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Abstract 

Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and repli-
cation-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such 
as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, 
the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy 
of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adop-
tive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive 
immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cel-
lular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were 
infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor 
tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor 
immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this 
context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving 
antitumor effects in combination with novel cancer immunotherapies.
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Introduction
Recombinant adenovirus (rAd) represents an attractive 
candidate for virus vaccination and cancer immuno-
therapy. For viral vaccination, rAd can act as a vehicle 
to deliver specific viral antigens into host cells, prompt-
ing the immune system to recognize and build defenses 
against future infections. For example, rAd-based vac-
cine for COVID-19, which utilizes the SARS-CoV-2 spike 
protein as an antigen, has demonstrated specific antibody 
and T-cell responses in clinical trials [1, 2]. In the realm 
of cancer immunotherapy, given the nuanced differences 
between cancer cells and their normal counterparts, the 
challenges are distinct. The antigens delivered by rAd 
usually encompass tumor-associated antigens (TAAs) 
or tumor-specific antigens (TSAs) such as cancer-testis 
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antigen NY-ESO-1 and melanoma-associated cancer-
testis antigen (MAGE-A3) (NCT04908111) [3], as well 
as personalized patient-specific or shared neoantigens 
(ClinicalTrials.gov: NCT03639714, NCT03953235) [4]. 
In another aspect, the conditionally replicating adenovi-
rus (CRAd), clinically referred to as oncolytic adenovirus 
(OAV), is engineered to specifically target and annihilate 
tumor cells for destruction, preventing their growth and 
spread. Furthermore, OAV also plays a role in reshaping 
the tumor microenvironment (TME) and bolstering cel-
lular immunity [5–7]. By harnessing the complete poten-
tial of OAV in tumors, different strategies have been used 
to leverage their entry, replication, and lysis capabilities 
to maximize antitumor immunity [8–11].

Clinically, there are basically two primary methods for 
rAd administration, intravenous and localized injection. 
Although intravenous administration of rAd is encum-
bered by numerous challenges, such as neutralizing anti-
bodies (NAbs), cytokine storm syndrome, disseminated 
intravascular coagulation, thrombocytopenia, and hepa-
totoxicity, direct intravenous administration of a high 
titer of rAd was superior to other routes for transgene 
expression [12, 13]. The existing methods for delivering 
viruses, such as nanoparticles and PEG/lipids/calcium 
phosphate, have been demonstrated to allow a high dose 
of viruses to be administered intravenously and increase 
therapeutic efficacy without inducing toxicity [14, 15]. 
In other cases, studies of localized injection, especially 
intraperitoneal administration of OAV indicated benefits 
in treating peritoneal metastasis over systemic injections, 
given its ability to deliver high concentrations directly to 
the tumor [16–18]. As such, the primary focus in poten-
tiating rAd immunotherapy lies in balancing efficacy 
with safety, leading to tailored modifications in the viral 
genome to boost cellular immunity.

Adoptive cell therapy (ACT) is a type of vibrant tumor 
immunotherapy that involves a broad spectrum of 
immune cells, including dendritic cells (DCs), chimeric 
antigen receptor macrophages (CAR-Ms), T-cell recep-
tor-engineered T cells (TCR-T cells), chimeric antigen 
receptor T cells (CAR-T cells), cytokine-induced killer 
cells (CIKs), cytotoxic T lymphocytes (CTLs), tumor-
infiltrating lymphocytes (TILs), and natural killer cells 
(NKs) [19]. Both rAd and retrovirus serve as prevailing 
vectors in ACT, with their selection hinging on distinct 
treatment objectives and disease profiles. Retrovirus, 
which integrates into the host genome, enables prolonged 
expression. Conversely, rAd can be applied in vivo with 
low toxicity, transient expression and effective infection. 
Significantly, working in combination with ACT, rAd can 
synergistically stimulate immunogenicity in the TME to 
increase ACT efficacy [20–22], or reach tumors through 
infused cells to cause oncolysis through a phenomenon 

known as “viral hitchhiking”, by loading on the cell sur-
face [23] or infecting cells [24, 25]. In this regard, stem 
cells with excellent tumor-homing properties usually 
serve as a promising systemic delivery tool for rAd and 
demonstrate safety and efficacy against tumors [26–30].

To potentiate antitumor immunity, it is vital to elicit 
tumor immunogenicity, synergize with cellular therapies, 
modulate the TME and target tumor sites. This review 
focuses on the generating and strengthening of rAd 
immunotherapies and provides a comprehensive under-
standing of its anti-tumor distinctions and mechanisms. 
Notably, we highlight promising strategies in combina-
tion with ACT to improve immunotherapeutic efficacy, 
which are expected to provide promising approaches for 
successful cancer treatment.

