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Abstract
Inhibitors of Bruton’s tyrosine kinase (BTKi) and chimeric antigen receptor T-cell (CAR-T) therapy targeting CD19 
are paradigm-shifting advances in treating patients with aggressive mantle cell lymphoma (MCL). However, clinical 
relapses following BTKi and CD19-directed CAR-T treatments are a fast-growing medical challenge. Development of 
novel therapies to overcome BTKi resistance (BTKi-R) and BTKi-CAR-T dual resistance (Dual-R) are urgently needed. 
Our single-cell RNA sequencing data revealed major transcriptomic reprogramming, with great enrichment of 
MYC-targets evolving as resistance to these therapies developed. Interestingly, cyclin-dependent kinase 9 (CDK9), 
a critical component of the positive transcription elongation factor-b complex, was among the top upregulated 
genes in Dual-R vs. BTKi-R samples. We therefore hypothesized that targeting CDK9 may turn off MYC-driven tumor 
survival and drug resistance. Enitociclib (formerly VIP152) is a selective CDK9 inhibitor whose potency against MCL 
has not been assessed. In this study, we found that enitociclib was highly potent in targeting lymphoma cells, 
with the half-maximal inhibitory concentration (IC50) ranging from 32 to 172 nM in MCL and diffuse large B-cell 
lymphoma cell lines. It inhibited CDK9 phosphorylation and downstream events including de novo synthesis of 
the short-lived proteins c-MYC, MCL-1, and cyclin D1, and induced apoptosis in a caspase-3-dependent manner. 
Enitociclib potently inhibited in vivo tumor growth of cell line-derived and patient-derived xenografts having 
therapeutic resistance. Our data demonstrate the potency of enitociclib in overcoming therapeutic resistance in 
MCL models and provide evidence in favor of its clinical investigation.
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To the editor
Mantle cell lymphoma [1] is a very aggressive subtype 
of non-Hodgkin lymphoma. There have been para-
digm-shifting therapeutic advances in the last decade, 
including BTKi therapies (ibrutinib, acalabrutinib, zanu-
brutinib, and pirtobrutinib) and anti-CD19 CAR-T 
therapy [2–6]. However, therapeutic relapse frequently 
occurs, and there is a rising need to prevent or overcome 
resistance in patients who relapse. Our single-cell RNA 
sequencing data showed that MYC targets were pro-
gressively enriched with BTKi resistance (Fig. 1A). MYC 
mRNA expression was upregulated in BTKi-R compared 
to BTKi-sensitive (BTKi-S) cells, and its high expres-
sion correlated with poor patient survival in our patient 
cohort (p = 0.037) (Fig. 1B) and two independent cohorts 
[7, 8] (p = 0.0032 and 0.0027, respectively) (Supplemen-
tary Figure S1 A-B). Moreover, cyclin-dependent kinase 
9 (CDK9) was among the top upregulated genes in Dual-
R samples vs. solely BTKi-R samples [9]. Therefore, we 
targeted the transcription gatekeeper CDK9 to see if that 
approach could overcome therapeutic resistance. CDK9 
inhibition by small molecules such as AZD4573 induces 
acute loss of short-lived mRNA and proteins, including 
c-MYC and MCL-1 [10]. Enitociclib is a selective and 
potent CDK9 inhibitor with a better safety profile than 
AZD4573 [11]; however, its potency in treating MCL 
and whether it overcomes therapeutic resistance is not 
known.

