cavernous malformations (CCMs) are vascular abnormalities associated with deregulated 
angiogenesis. Their pathogenesis and optimal treatment remain unclear. This study aims to investigate the molecular 
signatures of cuproptosis, a newly identified type of cell death, associated with CCMs development.

Methods Bulk RNA sequencing (RNA-seq) from 15 CCM and 6 control samples were performed with consensus 
clustering and clustered to two subtypes based on expression levels of cuproptosis-related genes (CRGs). Differen-
tially expressed genes and immune infiltration between subtypes were then identified. Machine learning algorithms 
including the least absolute shrinkage and selection operator and random forest were employed to screen for hub 
genes for CCMs associated with cuproptosis. Furthermore, Pathway enrichment and correlation analysis were used 
to explore the functions of hub genes and their association with immune phenotypes in CCMs. An external dataset 
was then employed for validation. Finally, employing the Cellchat algorithm on a single-cell RNA-seq dataset, we 
explored potential mechanisms underlying the participation of these hub genes in cell-cell communication in CCMs.

Results Our study revealed two distinct CCM subtypes with differential pattern of CRG expression and immune infil-
tration. Three hub genes (BTBD10, PFDN4, and CEMIP) were identified and validated, which may significantly associ-
ate with CCM pathogenesis. These genes were found to be significantly upregulated in CCM endothelial cells (ECs) 
and were validated through immunofluorescence and western blot analysis. Single-cell RNA-seq analysis revealed 
the cellular co-expression patterns of these hub genes, particularly highlighting the high expression of BTBD10 
and PFDN4 in ECs. Additionally, a significant co-localization was also observed between BTBD10 and the pivotal 
cuproptosis gene FDX1 in Mki67+ tip cells, indicating the crucial role of cuproptosis for angiogenesis in CCMs. The 
study also explored the cell-cell communication between subcluster of ECs expressing these hub genes and immune 
cells, particularly M2 macrophages, suggesting a role for these interactions in CCM pathogenesis.

Conclusion This study identifies molecular signatures linking cuproptosis to CCMs pathogenesis. Three hub genes—
PFDN4, CEMIP, and BTBD10—may influence disease progression by modulating immunity. Further research is needed 
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to understand their precise disease mechanisms and evaluate their potential as biomarkers or therapeutic targets 
for CCMs.

Keywords Cerebral cavernous malformations, Cuproptosis, Immune infiltration, Cuproptosis-related genes, Cellchat

Background
Cerebral cavernous malformations (CCMs) are preva-
lent neurovascular malformations that occur in either 
sporadic or familial forms in young adults [1–3]. The 
sporadic form is frequently linked with a developmen-
tal venous anomaly and has a single focus, while famil-
ial cases are characterized by the presence of multiple 
lesions [4]. These malformations have been extensively 
researched, but their origins and prevalence in differ-
ent age groups are still under consideration. CCMs are 
characterized by abnormally dilated blood vessels in the 
venous-capillary vascular bed without intervening brain 
parenchyma [1, 5]. The blood contained in such vessels 
moves slowly and tends to clot [6, 7]. The lesions are 
associated with a lifelong risk of stroke, seizures, and 
focal neurological deficits for which no effective phar-
macological treatment has been confirmed [8, 9]. To 
date, three genes have been identified to be responsi-
ble for development of CCMs, namely CCM1 (KRIT1), 
CCM2 (MGC4607), and CCM3 (PDCD10) [10–13]. The 
reported mutations of these three genes reported so far 
result in premature termination codons or large dele-
tions, indicating loss-of-function mutations involved in 
the formation of enlarged thin-walled vessels [13–16]. It 
has been discovered that genes and genetic risk factors 
are involved in vasculogenesis, angiogenesis, and vas-
cular remodeling [17–19]. However, the precise mecha-
nisms lead to the pathogenesis of CCMs are still unclear, 
the therapeutic approaches have yet to be determined.

Cuproptosis, also identified as copper-induced death, 
a novel form of cell death associated with mitochondrial 
metabolism that distinctly diverges from other known 
forms of death including apoptosis, ferroptosis and 
necroptosis [20]. Recently, the reliance of cuproptosis on 
mitochondrial respiration stimulated by either deficient 
or excess intracellular copper has been established. Cop-
per insufficiency impairs the function of copper-binding 
enzymes [21]. The overabundance of copper inside cells 
can be transported towards the mitochondria, where it 
directly binds with lipid-acylated components within 
the tricarboxylic acid (TCA) cycle, initiating toxic pro-
tein stress and ultimately resulting in cell death [22]. 
Based on a whole-genome CRISPR-Cas9 screening, sev-
eral cuproptosis-related genes (CRGs) have been identi-
fied [22]. Among these, seven genes, namely ferredoxin 
1 (FDX1), lipoic acid synthase (LIAS), lipoyltransferase 
1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), 

dihydrolipoamide S-acetyltransferase (DLAT), pyruvate 
dehydrogenase E1 component subunit alpha 1 (PDHA1) 
and pyruvate dehydrogenase beta subunit (PDHB) have 
exhibited positive regulatory effects on cuproptosis, while 
three genes including metal regulatory transcription fac-
tor 1 (MTF1), glutaminase (GLS), and cyclin-dependent 
kinase inhibitor 2A (CDKN2A), have demonstrated 
negative regulatory effects. Moreover, maintaining the 
intracellular copper concentration is reliant on copper 
exporters and importers [22, 23]. Genetic mutations that 
lead to copper accumulation are associated with severe 
and potentially life-threatening pathological conditions, 
including Menke’s disease [24], Wilson’s disease [25], 
neurodegenerative diseases [26, 27], cancer [28], and car-
diovascular disease [29]. Copper is demonstrated to be 
involved in the development and progression of cancer 
by triggering cell proliferation, angiogenesis, and metas-
tasis [20]. CCMs are collections of abnormal slow-flow 
capillaries predominantly found in the central nerv-
ous system, characterized by dilated, thin-walled vessels 
predisposed to recurrent hemorrhages within the mal-
formed vascular cluster [30]. Although there is currently 
no direct evidence indicating the involvement of copper 
metabolism in the progression of CCMs, copper has been 
found to demonstrate pro-angiogenic properties by regu-
lating various factors involved in angiogenesis [31–33]. 
Furthermore, copper levels play a role in cardiovascu-
lar diseases, with higher levels in blood associated with 
increased risk [34]. Disturbance of copper homeostasis 
can also result in mitochondrial dysfunction, leading to 
vascular endothelial cells (ECs) injury, affecting vascular 
development, and potentially contributing to hemorrhage 
[35]. Evidence also indicates that copper cytotoxicity may 
potentially contribute to vascular endothelial injury in 
vascular diseases [36]. Abnormal lipoylation protein oli-
gomerization, known to be a key process in cuproptosis, 
has been identified as playing a role in endothelial dam-
age [22, 37]. Disruption of the lipoylation pathway has 
been demonstrated to lead to mitochondrial dysfunc-
tion in ECs, impairing vascular growth and develop-
ment in mouse models[37]. Studies have also shown that 
α-lipoic acid-plus exerts endovascular protective effects 
by reducing mitochondrial damage and helping to main-
tain lysosomal integrity, inhibiting the apoptosis path-
way post intimal injury [38, 39]. Considering the roles of 
copper metabolism and aberrant protein lipoylation in 
the vascular endothelium, along with the characteristics 
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of abnormal vascular development and a tendency for 
recurrent hemorrhages in CCMs, we are speculating on 
whether cuproptosis are involved in the pathogenesis and 
development of CCMs. Therefore, investigate the rela-
tionship between CRGs and CCMs, which may provide 
insight into potential therapeutic targets.

In this study, we use a comprehensive approach to 
investigate the potential involvement cuproptosis in 
the progression of CCMs. We explore the contribution 
of CRGs in different subtypes of CCMs, screen for hub 
genes related to cuproptosis, and validate these genes in 
an external dataset and CCM samples from our cohort. 
Furthermore, our study has explored the intricate inter-
play between these hub genes and the immune microen-
vironment within CCMs on single-cell level, providing 
novel insights into the role of immune modulation in the 
disease process. Our result may provide valuable insight 
into the diverse and complex mechanisms underlying 
CCMs development and progression, further paving the 
way for potential therapeutic strategies targeting cuprop-
tosis-associated factors.

Methods
Study design
The study design is presented in Fig. 1.