Biological characteristics of adenovirus 
and the development of rAd vectors
Adenovirus is a nonenveloped DNA virus with a 36 kb 
genome that contains early genes (E1-E4, pIX and pIVa2) 
associated with viral replication and five late genes (L1-
L5) involved in assembly. To date, 7 subgroups (sub-
groups A-G) and over 100 human adenovirus genotypes 
have been identified (http:// hadvwg. gmu. edu/). The ade-
noviral capsid features a regular 20-sided structure com-
prising hexons, pentons, and fibers, as well as other small 
proteins such as pIX, pIIIa and pIVa2 (Fig.  1a). Human 
adenovirus type 5 (Ad5, subgroup C) infection primar-
ily depends on the interaction between coxsackievirus-
adenovirus receptor (CXADR) on the cell surface and 
fibers on the viral capsid protein. Ad5 endocytosis into 
target cells occurs through two steps: the binding of a 
fiber knob to CXADR, and the subsequent interaction 
between the Arg-Gly-Asp motif (RGD) located in the 
penton base and integrin subunits alpha V (αv), beta 3 
(β3) and beta 5 (β5) (Fig. 1b) [31]. Other receptors, such 
as CD80/CD86, CD46, desmoglein 2 (DSG2) and sialic 
acid, are involved in infection by B or D subgroup adeno-
viruses (Fig. 1b) [32].

rAd has been continuously modified to enhance gene 
capacity, infection efficiency, duration of gene transduc-
tion and safety. The first-generation rAd lacks E1 and E3 
regions and thus is replication incompetent and innate-
immunity attenuated. The Ad5 vector from the first gen-
eration is predominantly used in scientific research and 
clinic [33, 34]. To mitigate the robust immune response, 
the second-generation rAd sees further gene deletions 
and an expanded transgenic space. However, deletion 
of E2 and/or E4 genes can lead to a decreased viral titer 
[34]. The third-generation rAd only retains the inverted 
terminal repeats (ITR) and packaging signal sequences, 
which can accommodate up to 37kb of exogenous DNA 
with the aid of a helper-packaging virus [35, 36]. This 

http://hadvwg.gmu.edu/


Page 3 of 23Zeng et al. Biomarker Research           (2024) 12:36  

high-capacity rAd minimizes residual gene expression, 
attenuates host immune, and achieves sustained in vivo 
transgenic expression. Its vast loading capability also 
allows it to carry prominent gene-editing systems like 
CRISPR/Cas9 and TALENs.

Construction and Modification Strategies for OAV
OAV is engineered to possess capabilities of direct onc-
olysis and immune induction. Briefly, they can cause 
immunogenic cell death (ICD) and trigger the produc-
tion of proinflammatory cytokines, pathogen-associated 
molecular patterns (PAMPs), and damage-associated 
molecular patterns (DAMPs) from dying cancer cells, 
which can activate DCs and T-cells to destruct tumor. 
Improving the targeting and replication of OAV is an 
effective approach to enhance its oncolytic effects.

Entry and targeting modifications
Capsid peptide incorporation
The CXADR required for Ad5 entry is typically 
expressed at low levels in target cells, prompting 
researchers to explore alternative entry pathways 
[37–39]. The HI loop or COOH-terminus of the fiber 
knob, and the hypervariable region of the hexon and 
shaft are promising candidates for displaying foreign 
peptide sequences [40, 41]. The RGD motif and its 
extended versions, including the internalized RGD 
(iRGD, CRGDKGPDC), RGD4C (CDCRGDCFC) and 
RGDK, have been used extensively to favor adenovirus 
entry via the integrin-mediated pathway (Fig. 1b) [42–
44]. Some cell-permeable peptides, such as the polyly-
sine motif (pK7) and a stretch of 20 lysine residues (F/
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Fig. 1 The genome structure and entry receptors of adenovirus. a Schematic representation of Ad5 genome and the major capsid proteins. b 
Cellular uptake and transduction mediators of various types of adenoviral vectors. The Ad5 primarily infects cells via both CXADR and integrin. 
The Ad5 can be engineered to increase cell entry by incorporating peptide into capsid and swapping fibers of other species of adenovirus. 
Surface receptors for cell binding of B, D subgroup and chimeric adenoviruses are displayed. d Summary of adenovirus entry receptors and fiber 
modifications.
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K20) incorporated into the fiber have also shown an 
improved transduction efficiency (Fig. 1b) [45–48].

Chimeric rAd engineering
Chimeric rAd can alter viral tropism and is a potent 
instrument for devising immune cell-based vaccination 
approaches. Table  1 lists the chimeric rAd in preclini-
cal and clinical trials. The directed-evolution screened 
Enadenotucirev (formerly ColoAd1) comprises the Ad11 

capsid structure from subgroup B and a chimeric E2B 
from Ad11/Ad3, which allows it to avoid the Ad5 NAbs 
and display robust tumor cell eradication via intravenous 
administration [49–55]. In the case of OAV ONCOS-102, 
integrates the Ad3 fiber knob domain into the Ad5 struc-
ture (Ad5F3). Therefore, Ad5F3 derives superior tropism 
via the adequately expressed Ad3 receptor (Fig.  1b) [9, 
56, 57]. Derived from Ad5, Ad5F35 replaces its receptor 
binding site with the fiber of Ad35 and strongly increases 

Table 1 Preclinical and clinical trials using chimeric rAd.

Cancer Vector Construct Transgene/
Features

Administration Phase ClinicalTrials.
gov ID

Ref. Combination

Ovarian cancer Enadenotucirev 
(ColoAd1)

Ad11p/Ad3 Intravenous Phase I NCT02028117 [50] Paclitaxel

Colorectal 
cancer
Head and neck 
cancer
Epithelial tumor

Intravenous Phase I NCT02636036 [51] Nivolumab

Rectal cancer Intravenous Phase I NCT03916510 [52] Capecitabine, 
radiotherapy

Lung cancer NG-347
Ad11p/Ad3

IFNα, MIP1α 
and CD80

Preclinical [53] CAR-T

Epithelial tumor NG-348
Ad11p/Ad3

Anti-CD3 
and anti-CD80

Intravenous Phase II NCT02028442 [49]