Enitociclib was highly potent in primary MCL cells, 
MCL cell lines, and diffuse large B-cell lymphoma 
(DLBCL) cell lines, with an IC50 of 32–172 nM (Fig. 1C 
and Supplementary Figure S2 A). Enitociclib inhibited 
cell viability in a dose- and time-dependent manner by 
robustly inducing apoptosis (Fig.  1D and Supplemen-
tary Figure S2 B-C and S3A-B). Upon treatment with 
enitociclib for 6  h, CDK9 phosphorylation was mark-
edly inhibited in both JeKo-R cells with acquired BTKi-
resistance and Z138 cells with primary BTKi-resistance 
(Fig. 1E). Correspondingly, CDK9 downstream signaling 
events, including phosphorylation of RNA polymerase 
II (Pol II) at Ser 2, were also downregulated, along with 
reduced expression of the short-lived proteins c-MYC, 
MCL-1, and cyclin D1 (Fig.  1E). These changes were 
dose-dependent in JeKo-R cells (Fig.  1F). Similarly, 
cycloheximide (CHX), a translation elongation inhibi-
tor, diminished c-MYC expression, while the proteasome 
inhibitor MG132 failed to rescue enitociclib-induced 
c-MYC downregulation (Fig. 1G and Supplementary Fig-
ure S4). These indicate that enitociclib blocks de novo 
gene expression of short-lived proteins but not protein 
degradation.

Additionally, the two apoptosis indicators, cleaved 
PARP (poly (ADP-ribose) polymerase) and cleaved 
caspase-3, were markedly upregulated upon CDK9 

inhibition (Fig.  1E). Enitociclib treatment triggered 
apoptosis as early as 6 h and further augmented it at 24 
and 48  h in JeKo-R cells (Fig.  1H). Enitociclib-triggered 
apoptosis was blocked by the pan-caspase inhibitor 
Z-VAD-FMK and by the specific caspase-3 inhibitor 
Z-VEAD-FMK in JeKo-R and JeKo-1 cells (Fig. 1I-L and 
Supplementary Figure S5 A-B). Together, these data 
demonstrate that targeting CDK9 with enitociclib trig-
gered apoptosis in a caspase-3-dependent manner.

To determine whether targeting CDK9 with enitociclib 
can effectively and safely overcome therapeutic resis-
tance in MCL, we first tested its in vivo efficacy using 
JeKo-1 cell line-derived xenografts (CDXs). Enitociclib 
at 10  mg/kg (IV, twice a week) markedly inhibited the 
tumor growth of JeKo-1 CDXs in immunodeficient NSG 
(NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice (p < 0.0001) and 
correspondingly prolonged mouse survival (p < 0.0001) 
(Fig. 2A-B) without significant body weight loss (Fig. 2C) 
or other apparent adverse effect. To further address this, 
we established patient-derived xenograft (PDX) models 
from three patients with different types of therapeutic 
resistance: PDX-1 having BTKi resistance (Fig.  2D-F), 
PDX-2 having dual resistance to the BTKi ibrutinib and 
the Bcl-2 inhibitor venetoclax (Fig.  2G-I), and PDX-3 
having dual BTKi-CAR-T resistance (Fig. 2J-L). Enitoci-
clib efficaciously inhibited in vivo PDX growth of PDX-1 
(p = 0.00015), PDX-2 (p = 0.009), and PDX-3 (p = 0.000003) 
without causing significant body weight loss (Fig. 2D-L).