Bulk RNA Sequencing (RNA‑seq ) data collection
Three datasets were retrieved from the Gene Expression 
Omnibus (GEO) database, including three bulk RNA-
seq datasets (GSE130174, GSE123968, and GSE233210). 
Dataset GSE130174, which comprised 10 CCMs samples 
and three control samples, was annotated using platform 

GPL20301. Similarly, dataset GSE123968, also annotated 
using platform GPL20301, comprised five CCMs samples 
and three control samples. For subtyping of CCMs based 
on expression of CRGs and identification of hub genes, 
we integrated GSE130174 and GSE123968 using the 
Combat function of the "sva" R package. The GSE233210 
dataset, annotated using platform GPL24676, which 
included five sorted EC samples from CCMs patients and 
four normal control samples, was used as an external val-
idation dataset.

Consensus clustering analysis
The human bulk RNA-seq datasets GSE130174 and 
GSE123968 were combined for primary analysis. Con-
sensus clustering analysis was performed with “Consen-
susClusterPlus” package. Based on the expression levels 
of CRGs, CCMs were stratified into clusters through con-
sensus clustering involving 50 iterations, each consisting 
80% of the samples. The optimal number of clusters was 
identified using cumulative distribution function curves 
of consistency scores and the consistency matrix heat 
map features of the consistency matrix.

Differential expression genes (DEGs) analysis
We employed the “Limma” package, a specialized R 
package for analyzing differential expression of genetic 
profiles, to identify the genes which display significant 
differential expression across distinct comparison groups 
to investigate the variations in the molecular mechanisms 
of CCMs data. DEGs were identified between the control 
and CCMs samples, as well as between subtypes of CCMs 
clustered based on the expression of CRGs. Only those 

Fig. 1 Flow chart of the study. Created with Biorender.com
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genes with a P < 0.05 and |log2FC| > 1 were selected. The 
DEGs were then used to formulated volcano plots with 
the “ggplot2” package to visual the distribution. DEGs 
were also utilized Metascape (https:// metas cape. org/) for 
Gene Ontology (GO) enrichment analysis to determine 
the major biological terms.

Machine learning to identify CRGs associated hub genes 
in CCMs subtypes
This study employed the least absolute shrinkage and 
selection operator (LASSO) regression and random for-
est algorithms to identify hub genes associated with 
CRGs in different molecular subtypes of CCMs. The gene 
set for machine learning were selected from the intersec-
tion of the DEGs from different subtypes of CCMs and 
the DEGs from the disease and normal control groups 
(Fig.  1). The LASSO algorithm was executed using the 
"glmnet" package, while the random forest algorithm 
utilized integrated learning with decision trees as base 
learners. Training sets were selected from the sample 
set with replacement, and decision trees were generated 
from the resulting samples. Features are randomly and 
non-repetitively selected at each node, and subsequently 
used to divide the sample set to identify the optimal fea-
ture for division and prediction. In this study, feature 
importance was evaluated by the random forest algo-
rithm, which involved the construction of 1000 classifica-
tion trees, each of which was churned 50 times to assess 
the importance of the features based on %IncMSE. The 
hub genes were obtained by taking the intersection of the 
results from Lasso regression and random forest.

Immune infiltration analysis
The single-sample gene set enrichment analysis (ssGSEA) 
technique is widely implemented for assessing the differ-
ent immune cell types present in the microenvironment. 
It is founded on the support vector regression principle 
and back-convolution enquiry of the immune cell sub-
type expression matrix. The technique comprises 547 
biomarkers that distinguish 29 human immune cell phe-
notypes, which include T-cells, B-cells, plasma cells, and 
myeloid subpopulations. The study examined patient data 
by utilizing the ssGSEA algorithm to determine the rela-
tive proportions of 29 immune-infiltrating cells. To more 
accurately identify immune cell subgroups of interest and 
validate the results of ssGSEA, we further utilized the 
CIBERSORT algorithm to identify the relative compo-
sition of immune cells in tissues. Samples with P-values 
less than 0.05 were the only ones included in the analysis 
of immune cell fractions. Additionally, correlation analy-
ses were carried out aiming to investigate the relevance 
between gene expression and immune cell proportions.

We also utilized the TISIDB (http:// cis. hku. hk/ TISIDB/ 
index. php), an integrated repository portal for immune 
system interactions, to explore the correlation between 
the clusters and five categories of immune regulatory 
genes, namely receptor-related genes, chemokine-related 
genes, immunoinhibitor-related genes, MHC-related 
genes, and immunostimulator-related genes.

Gene set variation analysis (GSVA)
Gene set variation analysis (GSVA) is an unsupervised 
and non-parametric technique utilized to evaluate gene 
set enrichment in transcriptomes. GSVA reallocates 
gene-level modifications of genes to pathway-level modi-
fications of pathways by integrating the scoring of gene 
sets of interest, to establish the biological functions of the 
samples. In this study, we retrieve gene collections from 
the Molecular Signatures Database (MsigDB) version 7.0 
and apply the GSVA algorithm to assess each collection 
comprehensively, to examine potential alterations in the 
biological functions of diverse samples.

Gene set enrichment analysis (GSEA)
The study investigated the signaling pathway discrepan-
cies between groupings with high and low expression 
through GSEA. The gene set used for background infor-
mation was obtained from the annotated gene set of the 
MsigDB, which served as the annotation gene set for the 
cluster pathways. This gene set was utilized for the differ-
ential expression analysis of pathways between clusters. 
The enriched gene sets (adjusted P-value less than 0.05) 
were then ranked based on their concordance score. The 
GSEA analysis is commonly employed to investigate dis-
ease classification and biological significance.

Immunofluorescence staining for co‑localization validation
To observe the co-localization between hub genes and 
ECs. Four samples per group of CCMs and normal con-
trol samples were collected from the Huashan hospital 
cohort (HS-cohort). The sections of samples were fixed 
in 10% formalin and paraffin-embedded, then underwent 
deparaffinization and antigen retrieval. After blocking 
at room temperature for an hour, the sections were then 
incubated overnight at 4°C with the following primary 
antibodies: BTBD10 (Broad-complex, tram-track and 
bric-a-brac domain 10) (1:200, sc-377183, Santa Cruz 
Biotechnology), CD144 (VE-cadherin, 1:200, 14-1441-
82, Thermo Fisher Scientific), KIAA1199 (CEMIP (Cell 
migration-inducing protein), 1:200, DF12056, Affinity 
Biosciences), and PFDN4 (Prefoldin 4) (1:200, 16045-1-
AP, ProteinTech). Subsequently, were then washed three 
times with PBS for 10 minutes each time and subse-
quently reacted with Alexa Fluor 488 (1:1000, ab150081, 
Abcam), or Alexa Flour 594 (1:1000, ab150120, Abcam) 

https://metascape.org/
http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
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secondary antibodies for 1 hour at room temperature, 
and washed three times with PBS. Coverslips were 
mounted on slides using anti-quencher medium (P0128, 
Beyotime). Pannoramic SCAN (3DHISTECH, Hungary) 
was used for imaging. immunofluorescence images were 
captured with identical exposure settings. An exposure 
time series experiment was on CCM samples to deter-
mine the optimal exposure time. During this process, 
the exposure time was progressively adjusted until the 
desired signal intensity was attained, avoiding overexpo-
sure or signal saturation. Subsequently, a fixed exposure 
time was chosen and applied to all samples. The scanning 
parameters, including resolution, exposure time, gain, 
and contrast, were standardized to mitigate potential 
image bias resulting from parameter variations.

Western blot for expression validation
Four CCMs samples and normal four control tissues were 
collected from the HS-cohort for total protein extrac-
tion. Protein concentration was measured using the BCA 
assay, and sample amounts were adjusted to the same 
total protein level. SDS-PAGE was performed, followed 
by membrane transfer. The membrane was blocked 
with 5% BSA or non-fat milk and then incubated over-
night at 4°C with the primary antibody: BTBD10 (1:1000, 
sc-377183, Santa Cruz Biotechnology), KIAA1199 
(CEMIP, 1:500, DF12056, Affinity Biosciences), PFDN4 
(1:1000, 16045-1-AP, ProteinTech) and β-actin (1:1000, 
ab8226, Abcam). Afterward, the membrane was incu-
bated with the secondary antibody (ab205718 or 
ab205719, Abcam) at a 1:2000 dilution for 1-2 hours at 
room temperature, followed by ECL luminescence devel-
opment. Grayscale values were analyzed, and protein lev-
els were expressed as a ratio to the internal reference.