Colon carci-
noma
Lung cancer
Bladder cancer

NG-641
Ad11p/Ad3

CD40L, FAP/
CD3, CXCL9/10, 
IFNα

Intravenous,
Intratumoral

Phase I NCT02053220 [54] Tumor resection

Metastatic 
cancer
Epithelial tumor

NG-350A CD40L Intravenous,
Intratumoral

Phase I NCT03852511 [55]

Ovarian cancer ONCOS-102 Ad5/3-∆24-GM-
CSF

GM-CSF Intracavitary Preclinical [9]

Peritoneal malig-
nancy

Intraperitoneal Phase II NCT02963831 Durvalumab, 
cyclophospha-
mide

Solid tumor Intratumoral Phase I NCT01598129 [63]

Mesothelioma Intratumoral Phase II NCT02879669 [64] Pemetrexed,  
cisplatin

Multiple 
myeloma

LOAd700 Ad5/35-E2F-
∆24-CD40L

CD40L Preclinical [58]

Solid tumor LOAd703 Ad5/35-E2F-
∆24-CD40L-4-
1BBL

CD40L, 4-1BBL Intratumoral Phase II
Phase II
Phase II

NCT03225989
NCT04123470
NCT03555149

Atezolizumab, 
regorafenib, 
imprime PGG

Pancreatic 
cancer

Phase II NCT02705196 Gemcitabine, nab-
paclitaxel

Pancreatic 
cancer

Peritumoral Preclinical [61, 62] Gemcitabine

Lymphoma Intratumoral Preclinical [59] CAR-T

Melanoma Exosome-
LOAd703

Ad5/35-E2F-
∆24-CD40L-4-
1BBL

Exosome 
delivery

Intratumoral Preclinical [60]

Melanoma LOAd732 Ad5/35-E2F-
∆24-CD40L-4-
1BBL-IL-2

CD40L, 4-1BBL, 
IL-2

Intratumoral Preclinical [6]
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entry into immune cells by shifting its cellular receptor 
from CXADR to the ubiquitously expressed complement 
receptor CD46 (Fig.  1b). Lokon oncolytic adenovirus 
(LOAd) is Ad5F35 and shows promise in cancer inter-
vention [6, 58–62].

Tumor‑targeted OAV modification
Another strategy for engineering tumor-targeted OAV 
involves incorporating a single-chain T-cell receptor 
(scTCR) specific for TAA into adenoviral fibers. This 
approach allowed CXADR-independent viral entry and 
selectively infected cells that presented the correspond-
ing TAA within the context of human leukocyte antigen 
(HLA)-A and effectively eradicated tumors [65].

Conditional replication modifications
Adenovirus E1 is composed of E1A and E1B and initi-
ates viral replication through interactions with cellular 
proteins. OAV that can conditionally activate E1 genes 
for replication within tumor cells is designed to selec-
tively proliferate within and destroy tumor cells. There 
are generally four strategies for OAV to achieve con-
ditional replication: a) a 24 bp constant deletion in the 

E1A conserved region 2 (E1A∆24), b) a conserved region 
3 (CR3) deletion of the transactivator protein E1A 13S, 
c) an E1B55K deletion or E1B-93R mutation, d) specific 
promoter regulation of E1A (Fig. 2).

E1A gene modification
E1A proteins are among the first to be expressed after 
adenoviral infection for initiation of the viral life cycle, 
cell cycle modulation, and transactivation of viral and 
cellular genes. Normally, adenoviruses can infect and 
propagate in dormant cells in which the E1A CR2 inter-
acts with the retinoblastoma protein (Rb), releasing the 
E2F transcription factor and advancing the cell from G1 
to S-phase [66–68]. The strategic E1A∆24 hampers its 
ability to engage with functional Rb, rendering the ade-
novirus incapable of replicating in normal cells. How-
ever, tumor cells, characterized by excessive E2F due to 
the dysregulation of antioncogene Rb, support Ad5-∆24 
replication [69, 70]. Both intratumoral and intravenous 
administration of Ad5-∆24 proved to be relatively safe 
and somewhat effective when injected into solid tumors 
[71, 72]. Table  2 summarizes the canonical OAV with 
E1A∆24.
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OAV with CR3 deletion in E1A 13S exhibited high rep-
lication potential in Y-box binding protein 1 (YB-1)-pos-
itive cancer cells but replication defects in normal cells. 
Its utility is exemplified by XVir-N-31 and its derivatives 
for glioma and bladder cancer (Table 3) [79–85]. Mecha-
nistically, YB-1 is a multifunctional protein involved in a 
multitude of cellular processes, including transcriptional 
regulation, mRNA splicing, and translation. The involve-
ment of YB-1 in various stages of mRNA metabolism 
makes it an attractive collaborator for viruses, which 
often hijack the host cellular machinery for replication 
and propagation [86, 87].

E1B gene modification
The adenovirus E1B locus encodes E1B19K and E1B55K 
and plays a vital role in the inhibition of apoptosis, inac-
tivation of antioncogene p53 and modulation of viral 
mRNA export. The viral proteins E1B55K and E4orf6 
form an E3 ubiquitin ligase complex that leads to the 
degradation of p53, which protects infected cells from 
apoptosis and allows the virus to replicate effectively 
in normal cells. OAV lacks the ability to bind and inac-
tivate p53 and thus can supposedly replicate efficiently 
only in neoplastic cells defective in p53 function [100, 
101]. ONYX-015 (dl1520), a chimeric adenovirus derived 
from Ad2/Ad5 with a deleted E1B55K gene, earned the 
distinction of being the first genetically engineered ther-
apeutic to undergo human trials (Table  3), later gaining 
commercial approval in China as H101 [13, 102–104]. A 
more advanced version, ZD55-IL-24, which contains the 
interleukin (IL-24) and retains a functional E3 region, 
has shown the ability to effectively combat melanoma by 
converting tumor cells from the nonself state as well as 
through the classic direct killing pathway [95].