Our findings showed that targeting CDK9 with its spe-
cific inhibitor enitociclib led to potent anti-lymphoma 
activity in vitro and in vivo. Enitociclib induced rapid 
CDK9 inhibition and a rapid decline in c-MYC, MCL-1, 
and cyclin D1 to robustly induce apoptosis, which is pre-
dominantly dependent on caspase-3 activation. Enitoci-
clib also significantly impeded tumor growth in mouse 
CDX and PDX models. These data demonstrate that 
CDK9 is a promising target in MCL and may be utilized 
to overcome therapeutic resistance to BTKi and CART 
therapy in MCL. In a phase I dose-escalation trial, eni-
tociclib was reported to be safe and effective in treating 
double-hit DLBCL patients [12]. Altogether, it highlights 
the targeting of CDK9 as a potentially effective regimen 
for treatment of advanced disease. Translational and 
mechanistic studies are ongoing to understand how tar-
geting CDK9 can overcome therapeutic resistance in 
lymphoma.
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Fig. 1  Targeting CDK9 with the specific inhibitor enitociclib potently inhibited lymphoma cell growth by suppressing de novo expression of short-lived 
proteins and inducing apoptosis. (A) MYC-TARGETS-v1 was progressively enriched in BTKi-fast responders (-Fast), -slow responders (-Slow) and non-
responders (-Resist) based on GSEA analysis of single-cell RNA-seq data from MCL patient samples. (B) MYC mRNA expression was higher in BTKi-resistant 
(BTKi-R) than BTKi-sensitive (BTKi-S) MCL cells (left panel), and its high expression correlated with poor patient survival (right panel). (C) Cell viability assay 
assessing the in vitro efficacy of enitociclib in 9 MCL cell lines (top panel) and 5 DLBCL cell lines (bottom panel). The IC50 is presented to the right of each 
cell line. (D) Enitociclib at the indicated concentrations inhibited cell viability and induced apoptosis in a dose-dependent manner in MCL cells after 24 
hr of treatment. (E) Western blots show that enitociclib inhibited CDK9 phosphorylation and Pol II phosphorylation at Ser 2, reduced expression of c-MYC, 
MCL-1, and cyclin D1, and induced cleavage of PARP and caspase-3 in JeKo-R and Z138 cells. (F) Enitociclib dose-dependently suppressed CDK9 phos-
phorylation, Pol II phosphorylation, and expression of c-MYC and MCL-1 by 6 hr after treatment in JeKo-R cells. (G) Pretreatment of cycloheximide (CHX, 
50?g/ml) for 1 hour diminished c-MYC expression, while pretreatment of MG132 (10?M) failed to rescue enitociclib (200 nM)-induced c-MYC downregula-
tion in JeKo-R cells. (H) Enitociclib (200 nM) induced apoptosis at 24 and 48 hr even when the cells were treated with enitociclib for only the first 6 hr in 
JeKo-R cells. (I-J) Pan-caspase inhibitor Z-VAD-FMK (10?M) blocked enitociclib (200 nM)-induced apoptosis by cell apoptosis assay (I) and western blot 
(J) in JeKo-R cells. (K-L) Caspase-3-specific inhibitor Z-DEAD-FMK (20?M) rescued enitociclib (200 nM)-induced apoptosis by cell apoptosis assay (K) and 
western blot (L) in JeKo-R cells. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001
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Abbreviations
BTK	� Bruton’s tyrosine kinase
BTKi	� BTK inhibitor
CAR-T	� chimeric antigen receptor T cell
CDK9	� cyclin-dependent kinase 9
CDX	� cell line-derived xenograft
DLBCL	� diffuse large B-cell lymphoma
BTKi-Fast	� BTKi fast responder
BTKi-R	� BTKi-resistant
BTKi-Resist	� BTKi non-responders
BTKi-S	� BTKi-sensitive
BTKi-Slow	� BTKi slow responder
Dual-R	� BTKi-CAR-T dual resistant
IC50	� Half-maximal inhibitory concentration
MCL	� mantle cell lymphoma
PDX	� patient-derived xenograft
Pol II	� RNA polymerase II
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Fig. 2  Enitociclib potently inhibited MCL cell growth in MCL cell line-derived xenografts (CDX) and patient-derived xenografts (PDX) models in mice. 
(A-C) Enitociclib (10 mg/kg, IV, twice a week) markedly inhibited tumor growth in JeKo-1 CDXs. Tumor volume (A), mouse survival (B), and mouse body 
weight (C) are plotted. Statistical significance is indicated in the graphs. (D-L) Enitociclib (10 mg/kg, IV, twice a week) effectively inhibited tumor growth 
in PDX models with ibrutinib resistance (D-F, PDX-1), ibrutinib-venetoclax dual resistance (G-I, PDX-2), or dual resistance to ibrutinib and CAR-T therapy 
(J-L, PDX-3). Mouse tumors were dissected, imaged, and weighed (D, G, and J). Tumor size (E, H, and K), and mouse body weight (F, I, and L) are plotted
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