Single‑cell RNA‑seq analysis
Database, preprocessing and integration
We processed a total of 32,261 cells sourced from the 
GEO database under accession number GSE155788, 
which were originated from two  CCM3WT mice (con-
trols) and two  CCM3KO mice (CCM model). Cell capture 
and library preparation were performed using the 10× 
Genomics Chromium System and Single Cell 3’ Rea-
gent Kits v2. Sequencing was conducted on an Illumina 
NovaSeq 6000 system.

Seurat (V5.0.3) was used to perform downstream 
analysis. Initially, genes expressed in fewer than 10 cells 
were excluded. To ensure exclusion of potentially dam-
aged cells, cells have < 200 unique molecular identifiers 
(UMIs) or more than 5 median absolute deviations of 
the population, as well as cells with over 5% mitochon-
drial gene expression were dropped. Additionally, poten-
tial doublets were identified using scDblFinder (V1.16) 

and excluded, allowing altogether 28,601 cells for further 
analysis.

Gene expression of these cells was then log normalized 
to a maximum of 10,000 and scaled, with number of total 
UMIs regressed using the ‘ScaleData’ function. We next 
identified highly variable genes and then performed prin-
cipal component analysis (PCA) to reduce dimensional-
ity. Top 30 PCs were used to find anchors in canonical 
correlation analysis (CCA) using the ‘IntegrateLayers’ 
function, which generated the integrated database of all 
individual samples.

Clustering and annotation
The integrated database was used to identify clusters 
under the resolution of 0.5 selected based on clustree 
(V0.5.1). For each identified cluster, marker genes that 
were conserved across genotypes were identified using 
the ‘FindMarkers’ function. And then, clusters were 
annotated based on canonical maker genes of endothelial 
subtypes previously published [40]. Macrophage/Micro-
glia (Mφ/MG) based were subdivided based on the ratio 
of M1 marker genes (Tnf, Il1b, Il6, Cd80, Cd68, Cd86, 
Fcgr1, Nos1, Cybb) and M2 marker gene (Tgfb1, Ccl17, 
Mrc1, Chil3, Fcgr2b, Pparg) expression. The mean M1/
M2 ratio in all Mφ/MG were established as threshold.

Cell‑cell interaction inference
To analyze intercellular communication within our inte-
grated cell database, CellChat (V1.6.1) [41]was employed 
(default parameters) to infer potential signaling interac-
tions between cells based on a predefined database of 
ligand-receptor pairs. Special attention was given to the 
interactions between various endothelial subtypes and 
immune cells.

Statistical analysis
All statistical analysis were performed utilizing R soft-
ware 4.2.2. Student’s t-test or Wilcoxon were utilized to 
investigate the difference between two groups. Corre-
lations between variables were assessed using Pearson 
or Spearman parameters. Differences in the mean were 
declared statistically significant if P < 0.05 and the follow-
ing statistical significance indicators are used: *P < 0.05; ** 
P < 0.01; *** P < 0.001; **** P < 0.0001.

Results
Feature and functional alteration in CCMs
We analysed an expression profiling data obtained from 
21 patients, which comprises a control group of six 
patients and a CCMs group of 15 patients (Fig. 2A). We 
found a total of 2963 DEGs between CCMs and control 
groups, with 1169 genes upregulated and 1794 genes 
downregulated in CCMs (Fig.  2B). Subsequent GO 
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enrichment analysis found that the upregulated genes 
were mainly enriched in GO terms associated with 
immunity and vascular generation (Fig. 2C).

CRGs expression and immune infiltration analysis in CCMs
To further investigate the expression patterns of CRGs 
in CCMs, CRGs were sourced from a previous publica-
tion [42], and the subsequent list was limited to those 
genes with human bulk RNA expression data available 
in GSE130174 and GSE123968. Our findings suggested 
that four cuproptosis genes, namely CDKN2A, GLS, 
PDHA1, and PDHB exhibited significant expression dif-
ferences between the control and CCMs group (Fig. 2D-
F). Specifically, CDKN2A was highly expressed in CCMs, 
while GLS, PDHA1, and PDHB were highly expressed 
in the control group. It’s worth noting that FDX1 and 
LIAS showed increased expression in CCMs compared 
to the control group, although there was no significant 
difference (Fig.  2E, F). Additionally, we conducted cor-
relation for CRGs to probe CRGs’role in CCMs devel-
opment. Notably, FDX1 was positively correlated with 
CDKN2A and DLD. In contrast, GLS was negatively cor-
related with CDKN2A and FDX1. LIAS was negatively 
correlated with GLS. LIPT1 was positively correlated 
with CDKN2A, FDX1, and MTF1, and negatively cor-
related with GLS. Moreover, CDKN2A was positively 
correlated with PDHA1 and PDHB (Fig. 2G). Given that 
upregulated DEGs in CCMs are primarily enriched in 
immune regulatory in CCMs (Fig.  2C), we performed 
CIBERSORT analysis to assess the immune infiltration 
of the samples. Our analysis revealed significant immune 
cell infiltration in CCMs compared to the control group, 
including macrophages, dendritic cells (DCs), B cells, and 
T cells (Fig. 2H). The analysis of the relationship between 
CRGs and immune cells showed that most CRGs were 
positively correlated with CCR (C-C chemokine recep-
tor), T cell co-stimulation, APC (Antigen Presenting Cell) 
co-stimulation, DCs and Tfh (T follicular helper cell). In 

contrast, they displayed negative correlations with APC 
co-inhibition, parainflammation, Treg (Regulatory T 
cell), Type I IFN Response, TIL (Tumor-Infiltrating Lym-
phocyte), HLA (Human Leukocyte Antigen) and mac-
rophages (Fig. 2I).

Consensus clustering CCMs based on expression of CRGs
We employed a consensus clustering approach to inves-
tigate the pattern of modifications in CCMs cuproptosis 
based on assessing expression discrepancy of CRGs. The 
result of analysis revealed a clearer distinction between 
the two sample clusters at k=2, resulting in the establish-
ment of two distinct clusters (Fig.  3A-F). Volcano plot 
was plotted to depict the distribution of DEGs between 
two clusters, consisting of 281 upregulated genes and 
266 downregulated genes when Cluster 1 vs. Cluster 2 
(Fig. 3G). The GO enrichment analysis revealed that the 
DEGs were predominantly enriched in immune regula-
tion, vascular development, and synapses (Fig.  3H). We 
further investigated the expression of CRGs within these 
clusters and identified seven genes displaying differential 
expression (Fig.  3I). Specifically, CDKN2A, FDX1, GLS, 
LIAS, LIPT1, PDHA1, and PDHB were found to exhibit 
differential expression patterns between the two clusters. 
CDKN2A, FDX1, LIAS, and LIPT1 had high expression 
levels in cluster 1, while GLS, PDHA1, and PDHB had 
high expression levels in Cluster 2. As FDX1 and LIAS 
play a significant positive regulatory role in cuproptosis-
induced cell death, while GLS plays a negative regulatory 
role [22], patients in Cluster 1 featuring a high expression 
of FDX1 and LIAS might be more prone to experiencing 
a positive promotion of cuproptosis, whereas patients 
in Cluster 2 exhibiting a high expression of GLS could 
obtain the opposite regulatory effect.

Functional enrichment between clusters
To explore the functions of genes from two clusters 
within the samples, GSEA enrichment analysis was 

Fig. 2 CRGs expressed in control and CCMs group. A The GEO datasets and number of samples were illustrated in the schematic. Created 
with Biorender.com. B Volcano plot showing up/down-regulated DEGs of the CCMs vs. Control group. Blue dots represent down-regulated DEGs 
while red dots represent up-regulated DEGs. C Bar chart showing GO enrichment for up-regulated genes. The value of -log10(P) is represented 
by the depth of red color and immunity related GO terms are marked in red. D The expression patterns of 10 CRGs were presented in the heatmap. 
The color bar on the right indicates relative expression levels of CRGs (blue: low expression level; red: high expression level). E Box plots of CRGs 
in control group compared to CCMs group. Values are represented as the mean ± SD. F Volcano plot of CRGs for Control vs. CCMs. Blue dots 
represent low expression, while red dots represent high expression. G Heatmap of correlation of CRGs. The color bar indicates the Pearson 
correlation coefficient. Blue represents positive correlation, red represents negative correlation and the depth of the color represents the strength 
of the correlation, and abs (correlation) was displayed by the size of the dot. H Box plots showed the difference of immune infiltration assessed 
with ssGSEA in control group compared to CCMs group. Values are represented as the mean ± SD. I The correlation analysis between 10 CRGs 
and immune cells. The color bar indicates the Pearson correlation coefficient. Red represents positive correlation, purple represents negative 
correlation, and the depth of the color represents the strength of the correlation. P-values in the box plots are denoted by asterisks: *P-<0.05, 
**P<0.01, ***P<0.001 and ns indicates no significant difference. CRGs, Cuproptosis-related genes; CCMs, Cerebral cavernous malformations; DEGs, 
Differentially expressed genes; GO, Gene Ontology; ssGSEA, Single-sample Gene Set Enrichment Analysis