Despite the promise of the null E1B55K OAV, clini-
cal evaluations suggest that the selectivity mechanism 

is multifaceted and not solely dependent on p53 status 
[102, 105–107]. By introducing specific point mutations 
at the 3’ splicing acceptor site of E1B-93R, the novel 
OAV Ixovex-1 produces the E1B-156R splice isoform 
and includes a functional E3B region for superior com-
petency compared to OAVs with multiple deletions [108–
110]. In models of lung carcinoma, Ixovex-1 significantly 
enhanced oncolytic efficacy, hindered tumor growth and 
improved mouse survival [109]. The OAVs associated 
with E1B modification are listed in Table 3.

Tumor‑specific promoter driven E1A
To achieve specific replication within tumors, OAV typi-
cally uses tumor-specific promoters to regulate E1A gene 
expression. These promoters are usually inactive in nor-
mal cells but are activated in tumor cells, enabling the 
OAV to replicate only within tumor cells without caus-
ing damage to normal cells. The principle behind tumor-
specific promoters is the exploitation of the differences in 
gene expression levels between tumor cells and normal 
cells to achieve the specific replication of OAV. The rep-
lication of OAV controlled by tumor-specific promoter is 
listed in Table 4. The selective E1A gene and granulocyte 
macrophage colony-stimulating factor (GM-CSF) encod-
ing CG0070 (Ad5-E2F-E1A-GM-CSF) can replicate and 
ultimately lyse tumor cells in Rb-deficient tumor cells 
while releasing tumor antigens and GM-CSF, trigger-
ing a systemic antitumor immune response. It has been 
approved by the FDA for the treatment of nonmus-
cle invasive bladder cancer (NMIBC). Prior reports of 
intravesical CG0070 yielded an overall 74.4% complete 
response (CR) that was maintained for more than 6 
months [111, 112]. The Ad3-hTERT-CMV-CD40L lever-
ages human telomerase reverse transcriptase (hTERT) for 
selective replication, incorporates CD40L as an immune 
stimulant and avoids the ubiquitous Ad5 NAbs when 

Table 2 OAVs with a 24 bp deletion in E1A

Cancer Vector Construct Transgene/
Feature

Administration Phase ClinicalTrials.
gov ID

Ref. Combination

Solid tumor CAdVEC Ad5-∆24 Intratumoral Phase I NCT03740256 [71] HER2-CAR-T

Breast cancer Intravenous Preclinical [72]

Solid tumor Ad5-∆24-GM-CSF GM-CSF Intratumoral, 
intracavitary

Preclinical [73]

Glioma DNX-2401 Ad5-∆24-RGD4C Intratumoral, 
intramural

Phase I NCT03178032
NCT01956734

[74, 75] Radiotherapy, 
chemotherapy

Glioblastoma Intratumoral Phase II NCT02798406 [76] Pembrolizumab

Glioma DNX-2440 Ad5-Δ24-RGD4C-
OX40L

OX40L Intratumoral Phase I NCT03714334

Colorectal liver 
metastasis

Intratumoral Phase I NCT04714983

Lung cancer Exosome-Ad5-
∆24-CpG

Exosome delivery, 
CpG

Intravenous Preclinical [77, 78] Paclitaxel
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administered intravenously [113, 114]. Administered 
intratumorally, OBP-301 (Ad5-hTERT-E1A-IRES-E1B) 
has displayed cytopathic effects on solid tumors express-
ing the CXADR-receptor in an hTERT-dependent man-
ner [115, 116]. Given that hypoxia upregulates hTERT 
activity, compared with Ad5, OBP-301 potentially has 
enhanced antitumor effects, especially within hypoxic 
environments [117]. Furthermore, fiber-modified 

OBP-301 (termed OBP-405) was used to confirm its anti-
tumor effect on non-CXADR-expressing OBP-301-resist-
ant tumors [118].

Combination strategies for clinical OAV candidates
Combination strategies may enable the development of 
efficacious therapies better suited to some specific can-
cer. Table  1 shows the chimeric OAVs used in clinical 

Table 3 OAVs with E1A 13S, E1B19K or E1B55K deletion

Cancer Vector Construct Transgene/
Features

Administration Phase ClinicalTrials.
gov ID

Ref. Combination

Bladder cancer XVir-N-31 Ad5-Delo3-RGD ∆E1A13S, 
∆E1B19K

Intratumoral Preclinical [82] Ultrasound guid-
ance

Bladder cancer
Murine ewing 
sarcoma

Intratumoral Preclinical [83] CDK4/6 inhibitor

Glioma Intratumoral Preclinical [81] Temozolomide

Glioblastoma XVir-N-31-anti-
PD-L1

Ad5-Delo3-RGD-
PD-L1

∆E1A13S, 
∆E1B19K, PD-L1 
anbibody

Intratumoral Preclinical [85] Nivolumab

Malignant ascites Oncorine (H101) ∆E1B55K, partial 
E3 deletion

Intraperitoneal Phase II NCT04771676 [88]