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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conducted to identify the enriched gene sets for each 
cluster. The 20 most significant pathways for Cluster 1 
and Cluster 2 were chosen for heatmapping, which high-
lighted divergent pathways enriched in each isoform 
(Fig.  3J, K). Notably, in the GSEA of GO enrichment, 
GLUCURONOSYLTRANSFERASE ACTIVITY is sig-
nificantly activated in the gene high-expression group of 
Cluster 1, while ADENYLATE CYCLASE BINDING is 
activated in the gene high-expression group of Cluster 
2 (Fig. 3J). In the GSEA of KEGG enrichment, ASCOR-
BATE AND ALDARATE METABOLISM, ITOSE AND 
GLUCURONATE INTERCONVERSIONS, and METAB-
OLISM OF XENOBIOTICS BY CYTOCHROME P450 
are mainly enriched in the gene high-expression group 
of Cluster 1, while GLYCOSYLPHOSPHATIDYLINO-
SITOL GPI ANCHOR BIOSYNTHESIS and CITRATE 
CYCLE TCA CYCLE are enriched in the gene high-
expression group of Cluster 2 (Fig. 3K). It is worth not-
ing that these pathways involving mitochondrial energy 
transfer and metabolism may be involved in regulating 
cuproptosis, which primarily occurs in the mitochondria.

Hub genes associated with different subtypes of CCMs
We further meticulously selected 273 intersecting DEGs 
from Cluster 1 vs. Cluster 2 and Control vs. CCMs for 
screening feature hub genes associated with different 
subtypes of CCMs clustered by CRGs (Fig.  4A). The 
LASSO regression and random forest algorithms were 
employed in the screening process. There are 14 fea-
ture genes that are related to CCMs identified through 
LASSO regression analysis, as shown in Fig.  4B and C. 
The Random Forest algorithm selected a set of 10 fea-
ture genes (Fig.  4D), which were then intersected with 
the feature genes obtained from the LASSO regression 
algorithm to derive a final list of three overlapping genes, 
namely PFDN4, CEMIP, and BTBD10 (Fig. 4E), that were 
investigated as the hub genes in our upcoming study. 
Upon comparing the two clusters, we observed that 
BTBD10 and PFDN4 were highly expressed in Cluster 1, 

while CEMIP was highly expressed in Cluster 2. Further-
more, all three genes were significantly overexpressed in 
CCMs (Fig. 4F and G).

Pathogenic genes related to CCMs were identified 
using the GeneCards database. Varying expression lev-
els of known pathogenic genes among clusters were 
demonstrated in Fig. 4H. B-Raf proto-oncogene, serine/
threonine kinase (BRAF), Tumor Necrosis Factor (TNF), 
Synaptic Ras GTPase Activating Protein 1 (SYNGAP1), 
Delta-Like Canonical Notch Ligand 4 (DLL4) and AT-
Rich Interaction Domain 1B (ARID1B) were highly 
expressed in Cluster 1; while Phosphoinositide-3-Kinase 
Regulatory Subunit 2 (PIK3R2), Nuclear Receptor Sub-
family 2 Group F Member 2 (NR2F2), Transforming 
Growth Factor Beta 1 (TGFB1), and Zic Family Member 
1 (ZIC1) were highly expressed in Cluster 2. Further-
more, the expression levels of three hub genes displayed 
a significant correlation with various disease-associated 
genes. This includes a remarkable positive correlation 
between BTBD10 and DLL4 (r = 0.887, P<0.001) and a 
significant negative correlation between PFDN4 and 
endoglin (ENG) (r = -0.725, P<0.001) (Fig. 4I). Addition-
ally, CEMIP exhibited a positive correlation with TGFB1 
(r = 0.75, P<0.001). It is noteworthy that the expression 
patterns of BTBD10 and PFDN4 are generally consistent 
with CCMs pathogenic genes, while being opposite to 
CEMIP.

Immune infiltration characteristics of the CCMs subtypes
The immune microenvironment is composed mainly 
of immune cells, extracellular matrix, various growth, 
and inflammatory factors, as well as distinctive physico-
chemical features. These elements significantly affect the 
CMMs development or hemorrhage. We conducted an 
primary analysis by ssGSEA to investigate the potential 
molecular mechanisms that contribute to the progres-
sion of CCMs through examining the relevance between 
two clusters and immune infiltration. Statistical dispari-
ties were observed in a variety of immune cells, including 

(See figure on next page.)
Fig. 3 Identification of cuproptosis-related molecular subtypes and comprehensive pathway enrichment analysis in CCMs. A CDF curves 
displayed consensus distributions from k=2 to k=5. B Area fraction under the CDF curve for k =2–9. The horizontal axis indicated the number 
of categories (k), while the vertical axis indicated the relative changes in the area under the CDF curves. C - F Consensus clustering matrixes were 
generated for values of k ranging from 2 to 5. G Volcano plot showing up/down-regulated DEGs of the Cluster 1 vs. Cluster 2. Blue dots represent 
down-regulated DEGs while red dots represent up-regulated DEGs. H Bar chart showing GO enrichment for DEGs of Cluster 1 vs. Cluster 2. The 
value of -log10(P) is represented by the depth of blue color and immunity related GO terms are marked in red. I Box plot visualized the expression 
patterns of CRGs in two CCMs clusters. Values are represented as the mean ± SD. GESA of (J) GO enrichment and (K) KEGG enrichment of with bar 
plots based on the expression level of cluster genes. The color bar on the right indicates gene expression levels. The gene sets of each cluster were 
subdivided into high-expression and low-expression groups, with red color representing the high-expression genes from the respective cluster, 
and dark indicating the low-expression genes from the corresponding cluster, respectively. P-values in the box plot are denoted by asterisks: 
*P < 0.05, **P < 0.01, ***P < 0.001 and ns indicates no significant difference. CDF, Cumulative distribution function; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; GSEA, Gene Set Enrichment Analysis
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activated dendritic cells (aDCs), B cells, check-point, 
DCs, inflammation-promoting cells, macrophages, neu-
trophils, plasmacytoid dendriticcells (pDCs), T cell co-
inhibition, T helper cells, TIL, and Type II IFN Response 

between Cluster 1 and Cluster 2, and Cluster 2 exhibits 
significantly higher levels of immune infiltration than 
Cluster 1. (Fig. 5A). The CIBERSORT algorithm was then 
used to validate the results of ssGSEA, yielding consistent 

Fig. 3 (See legend on previous page.)
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outcomes (Fig.  5B). Notably, macrophages, particularly 
M0 and M2 types, constitute a significant proportion of 
all immune cells assess by CIBERSORT (Fig. 5C).

Furthermore, we investigated the correlation between 
hub genes and immune cells and found that the hub 
genes BTBD10 and PFDN4 from Cluster 1 exhibited a 
significant negative correlation with most immune cells, 
including macrophages and B cells (Fig.  5D and F). In 
contrast, the hub gene CEMIP from Cluster 2 dem-
onstrated a significant positive correlation with most 
immune cells (Fig.  5E). The analysis indicated a close 
association between the hub genes from two clusters and 
the degree of immune cell infiltration, signifying their 
significant role in the immune microenvironment in 
CCMs sbutypes.

Differential analysis of immune system interactions 
in the CCMs subtypes
We extracted various immune factors from the TISIDB 
database and analysed for intergroup variation in differ-
ent immune factor clusters, including immune-related 
chemokines, immunosuppressive, and immunostimu-
latory factors. Our results show a significant upregula-
tion of Chemokine (C-X-C motif ) ligand 9 (CXCL9), 
Chemokine (C-C motif ) ligand 22 (CCL22), Chemokine 
(C-X-C motif ) ligand 12 (CXCL12), as well as immuno-
suppressive factors including Colony-stimulating fac-
tor 1 receptor (CSF1R), IL10, TGFB1, TGFBR1, CD274, 
and Programmed cell death 1 ligand 2 (PDCD1LG2) in 
Cluster 2 (Fig. S1A-B). Interesting, several immunostim-
ulatory factors were found to significantly increase in 
Cluster 2, including CD27, CD8, CD86, Ectonucleoside 
triphosphate diphosphohydrolase-1 (ENTPD1), CD40, 
5’-Nucleotidase Ecto (NT5E), and Tumor Necrosis Fac-
tor Superfamily Member 13b (TNFSF13B) (Fig. S1C). On 
the other hand, Cluster 1 showed significant increases 
in MHC-related genes such as Major Histocompat-
ibility Complex, Class II, DO beta (HLA-DOB), Major 

Histocompatibility Complex, Class I, G (HLA-G), and 
Transporter 2, ATP Binding Cassette Subfamily B Mem-
ber (TAP2) (Fig. S1C). These results indicate that the 
interactions with the immune system may differ between 
Cluster 1 and Cluster 2."

Signaling pathways enrichment of hub genes
We analyzed the signaling pathways enriched by the 
three hub genes to investigate their potential molecular 
mechanisms through which they impact the progress of 
CCMs. The GSVA results indicate that BTBD10, when 
highly expressed, primarily activates signaling path-
ways like mTORC1, fatty acid metabolism, hedgehog 
and PI3K-ATK-MTOR signaling as shown in Fig.  6A, B 
indicates that elevated expression of CEMIP predomi-
nantly enriched in IL6/JAK/STAT3, angiogenesis, TNFA 
signaling via NFκB and inflammation response signal-
ing pathways. Meanwhile, the significant enrichment of 
PFDN4 expression was identified in bile acid metabolism, 
KRAS signaling and fatty acid metabolism as illustrated 
in Fig.  6C. Furthermore, the results of GSEA analysis 
demonstrate that BTBD10 is enriched in the pathways 
of Chemokine, NOD-like receptor, and Toll-like recep-
tor signaling pathways (Fig.  6D); CEMIP is enriched in 
the cAMP signaling pathway, Glutamatergic synapse, 
and Retrograde endocannabinoid signaling (Fig. 6E); and 
PFDN4 is enriched in the Calcium signaling pathway, 
cAMP signaling pathway, and Neuroactive ligand-recep-
tor interaction (Fig. 6F). These findings suggest that hub 
genes can significantly impact the progression of CCMs 
by regulating vascular endothelial growth, inflamma-
tory response, mitochondrial energy metabolism and cell 
cycle.

Validation of hub genes in human ECs
Considering the relevance of CCMs in the context of 
angiogenesis, a GEO dataset (GSE233210) that con-
tains bulk RNA-seq data from human ECs was selected 

Fig. 4 Identification of CRGs associated hub genes in two CCMs clusters. A Venn plot displaying 273 overlapping DEGs of Cluster 1 vs. Cluster 2 
and Control vs. CCMs. The overlapping genes were subsequently analyzed using the LASSO regression algorithm and the random forest algorithm. 
B DEGs profiles based on LASSO coefficients. C LASSO coefficient values of the DEGs. The vertical dashed lines are the optimal log(λ) values. D DEGs 
profiles based on random forest algorithm. E Venn plot displaying 3 overlapping genes selected by LASSO regression algorithm and random forest 
algorithm. F Box plots compared the expression of BTBD10, CEMIP, PFDN4 in two CCMs clusters. G Box plots compared the expression of BTBD10, 
CEMIP, PFDN4 in control and CCMs group. H The comparisons of the expression of CCMs-related genes between two CCMs clusters. Values are 
represented as the mean ± SD. (I) Bubble map for the Pearson correlations between three hub genes (BTBD10, CEMIP, PFDN4) and CCMs-related 
genes. P-value was represented by the size of circle. The bigger the circle, the closer the P-value was to zero; Pearson correlation coefficient 
was represented by color. The redder the color, the stronger the positive correlation; The deeper of the purple color, the stronger the negative 
correlation. P-values in the box plots are denoted by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001 and ns indicates no significant difference. LASSO, 
least absolute shrinkage and selection operator; RF, random forest. BTBD10, Broad-complex, tram-track and bric-a-brac domain 10; CEMIP, Cell 
migration-inducing protein; PFDN4, Prefoldin 4; DLL4, Delta-Like Canonical Notch Ligand 4; TGFB1, Transforming Growth Factor Beta 1; ENG, 
endoglin

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Fig. 5 Analysis of immune infiltration for hub genes from two CCMs clusters. A Box plot showed the difference of immune infiltration assessed 
with ssGSEA in Cluster 1 compared to Cluster 2 group. B Box plot showed the difference of immune cell subtypes validated by CIBERSORT algorithm 
in Cluster 1 compared to Cluster 2 group. C Box plot showed the estimated proportion of immune cells from two clusters assessed by CIBERSORT 
algorithm. Immune cells were annotated by using different colours. Values are represented as the mean ± SD. P-values in (A) and (B) are denoted 
by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001. D‑F Bubble map for the correlations between hub genes from two CCMs clusters and immune cells. 
Circles on the right indicates the absolute value of the correlation coefficient. The bigger the circle, the stronger the positive/negative correlation. 
P-value was indicated by color. The deeper of the green color, the closer the P-value was to zero
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to validate the expression and function of hub genes in 
human ECs (Fig. 7A). In the comparison of CCMs_ECs 
and Control_ECs, a total of 149 DEGs with upregula-
tion and 9,726 DEGs with downregulation were identi-
fied (Fig.  7B). The up-regulated DEGs were found to 
enriched in GO terms associated with immune regula-
tion and blood vessel development (Fig.  7C), consist-
ent with the results of the primary analysis (Fig.  2C). 
In term of the expression of CRGs, CDKN2A, FDX1 
and LIAS were found to up-regulated in CCMs_ECs 
group, while GLS, MTF1 and PDHB were found the 
up-regulated in Control_ECs group (Fig.  7D). There-
fore, the CCMs_ECs group appears to exhibit more 
features related to cuproptosis. Meanwhile, we found 
that hub genes BTBD10, PFDN4, and CEMIP were sig-
nificantly upregulated in the CCMs_ECs (Fig. 7E).

We further conducted a correlation analysis between 
hub genes and CRGs in the CCMs_ECs group. The 
results showed that the expressions of BTBD10 were 
consistent with PFDN4 in the analysis of relationship 
with CRGs, significantly positively correlated with 
FDX1, LIAS, and DLAT, and significantly negatively 
correlated with GLS and PDHA1 (Fig. 7F). It is worth 
mentioning that CEMIP showed the opposite corre-
lation results with BTBD10 and PFDN4, significantly 
negatively correlated with FDX1, LIAS, and DLAT, 
and significantly positively correlated with GLS and 
PDHA1. The results are also highly consistent with the 
clustering based on CRGs expression in primary analy-
sis (Fig. 3I).

The results of immune infiltration analysis showed 
that the CCMs_ECs group had a higher infiltration of 
immune cells (Fig.  7G), consistent with the primary 
analysis results of CCMs gross specimens (Fig.  2H). 
The correlation analysis between hub genes and 
immune cells revealed that BTBD10 and PFDN4 were 
negatively correlated with most immune cells, while 
CEMIP was positively correlated with immune cells 
(Fig.  7H-J). Interestingly, BTBD10 and PFDN4 were 
positively correlated with M2 macrophages but nega-
tively correlated with M1 macrophages (Fig. 7H and J), 
while CEMIP showed the opposite correlation pattern 
(Fig. 7I).

Validation of hub genes in HS‑cohort
To further ascertain the actual expression of these three 
hub genes in CCMs, we performed immunofluorescence 
co-localization and assessed protein expression levels in 
CCMs sample collected from HS-cohort. We observed a 
co-localization of BTBD10, CEMIP, and PFDN4 with VE-
cadherin (a distinctive marker of ECs) in the tissues of 
CCMs (Fig. 8A). Moreover, our results revealed that the 
levels of BTBD10, CEMIP, and PFDN4 were significantly 
elevated in the CCMs group compared to the control 
group, which signified functional expression of these hub 
genes in the CCMs tissues (Fig. 8B-E).