Bladder cancer Intravesical Phase II NCT05564897 Camrelizumab

Liver cancer Transarterial Phase III NCT03780049 [89] Chemoemboliza-
tion

Liver cancer Transarterial Phase I NCT05675462 Tislelizumab, 
lenvatinib

Colorectal cancer Intratumoral Preclinical [90] Anti-PD-1 mono-
therapy

Colorectal cancer ONYX-015 
(dl520)

Ad2/Ad5, 
∆E1B55K

Intravenous Preclinical [91] 5-FU/leucovorin

Garcinoma meta-
static to liver

Intraarterial Phase II [92]

Cervical cancer Intratumoral Preclinical ChiCTR-
OPC-15006142

[13] Chemoradio-
therapy

Carcinoma meta-
static to lung

Intravenous Preclinical [93]

Head and neck 
cancer

Intratumoral Phase II NCT00006106 [94] Cisplatin, fluoro-
uracil

Melanoma ZD55-IL-24 Ad2/Ad5, 
∆E1B55K, IL-24

Intratumoral Preclinical [95]

Liver cancer Intravenous Preclinical [14] PEG/lipids/calcium 
phosphate

Renal cell carci-
noma

Ad5-ZD55-CCL5-
IL-12

∆E1B55K, CCL5, 
IL-12

Intratumoral Preclinical [22] CA9-CAR-T

Colorectal cancer ZD55-CD/5-FU ∆E1B55K, CD/5-
FC

Intratumoral Preclinical [96]

Pancreatic cancer Ad5-yCD/mutTK-
SR39rep-IL-12

∆E1B55K, HSV-TK. 
yCD and IL-12

Intratumoral Phase I NCT03281382 [97] 5-FC, gemcit-
abine/paclitaxel

Glioma BioTTT001 Ad5-TD-nsIL-12 E1∆24, ∆E1B19K, 
and ∆E3gp19K, 
IL-12

Intratumoral Phase I NCT05717699
NCT05717712

Pancreatic cancer Intraperitoneal Preclinical [98]

Colorectal cancer OAV-CXCL10 ∆E1B, CXCL10 Intratumoral Preclinical [99] Anti-PD-1 mono-
therapy
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practice. For instance, the response to ONCOS-102 
(Ad5/3-Δ24-GM-CSF) is associated with increased lym-
phocyte infiltration and the expression of cytotoxic and 
costimulatory genes. A phase II study of intratumoral 
ONCOS-102 revealed substantial immune activation 
associated with 18-month survival in mesothelioma 
patients versus chemotherapy alone [64].

Table  2 lists the commercialized OAVs used in clini-
cal trials, each featuring E1A∆24. DNX-2401 (Ad5-Δ24-
RGD4C) is modified with E1A∆24 and endowed with the 
RGD4C motif to its fiber to facilitate entry independent 

of the CXADR receptor [131]. Intratumoral or intramu-
ral infusion of DNX-2401 for glioma intervention has 
been shown to change T-cell activity and reduce tumor 
size [74–76]. In a phase II trial of DNX-2401 virotherapy 
plus pembrolizumab, the overall survival rate was 52.7%, 
which was significantly greater than the prespecified 
control rate of 20%, albeit with no statistically significant 
difference in the objective response rate (ORR) [76]. An 
enhanced version, DNX-2440, equipped with the costim-
ulatory molecule OX40 ligand (OX40L), can induce 
tumor-specific immune memory and distant effects [132, 

Table 4 OAV replication is controlled by cellular promoters

Cancer Promoter Vector Construct Transgene/
Feature

Administration Phase ClinicalTrials. 
gov ID

Ref. Combination

Bladder cancer E2F1 CG0070 Ad5-E2F-E1A-
GM-CSF

GM-CSF Intravesical Phase III NCT04452591 [111] N-dodecyl-B-D-
maltoside

Melanoma ICOVIR-5 Ad5-E2F-∆24-
RGD4C

Intravenous Phase I NCT01864759 [119]

Solid tumor ICOVIR-7 Ad5-E2F-palin-
∆24-RGD4C

E2F palin-
dromes

Intravenous Preclinical [120]

Solid tumor ICOVIR-
15K-cBiTE

Ad5-E2F-∆24-
RGD4C-cBiTE

EGFR-target-
ing-BiTE

Intratumoral Preclinical [121] PBMC or T cells

Solid tumor VCN-01 Ad5-E2F-∆24-
RGDK-PH20

PH20 Intravenous Phase I NCT02045602 [122] Nab-paclitaxel, 
gemcitabine

Pancreatic 
cancer

Intratumoral Phase I NCT02045589 [123] Gemcitabine, 
abraxane

Solid tumor VCN-11 Ad5-E2F-∆24-
RGDK-PH20-
ABD

PH20, albu-
min-binding 
domain (ABD)

Intravenous Preclinical [124]

Liver cancer hTERT OBP-301 Ad5-hTERT-
E1A-IRES-E1B

Intratumoral Phase I NCT02293850 [116]

Esophageal 
cancer

Phase I NCT03213054 [125] Radiotherapy

Solid tumor Phase I NCT03172819 Pembrolizumab

Bone and soft 
tissue sarco-
mas

OBP-405 Ad5-hTERT-
E1A-IRES-E1B-
RGD

Intratumoral Preclinical [118]

Pancreatic 
cancer

OBP-502 Ad5-hTERT-
E1A-IRES-E1B-
RGD-p53

p53 Intratumoral Preclinical [126] Anti-PD-1 
monotherapy

Pancreatic 
cancer

OBP-702 Ad5-hTERT-
E1A-IRES-E1B-
RGD-p53

p53 Intratumoral Preclinical [127] Anti-PD-L1 
monotherapy

Solid tumor Ad3-hTERT-
E1A

Preclinical [128] Chemotherapy

Prostate 
cancer

Ad3-hTERT-
CMV-CD40L

CD40L Preclinical [114]

Solid tumor KGHV500 Ad5-hTERT-
E1A-IRES-E1B-
RGD

anti-p21Ras 
scFv

Preclinical [129]

Liver cancer AFP SynOV1.1 Ad5-AFP-∆24-
RGD-GM-CSF

GM-CSF Intratumoral Phase I NCT04612504

Ad5-AFP-NOS- 
3/RSV

Nitric Oxide 
Synthase Type 
III (NOS-3)

Intravenous Preclinical [130]
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133]. This variant has been or is being investigated in 
refractory cancers.