Validation of hub genes at the single cell level
A total of four samples (two normal and two CCMs sam-
ples) were obtained for analysis in this study, which came 
from scRNA-seq dataset (GSE155788). Among them, 
14,623 single cells derived from normal tissues, whereas 
15,978 cells were CCMs-derived. The cells were classified 
into five main cell types, including erythroid, MΦ/MG, 
glia, endothelia and neuro, and each major cell type was 
well mixed according to sample classification (Fig.  9A). 
Based on well-known markers, endothelia were selected 
to subdivide the cell subgroups, and a total of seven 
endothelial clusters were identified, including artery, 
arterial capillary, venous capillary, venous capillary 
(Mki67+), vein, tip cells, and tip cells (Mki67+) (Fig. 9B 
and Fig. S2). Fig 9C shows the differences in cell distribu-
tion between the control and CCMs groups. These find-
ings indicate the heterogeneous landscape among normal 
and CCMs samples. Subsequent co-expression analysis 
showed that Btbd10 and Pfdn4 from Cluster 1 overlapped 
in multiple ECs in CCMs (Fig. 9C), demonstrating their 
high-level co-expression at the cellular level. However, 
we found that Cemip, which originated from Cluster 2, 
had a relatively low overall expression level in the cell 
population of CCMs. Further subgroup analysis revealed 
that Btbd10 and Pfdn4 were highly expressed in tip cells 
(Mki67+) compared to the control group (Fig.  9D). 
Moreover, Btbd10 was highly expressed in the artery, 
while Pfdn4 was highly expressed in vein, venous capil-
lary (Mki67+), and arterial capillary. Cemip was highly 
expressed in venous capillary (Mki67+), tip cells, and 
arterial capillary, especially in the venous system.

Fig. 6 GSVA and GSEA analysis of pathways activated upon up- and down-regulation of BTBD10, CEMIP, PFDN4. A GSVA of BTBD10; (B) GSVA 
of CEMIP; (C) GSVA of PFDN4. Differences in pathway activities scored by GSVA, between high expression and low expression (from up to down) 
of specific gene. The GSVA scores, serving as the X-axis, are sorted in descending order according to their rank, to reflect the significant pathways 
enrichment levels of gene set, and two K-S statistical distribution lines are drawn. Blue and green colors represent significantly enriched pathways, 
while gray color indicates non-differential pathways. (D) GSEA of BTBD10; (E) GSEA of CEMIP; (F) GSEA of PFDN4. GSVA, Gene Set Variation Analysis; 
NES, Normalized Enrichment Score; adj.p, adjust P-value

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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We subsequently conducted correlation analyses of hub 
genes and CRGs in different cell subgroups of CCMs, and 
the results indicated that the relationship between these 
three hub genes and CRGs was heterogeneous (Fig. 9E). 
We found that Btbd10 was significantly correlated with 
multiple CRGs in several cell subclusters, especially in 
tip cells (Mki67+) where it was positively correlated with 
three genes, Fdx1, Mtf1, and Gls. Additionally, Btbd10 
was positively correlated with Lipt1 in the vein and 
Cdkn2a in the artery, Therefore, the role of Btbd10 in 
ECs became the focus of subsequent exploration in this 
research.

Potential cuproptosis mechanisms of CCMs regulated 
by Btbd10 though cellchat between M2 macrophage 
and tip cells (Mki67+)
We next aimed to investigate whether the heightened 
expression of Btbd10 in endothelia coincided with altered 
intercellular communication in CCMs. For this purpose, 
we used CellChat  [41], a tool that utilizes a database of 
ligand-receptor interactions to analyze cell-cell com-
munication from scRNA-seq data. Our findings showed 
significant differences in cell-cell interactions between 
the control and CCMs samples (Fig.  10A). Specifically, 
we found that the cell-cell interaction strength between 
MΦ/MG and most other cells was significantly enhanced 
in large cell populations, particularly between MΦ/MG 
and endothelia, which was consistent with our observa-
tions in the bulk RNA-seq dataset (Fig. 2H).

Subsequently, we divided MΦ/MG into two subclus-
ters, M1 and M2, to explore their interactions with the 
high hub gene-expressing endothelial the CCMs samples 
(Fig. 10B). Our results showed that the strength of inter-
actions between M2 MΦ/MG and Btbd10+ endothelial 
and Pfdn4+ endothelial were stronger than that of other 
cells, indicating that these two subclusters of endothelial 
may play a primary functional role in the interaction with 
M2 MΦ/MG. This finding was consistent with our obser-
vations in the bulk RNA-seq data (Fig. 5D and F). How-
ever, the interaction between M2 MΦ/MG and Cemip+ 

endothelia was weaker compared to that with the over-
all endothelia, indicating that the interaction between 
Cemip+ endothelia and M2 MΦ/MG may not be the pri-
mary functional interaction.

We further undertook an in-depth analysis of inter-
cellular ligand pathways (Fig. S3), unearthing signifi-
cant probability of communication between endothelia 
with highly expressed hub gens and MΦ/MG mainly 
through pleiotrophin (Ptn) binding to nucleolin (Ncl) and 
fibronectin (Fn1) binding to integrin alpha 4 (Itga4) and 
integrin a1 (Itgb1) (Fig. 10C). With the positive associa-
tion between Bdbt10 and several endothelial subgroups’ 
CRGs taken into account (Fig. 9E), we then explored the 
notably significant interactive paths between Btbd10+ 
endothelia and MΦ /MG (Fig.  10D, left panels). Inter-
estingly, we discovered that the primary pathways for 
connections from M2 MΦ/MG extending to Btbd10+ 
endothelia were through the Ptn-Ncl pathway. Con-
trastingly, the connections from Btbd10+ endothelia 
extending to M2 MΦ/MG were primarily through the 
Fn1-(Itga4+Itgb1) pathway. Concurrently, we noticed the 
expression of the corresponding signal pathways’ recep-
tors and ligands increase in the corresponding interac-
tion pairs between MΦ/MG and Btbd10+ endothelia 
(Fig. 10D, right panels).

Due to the high expression of Btbd10 in tip cells 
(Mki67+) (Fig. 9D), we sought to explore and validate the 
correlation between Btbd10 and cuproptosis in relevant 
cell subclusters of endothelia. We subsequently analyzed 
the relationship between Btbd10 and a feature gene of 
cuproptosis- Fdx1 (Fig.  11A). The results showed that 
Btbd10 has a substantial positive correlation with Fdx1 in 
the tip Cells (Mki67+) of CCMs samples, while no signif-
icant correlation in the control group. Further colocaliza-
tion results also hinted at Btbd10 and Fdx1’s coexpression 
in the tip Cell (Mki67+) population (Fig.  11B). These 
results imply a substantial correlation between Btbd10 
and cuproptosis in CCMs at the cellular level.

We moved forward by sorting out tip cells (Mki67+) 
in endothelia from CCMs samples evaluated their 

(See figure on next page.)
Fig. 7 Validation of hub genes using an external bulk RNA-seq dataset from human CCMs ECs. A The human CCMs bulk RNA-seq dataset 
and number of EC samples were demonstrated in the schematic. Created with Biorender.com. B Volcano plot showing up/down-regulated DEGs 
of the CCMs_ECs vs. Control_ECs group. Green dots represent down-regulated DEGs while red dots represent up-regulated DEGs. C Bar chart 
showing GO enrichment for up-regulated genes. The value of -log10(P) is represented by the depth of red color and immunity related GO terms are 
marked in red. D Box plots of CRGs in control_ECs group compared to CCMs_ECs group. E Box plots of hub genes in control_ECs group compared 
to CCMs_ECs group. F Heatmap displays the relationship between hub genes and CRGs in the CCMs_ECs group. The correlation coefficients are 
represented using color bar, where red indicates a positive correlation and blue indicates a negative correlation. G Box plots showed the difference 
of immune infiltration assessed with CIBERSORT in control_ECs group compared to CCMs_ECs group. Values are represented as the mean ± SD. 
P-values in the heatmap and box plot are denoted by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001. H - J Bubble map for the correlations between hub 
genes and immune cells. Circles on the right indicates the absolute value of the correlation coefficient. The bigger the circle, the stronger 
the positive/negative correlation. P-value was indicated by color. The deeper of the purple color, the closer the P-value was to zero
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Fig. 7 (See legend on previous page.)
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Fig. 8 Expression of hub genes were validated between control and CCMs group in HS-cohort. A Representative Immunofluorescence images 
for co-localization of BTBD10, CEMIP, PFDN4 with VE-C, scale bar = 50 µm for low magnification; scale bar = 10 µm for high magnification; (B‑E) 
Western blotting and quantitative analysis of BTBD10, CEMIP, PFDN4. N=4 for each group. Values are represented as the mean ± SD. P-values are 
denoted by asterisks: *P< 0.05, **P< 0.01, ***P< 0.001 and ns indicates no significant difference. VE-C, VE-cadherin. HS, Huashan hospital
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interactions with other cell clusters by using Cellchat 
analysis. We found that tip cells (Mki67+) have signifi-
cant interaction strength with MΦ/MG, especially M2 
MΦ/MG (Fig.  11C). Simultaneously, compared to tip 

cells (Mki67+) exhibiting low Btbd10 expression, a sig-
nificant increase in interaction strength was observed 
between tip cells (Mki67+) with high Btbd10 expression 
and M2 MΦ/MG. (Fig. 11D).

Fig. 9 scRNA-seq analysis delineates Mki67+ Tip cells as key endothelial subclusters involved in cuproptosis in CCMs mouse models. A UMAP 
plots depict 5 major cell types (left) and 6 endothelial subtypes (right) as identified by Leiden clustering, with each dot representing an individual 
cell color-coded by type or subtype; (B) A UMAP plot contrasts the cellular distribution between Control  (CCM3WT) and CCM  (CCM3KO) groups; 
(C) UMAP plot illustrates the expression patterns of cuproptosis hub genes (Btbd10, Pdnf4) and their co-expression in Cluster 1, alongside Cemip 
in Cluster 2, with gene expression levels normalized for projection; (D) Heatmap represents the correlation between hub genes (Btbd10, Pdnf4, 
Cemip) and CRGs (Fdx1, Lias, Lipt1, Dld, Dlat, Pdha1, Pdhb, Mtf1, Gls, Cdkn2a) across endothelial subclusters in CCMs, with Spearman’s rank 
correlation coefficients presented as z-scores; (E) Heatmaps display the expression levels of hub genes across endothelial subclusters within Control 
and CCMs groups, with color gradients indicating z-scored expression levels
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Lastly, we analyzed the ligand-receptor pathways 
between M2 MΦ/MG and tip cells (Mki67+) with high 
or low expression of Bdbt10 (Fig. S4), finding that they 
primarily interact through Esam (cndothelial cell-selec-
tive adhesion molecule)-Esam, Col4a1-(Itga1+Itgb1) 
(collagen type IV alpha1 chain-(interacting with integ-
rin a1) +Itgb1), and Ptn-Ncl ligand pathways (Fig. 11E). 
Among these, the interaction between M2 MΦ/MG and 
tip cells (Mki67+Btbd10+) primarily takes place via the 
Esam-Esam ligand pathway. In contrast, the interaction 
between M2 MΦ/MG and Tip Cells (Mki67+Btbd10-) 
primarily takes place via Col4a1-(Itga1+Itgb1) and Ptb-
Ncl (Fig.  11F). The expression of ligands and receptors 
in the respective pathways increases in the correspond-
ing interaction pairs between M2 MΦ/MG and tip cells 
(Mki67+Btbd10+). These findings suggest that M2 MΦ/
MG may potentially impact the progression of CCMs 
throgh the aforementioned ligand-receptor pathways to 
interact with tip cells (Mki67+) and drive cuproptosis in 
tip cells (Mki67+), in which process Btdb10 may play a 
role in cuproptosis promotion.

Discussion
This investigation examined the subtypes across CCMs 
associated with cuproptosis by deploying bioinformatics 
methods and experimental validation on comprehensive 
datasets. We discerned two primary subtypes of CCMs 
intimately associated with the expression of CRGs and 
screened for hub genes from two subtypes of CCMs. Hub 
genes were then validated with an external dataset and 
CCMs samples from our cohort. Additionally, we delved 
into the potential interactions between hub genes related 
to cuproptosis and the immune infiltration by scRNA-seq 
analysis. This comprehensive genomic and bioinformatic 
investigation provides an invaluable source for under-
standing mechanisms underpinning the pathogenesis 
and progression of CCMs, further carving paths for the 
development of precision therapies for CCMs.

Previous studies have highlighted the presence of 
immune cells, such as B lymphocytes, plasma cells, T 
cells, and macrophages, within CCM lesions, indicat-
ing an active immune response [43, 44]. In this study, 
we also found the upregulated DEGs in CCMs samples 

were primary enriched in immune regulatory pathways, 
and the activated immune cell population in both CCMs 
and endothelial samples were significantly increased than 
those in the normal control group. Inflammatory per-
turbations in the immune microenvironment have been 
found to contribute to CCMs pathologic progression, 
affecting disease outcomes [45]. Additionally, CCMs 
show an increased expression of inflammation-related 
genes, proinflammatory cytokines, and chemokines, pro-
moting the recruitment of inflammatory and immune 
cells [46]. These findings underscore the intricate inter-
play between immune infiltration and CCM develop-
ment, suggesting a potential role for immune modulation 
in CCMs progression.

Cuproptosis, a novel cell death mechanism, has 
been linked to immune infiltration in various diseases 
[47–49]. Studies have shown that CRGs play a role 
in regulating immune cell infiltration in diseases like 
tuberculosis, breast invasive carcinoma and athero-
sclerosis. The expression of CRGs has been associated 
with changes in immune cell profiles, impacting disease 
progression and patient outcomes. In atherosclerosis, 
cuproptosis regulators were found to be associated with 
immune cell infiltration status, highlighting the interplay 
between cuproptosis, immune responses, and disease 
development [49]. In this investigation, we partitioned 
CCMs into two distinct subtypes using consensus clus-
tering analysis based on the expression of CRG. Addi-
tionally, these two diverse CCMs subtypes showcase 
disparities concerning immune infiltration. Cluster 1, 
brimming with an array of cuproptosis-associated fea-
tures, is observed to possess a lower extent of immune 
penetration. Concurrently, we unveiled that the main-
stay genes of this cluster exhibit a compelling positive 
relationship with the anti-inflammatory immune cell 
type M2 MΦ, a correlation that could stem from its dis-
tinct role in exerting negative immune regulatory func-
tions [50]. Hub genes (BTBD10, PFDN4, and CEMIP) 
representing distinct CCMs subtypes were selected via 
LASSO regression and random forest, followed by exter-
nal validation and functional exploration in CCMs. ECs 
have been proved to play a vital role in vascular func-
tion and immune cell infiltration [51]. Activated ECs 

Fig. 10 Cell-cell communication dynamics between Mφ/MG and endothelial subclusters expressing identified hub genes in CCMs. A Circle 
plots map the interaction weights among the 5 major cell subclusters in control and CCMs group, color-coded by source cell cluster identity; (B) 
Circle plots details the interaction strengths between endothelial cell subclusters expressing Btbd10, Pdnf4, and Cemip, and other cell subclusters 
in CCMs, with a focus on M1 and M2 Mφ/MG interactions; (C) A dotplot highlights the primary signaling pathways between endothelial and Mφ/
MG cells in CCMs, where each dot represents a ligand-receptor pair, sized by pathway involvement P-value, and colored by communication 
probability; (D) An illustration of Ptn and Fn1 signaling pathways, including a circle plot (left) showing interaction strengths and a violin plot (right) 
depicting ligand and receptor gene expression levels

(See figure on next page.)
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express adhesion molecules that facilitate interactions 
with immune cells, leading to immune cell infiltration 
into the vascular wall [51]. Employing the tool of immu-
nofluorescence co-localization, we discerned that these 
three distinct genes share a co-localization with ECs in 
CCM samples. This insinuates the likely possibility that 
the influx of immune cells may orchestrate the cuprop-
tosis within endothelial cells, guided by hub genes, sub-
sequently playing a possibly significant role within the 
unfolding narrative of CCMs’ progression.

Specifically, our study suggests that BTBD10, one of 
the hub genes from Cluster 1, may serve as a key regu-
latory gene of cuproptosis in the development of CCMs. 
BTBD10 was known to activate AKT by inhibiting PP2A-
mediated dephosphorylation and inactivation of AKT 
[52]. Studies have reported that BTBD10 is a prognostic 
biomarker in cancer and associated with immune infiltra-
tion such as glioma [53], and hepatocellular carcinoma 
[54, 55]. Furthermore, a decrease in BTBD10 expression 
has been linked to motor neuron death in cases of amyo-
trophic lateral sclerosis cases due to the downregulation 
of the AKT-mediated prosurvival signal [56]. In addi-
tion, BTBD10 regulates the progression and apoptosis of 
pancreatic beta cells through the activation of the AKT 
signaling pathway [57]. In our previous analysis of sign-
aling pathway, our findings showed that high expression 
of BTBD10 significantly enhances mTORC1 signaling 
as well as PI3K-AKT-mTOR signaling. The mTOR sign-
aling pathway if responsible for regulating cell growth 
and is reported to play a critical role in the formation of 
CCMs [58]. A study has demonstrated that overexpres-
sion of BTBD10 in INS-1 cells could activate of the AKT/
mTOR signaling pathway via stimulating phospho-mTOR 
and AKT, enhancing overall cellular protein translation 
and promoting the proliferation of INS-1 cells [59]. Fur-
thermore, the correlation analysis revealed a significant 
correlation between BTBD10 and DLL4, an endothe-
lial Notch ligand which is upregulated by VEGF and 
regulates tip cells formation during angiogenesis [60, 
61]. Tip cells in angiogenesis perform critical roles in 
sprouting and vessel formation by leading the angiogenic 
sprouts [62]. In this research, the analysis of scRNA-seq 

data from the CCMs mice model indicated that Btbd10 
is highly expressed in the proliferating tip cells, specifi-
cally Mki67+ tip cells. Concurrently, Fdx1, a major gene 
promoting cuproptosis, are co-expressed with Btbd10 in 
the Mki67+ tip cells, suggesting that Btbd10 might influ-
ence the development of CCMs by participating in the 
cuproptosis process of Mki67+ tip cells.