As a new favorite, BioTTT001 (Ad5-TD-nsIL-12), 
which carries triple gene deletions (E1A∆24, ∆E1B19K, 
and ∆E3gp19K) and nonsecreting (ns) IL-12, can induce 
tumor cell apoptosis and significantly enhance T-cell 
infiltration in the TME to inhibit tumor progression 
[134]. Intratumoral BioTTT001 is also being clinically 
evaluated against glioma (Table 3). Intraperitoneal deliv-
ery of BioTTT001 has been reported to cure peritone-
ally disseminated pancreatic cancer [98]. The products of 
this OAV category with E1A 13S or E1B modification are 
summarized in Table 3.

The OAV whose replication is further controlled by 
specific cellular promoters is listed in Table  4. A single 
intravenous administration of ICOVIR-5 (Ad5-E2F-
Δ24-RGD4C) can reach tumor sites upon administration 
but failed to induce tumor regression in a phase I trial 
for melanoma patients [119]. Similarly, VCN-01 (Ad5-
E2F-Δ24-RGDK-PH20) is designed to replicate selec-
tively in tumor cells with a dysfunctional Rb pathway 
and produces the hyaluronidase PH20 enzyme. This 
enzyme degrades hyaluronic acid in the tumor extracel-
lular matrix, facilitating drug penetration and immune 
cell infiltration [123, 135]. In fibrotic tumors such as 
pancreatic cancer, VCN-01 degrades the tumor stroma 
and remodels the TME, representing a new therapeutic 
agent for cancers with dense stroma [44, 123]. Clinical 
trials have shown that its combination with chemother-
apy facilitates the delivery of a variety of therapeutic 
agents and has a 50% ORR in pancreatic cancer patients 
[136]. VCN-11, an evolved version of VCN-01, not only 
expresses the hyaluronidase PH20 but also features an 
albumin-binding domain (ABD) on hexon, allowing the 
virus to evade NAbs in the bloodstream. Preliminary 
studies have shown minimal side effects and enhanced 
tumor targeting via intravenous route [124].

rAd‑based immunostimulatory therapy
Enhancing immunotherapy with rAd‑induced 
immunostimulation
Immunostimulatory genes play a pivotal role in orches-
trating immune responses against cancer. The strategy 
of using rAd to transduce immunostimulatory genes 
such as TAAs, costimulatory molecules [6, 137, 138], and 
cytokines such as (C-C motif ) ligand 5 (CCL5), IL, inter-
feron (IFN), GM-CSF, and tumor necrosis factor (TNF) 
[12, 139–144] has shown significant promise in enhanc-
ing tumor immunogenicity and ’firing up’ the TME 
(Fig.  3). Additionally, immune checkpoint inhibitors 
(ICIs) against SOCS1, CTLA4, PD1, TIGIT, etc., have 
been incorporated into rAd for cancer immunotherapy 
[145, 146].

rAd is increasingly recognized as an effective viro-
therapy in clinical settings, offering both systemic and 
local therapeutic approaches (Table 5) [12, 147, 148]. For 
instance, in a phase I clinical study, subcutaneous admin-
istration of the multitargeted vaccine Ad5-PSA/MUC1/
Brachyury or Ad5-CEA/MUC1/Brachyury induced 
immunogenicity and was well-tolerated, with a median 
progression-free survival of 22 weeks [149, 150]. All 
patients mounted T-cell responses to at least one TAA, 
whereas 47% of patients mounted immune responses to 
all three TAAs [149]. In a phase III clinical trial, intra-
vesical injection of Ad5-IFNα/Syn3 expressing IFNα 
and Syn3 (a polyamide surfactant used to enhance viral 
transduction) demonstrated efficacy in treating NMIBC. 
Fifty-five (53.4%) of the 103 patients achieved a complete 
response within 3 months, and this response was main-
tained in 25 (45.5%) of the 55 patients at 12 months [151].

rAd‑activated DCs as vaccines
DCs orchestrate adaptive immunity by taking up and 
presenting antigens to T cells. Due to the potent ability of 
DCs to prime naive T cells, there has been longstanding 
interest in DC vaccines, particularly when activated by 
rAd infection (Fig. 3b). Notably, rAd not only efficiently 
promotes DC maturation and robust immunogenic-
ity but also has a natural affinity for DCs in vitro [163, 
164]. Despite lacking viral CXADR, DCs can internalize 
Ad5 through phagocytosis [165]. However, direct intra-
venous administration of rAd reduces the endocytic and 
cross-presentation capabilities of DCs, compromising the 
priming of CTLs [166].

rAd‑mediated tumor antigen expression in DCs
Protective immunity can be generated with TAA-engi-
neered DC vaccines [167, 168]. Unlike peptide-pulsed 
DCs, rAd-transduced DCs induce DC differentiation and 
maturation, expanding the range of HLA applications. 
rAd-induced DC vaccines can process entire TAAs into 
peptide pools, enabling recognition by the correspond-
ing T-cell receptors (TCRs) and the generation of specific 
CTLs [169]. Furthermore, the CTL priming with viral 
or virally encoded epitopes gives rise to enhanced pro-
liferation, infiltration, and distinct memory phenotypes. 
Preclinical studies have demonstrated the superior effi-
cacy of DC vaccines containing rAd-encoded tyrosinase-
related protein 2 (TRP2) compared to direct rAd-TRP2 
injections, thus highlighting the robust immunogenicity 
of rAd-induced DCs [170].

rAd‑induced costimulatory molecules and cytokines in DCs
To overcome immune tolerance, rAd has been engi-
neered to deliver immunoregulatory genes and 
cytokines into DCs. This strategy enhances Th1 and 
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CTL responses, which are crucial for effective anti-
tumor immunity [171–175]. For instance, rAd-IL-18 
transgene-engineered DC vaccines have shown poten-
tial due to the unique ability of IL-18 to induce tumor-
specific CTLs [176, 177]. Similarly, compared with their 
externally cultured counterparts, rAd-IL-6-engineered 
DC vaccines enhance specific CTL responses and 
counter immunosuppression [178], while rAd-TNFα-
transfected DCs exhibit greater maturation and T-cell 
activation [179]. The use of the rAd-CD137L vaccine 
promoted DC-induced priming of tumor-specific  CD8+ 
T cells [7]. Additionally, Ad5F35-CD40L-IL-2 vaccines 
contribute to DC maturation and IL-12 production 
by targeting breast cancer cells overexpressing CD40 
[180]. However, immature DCs transduced with rAd-
CD40L can differentiate into tolerogenic DCs [181]. 
The complex interplay between costimulatory mole-
cules and cytokines in DC maturation and CTL func-
tionality has yet to be elucidated.

By collecting the lysate of tumor cells infected with 
replication-competent Ad3-hTERT-CMV-CD40L and 
culturing them with DCs, DC maturation and the pro-
duction of proinflammatory cytokines can be induced, 
thereby augmenting the effectiveness of DC vaccination 
[114, 182]. Additionally, a nanovaccine derived from rAd-
infected mature DCs in which specific MHC-I, anti-PD1 
antibody and B7 costimulatory molecules are simultane-
ously anchored can self-present neoantigens to T cells 
and stimulate strong CTL responses in this manner [183].

Clinical trials of rAd‑based DC vaccines
INGN-225 is an rAd-mediated p53-expressing DC vac-
cine (DC-rAd.p53). In phase II clinical trials of recur-
rent small cell lung cancer (Table  5), INGN-225 was 
demonstrated to induce significant immune responses 
and improve the efficacy of chemotherapy but failed 
to improve the ORR [155, 156, 184]. Moreover, in 
addition to flagellin, rAd delivers survivin and MUC1 

Fig. 3 Application framework of rAd in cancer immunotherapy. a Direct oncolysis b rAd-based immune activation: DC vaccine mediated CTL 
priming and rAd synergy with cellular therapies c Reshaping tumor dynamics and ’firing up’ the TME d Cell delivery of rAd to tumor sites. The 
evoked immune cells activate TME and induce the infiltration of more immune cells, thereby enhancing local and systemic anti-tumor immunity
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TAAs to promote DC maturation, and a shRNA is used 
to suppress SOCS1, an intracellular immune check-
point molecule (rAd-siSSF). Via inguinal injection, 
a phase I trial of rAd-siSSF demonstrated its safety 
and efficacy, with a complete remission rate of 83% in 
relapsed acute myeloid leukemia (AML) patients [145].

rAd as immunostimulant in cellular therapies
While rAd can effectively deliver therapeutic pay-
loads to tumors, transient expression of these viruses 
necessitates repeated high-titer injections to maintain 
effective local concentrations [185, 186]. This strategy, 
combined with other therapies, is anticipated to signif-
icantly boost antitumor immunity (Fig.  3c) [142, 187, 
188].

CAR‑T cell and rAd synergy
Intratumorally administering rAd combined with 
CAR-T cells can overcome the challenges of the immu-
nosuppressive TME and promote CAR-T cell infiltra-
tion and proliferation in vivo to eradicate local and distal 
tumors. Cytokine-armed OAV expressing TNFα and IL-2 
(Ad5/3-E2F-Δ24-TNFa-IRES-IL-2), in conjunction with 
mesothelin-targeted CAR-T cells, foster T-cell infiltra-
tion and promote M1 macrophage polarization and DC 
maturation [189]. Moreover, the replication competent 
Ad5-ZD55-CCL5-IL-12, which encodes the chemokines 
CCL5 and IL-12, significantly increases CAR-T-cell infil-
tration in tumors, extending survival and restraining 
tumor growth. Since IL-12 enhances the phosphoryla-
tion of signal transducer and activator of transcription 4 
(STAT4) in CAR-T cells and stimulates IFNγ release [22], 
local treatment with rAd-IL-12-PD-L1, which encodes 

Table 5 Therapeutic genes transferred by rAd in clinical trials

Cancer Construct Transgene/
Feature

Administration Phase ClinicalTrials.
gov ID

Ref. Combination

Prostate cancer Ad5-PSA/MUC1/
Brachyury

Prostate-specific 
antigen (PSA), 
mucin-1 (MUC1), 
brachyury

Subcutaneous Phase I NCT03481816 [149] Radiation therapy

Solid tumors Ad5-CEA/MUC1/
Brachyury

Carcinoembryonic 
antigen (CEA), 
MUC1, brachyury

Subcutaneous Phase I NCT03384316 [150]