M2 MΦ are recognized for their anti-inflammatory 
properties and have been demonstrated to enhance angi-
ogenesis by promoting tip cell migration and assisting 
tip cell fusion [63]. On the other hand, MG, the resident 
MΦ of the brain, have been observed to interact with 
endothelial tip cells to support vascular anastomosis dur-
ing brain vascularization [64]. In this study, we identified 
positive correlations between BDBT10 and M2 MΦ, and 
negative correlations with M1 MΦ within the Bulk RNA-
seq validation dataset from CCMs samples. Intriguingly, 
our analysis of scRNA-seq data from CCMs mice indi-
cated that the interactions between Mki67+ tip cells with 
high Btbd10 expression and M2 MΦ/MG are notice-
ably stronger than those with low Btbd10 expression. 
These infers a close correlation between the expression 
of BTBD10 and the interaction with M2 MΦ/MG, sug-
gesting that M2 MΦ/MG may influence the angiogenesis 
of CCMs potentially by regulating cuproptosis in tip cells 
through the expression of BTBD10.

Our observation revealed that PFDN4, akin to 
BTBD10, is sourced from Cluster 1. Moreover, striking 
similarities can be seen in their expression patterns and 
relationships with immune cells which pertain closely to 
those of BTBD10. PFDN4 is known as a subunit of the 
heterohexameric chaperone protein belonging to the pre-
foldin family [65, 66]. Its role is to capture unfolded actin 
and tubulin, delivering them to the cytosolic chaperone 
[67]. Furthermore, it functions as a transcription factor 
or cofactor in regulating the cell-cycle[68]. A study has 
suggested that PFDN4 expression serves to predict the 
prognosis of colorectal cancer [69]. Furthermore, empiri-
cal evidence has supported that PFDN4 may be associ-
ated with the progression of cancer progressions [70–72]. 
Our research has revealed that PFDN4 is enriched in 
cellular metabolism pathways and the KRAS signaling 

(See figure on next page.)
Fig. 11 Btbd10 expression in Mki67+ Tip cells is suggested to enhance endothelial-Mφ/MG interaction in CCMs. A A scatter plot examines 
the expression correlation between Btbd10 and Fdx1 in Mki67+ Tip cells, with a linear regression line and Spearman correlation coefficient 
and P-value indicated; (B) A UMAP plot visualizes the co-expression of Btbd10 and Fdx1 in Mki67+ Tip cells, projecting normalized gene expression 
levels; (C) Circle plots assesse the interaction strength between endothelial subtypes and Mφ/MG in CCM, focusing on Mki67+ Tip cells; (D) Circle 
plots and heatmap explore the interaction strength between Btbd10-expressing Mki67+ Tip cells and Mφ/MG, differentiated by Btbd10 expression 
levels, with color gradients reflecting scaled interaction strengths; (E) A dotplot identifies major signaling pathways between Btbd10+Mki67+ 
Tip cells and Mφ/MG in CCMs, using dots to represent ligand-receptor pairs, sized by P-value, and colored by communication probability; (F) 
An illustration of Collagen, Esam, and Ptn signaling pathways, featuring a circle plot (top) for interaction strengths and a violin plot (bottom) 
for gene expression levels
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pathway. Additionally, we have discovered a considerable 
negative correlation between PFDN4 and ENG, which 
regulates migration of vascular ECs [73]. In the validation 
dataset of the human bulk RNA-seq, PFDN4 distinctly 
parallels M2 MΦ while standing in inverse proportion 
to M1 MΦ in CCMs. Remarkably, within the scRNA-seq 
data obtained from mouse CCM specimens, endothelial 
expressing Pfdn4 at high levels exhibit a stronger interac-
tion intensity with M2 MΦ/MG compared to their inter-
action with M1 MΦ/MG. This suggests the likelihood 
of these high-Pfdn4-expressing endothelial impacting 
through their interaction with M2 MΦ/MG. However, 
the absence of a defined strong association between 
Pfdn4 and particular CRGs in the scRNA-seq data set 
our intense exploration aside for this research, earmark-
ing the elucidation of its role within CCMs for further 
substantiation in the future.

CEMIP, also known as KIAA1199, was initially iden-
tified as a protein in the inner ear, and mutations in its 
genetic makeup were associated with nonsyndromic 
hearing loss [74]. Its main role relates to hyaluronan 
depolymerization [75]. Studies have demonstrated that 
CEMIP is highly upregulated in various types of cancers 
and could be a valuable diagnostic and prognostic tool in 
assessing tumor progression [76, 77]. It has been dem-
onstrated that CEMIP regulates cell proliferation, dif-
ferentiation, migration, and invasion, promoting tumor 
growth through activation of pathways including Notch 
signaling pathway [78], the Wnt signaling pathway [79], 
and integrin-mediated AKT and ERK-MAPK intracellu-
lar signaling [80]. Furthermore, CEMIP acts as an adap-
tor for the interaction between MHC-I and clathrin, 
promoting MHC-I internalization via clathrin-dependent 
endocytosis [81]. In periarticular tissue, inflammatory 
cytokines induced the expression of CEMIP, which sug-
gests that it may play a significant role in the initiation or 
development of osteoarthritis [82]. Our findings are con-
sistent with previous research as we have demonstrated 
that CEMIP expression is predominantly enriched in 
pathways related to inflammation including IL6/JAK/
STAT3 signaling. Simultaneously, a heightened expres-
sion of CEMIP is observed in Cluster 2, a subtypes con-
spicuous for its pronounced level of immune infiltration 
as revealed in the bulk RNA-seq dataset. Inextricably 
twined, CEMIP shows a proportional relationship with 
the pro-inflammatory M1 MΦ. However, owing to the 
comparatively low expression of CEMIP in the scRNA-
seq samples integral to this investigation, the intricate 
interactions between it and M1 MΦ within CCMs can-
not be adequately elucidated. Therefore, it is of para-
mount importance that further probing investigations are 
conducted to fully unravel the meticulous mechanisms 
that govern this gene interactions in CCMs in the future.

There are several limitations in this study. Due to the 
limited number of available and accessible public datasets 
for CCMs, coupled with the limited sample size within 
each dataset, these datasets might not be representative 
of the entire population of CCMs patients. Lacking a 
large sample dataset for validation, we resorted to the use 
of in vitro endothelial bulk RNA-seq dataset from human 
CCMs for verification. This could result in certain dis-
crepancies with the actual in vivo environment surround-
ing the lesions. Despite this, the overall results remain 
consistent with the initial set of cohort data. Moreover, 
Due to the limited sample size and lack of prognosis-
related information, it is not feasible in this study to fur-
ther ascertain the impact of hub genes on the prognosis. 
Moving forward, conducting studies with larger sample 
sizes and more diverse populations would serve to cor-
roborate the findings of this study and enhance the gen-
eralizability of the results. Furthermore, even though we 
discovered that the interactions between MΦ/MG and 
the ECs in CCMs were intensified, further experiments 
are still required in the future to validate these phenom-
ena as well as to delve deeper into the precise functions 
of these three genes in regulating cuproptosis associated 
to CCMs’ angiogenesis.

Conclusions
In conclusion, we identified two distinct subtypes of 
CCMs, defined on the basis of CRGs. Additionally, we 
elucidated three hub genes from different subtypes in 
ECs associated with cuproptosis that may have sub-
stantial implications in the progression of CCMs via the 
regulation of immune infiltration, thereby presenting 
potential targets for the treatment of the disease.
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