Bladder cancer Ad5-IFNα/Syn3
(Nadofaragene 
firadenovec)

IFNα2b, syn3 Intravesical
Intravesical Intra-
vesical

Phase III 
Phase II 
Phase I

NCT02773849 
NCT01687244

[151]
[152]
[153]

Breast cancer Ad5CMV-p53 p53 Intratumoral Phase I NCT00004038 Chemotherapy

Intratumoral Phase II NCT00044993 [154] Chemotherapy

Oral or pharyngeal 
cancer

Intratumoral Phase II NCT00064103

Solid tumor Intratumoral Phase II NCT03544723 Immune checkpoint 
inhibitors

Lung cancer DC-rAd.p53 p53, DC vaccine Intradermal Phase II NCT00617409 [155] Paclitaxel, all -trans 
retinoic acid

Breast cancer Intradermal Phase II NCT01042535 [156] Indoximod

Acute myeloid 
leukemia (AML)

rAd-siSSF Survivin, MUC1, 
shRNA
DC vaccine

Inguinal Phase I NCT01956630 [145] Allogenic hemat-
opoietic stem cell 
transplantation

Head and neck 
cancer

Ad5-PNP purine nucleoside 
phosphorylase 
(PNP)

Intratumoral Phase I NCT01310179 [157] F-araAMP

Glioma Ad5-TK, rAd-Flt3L Thymidine kinase 
(TK), Fms-like 
thyrosine kinase 3 
ligand (Flt3L)

Intracranial Phase I NCT01811992 [158]

Breast cancer Ad5-TK Intratumoral Phase II [159] Pembrolizumab

Glioma Ad5-CD/TKrep TK, cytosine deami-
nase (CD)

Perilesional Phase III EudraCT, number 
2004-000464-28

[160] Ganciclovir

Prostate cancer Intraprostatic Phase I NCT00583492 [161] Ganciclovir, 5-FU

Intraprostatic Phase I NCT00583492 [162] Radiation therapy, 
anciclovir, 5-FU
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a PD-L1-blocking antibody, and IL-12p70 was found to 
control both primary and metastasized head and neck 
squamous cell carcinoma in conjunction with HER2-spe-
cific CAR-T cells [190].

Other immunocyte therapies augmented by rAd
The rAd has documented to augment the antitumor 
effects of CIKs for cancer immunotherapy [191, 192]. The 
novel hydrogel-mediated codelivery of replication-com-
petent rAd-IL-12-IL-15 and CIK cells could enhance the 
combined antitumor effects. This strategy involving an 
injectable and biodegradable hydrogel minimizes the dis-
persion of high-dose OAV and CIK cells, thus reducing 
nontumor exposure [193]. Another example is the intra-
tumoral injection of ICOVIR-15K-BiTE, which expresses 
a bispecific T-cell adapter (BiTE) simultaneously with 
T-cell infusion; this method can bidirectionally recognize 
neoplastic cells and T cells and induce T-cell activation 
and tumor cell destruction [121].

rAd in tumor cell vaccination
The use of autologous unirradiated tumor cells trans-
duced with rAd-IL-12 has shown promise in treating 
advanced neuroblastoma. This approach induces both 
a local inflammatory response and a systemic immune 
response, characterized by an increase in the number 
of circulating  CD25+ and  DR+CD3+ T cells and specific 
antitumor responses [194]. Likewise, cryoshocked tumor 
cells, which constitute an OAV reservoir, can eliminate 
viral proliferation and pathogenicity, steadily release 
viruses and efficiently initiate an endogenous antitumor 
response by increasing memory T cells and modulating 
the TME [195, 196]. More recently, extracellular vesicles 
derived from OAV-infected tumor cells have been used 
for delivering immunogenic OAV, inducing systemic 
immune responses through proinflammatory cytokines, 
and inhibiting primary and metastatic cancers [77, 78].

rAd reshaping tumor dynamics and the TME
rAd delivery of RNA interference (RNAi) against oncogenes
rAd has been demonstrated to enhance anti-tumor 
effects by expressing RNAi, targeting oncogenes or 
immunosuppressive genes such as PD1 and K-RAS 
(Fig.  3c). Notably, STAT3 is considered as a bona fide 
oncogene and mediates immunosuppressive functions in 
various immune cells including macrophages, myeloid-
derived suppressor cells, and DCs [197, 198]. Given the 
challenges in inhibiting STAT3 through antibodies or 
small molecule inhibitors, siRNA serves as an ideal alter-
native for STAT3 inhibition. Depleting STAT3 in DCs 
improves their antigen-presenting activity and enhances 
antitumor immune responses [199]. Additionally, inhib-
iting STAT3 in cancer cells promotes ICD and increases 

IFN-responsive chemokines, facilitating immune cell 
infiltration [200].

rAd‑rescued tumor suppressor gene expression
Tumor suppressor genes, which are crucial for inhibiting 
cell proliferation and tumorigenesis, often undergo muta-
tion or inactivation in malignant tissues. rAd can tar-
get gene defects in key tumor suppressor genes, such as 
p53, p16/21/27, Rb, and PTEN [201–203]. For example, 
restoration of p53 in p53-deficient tumor cells has been 
shown to suppress tumor growth or induce apoptosis in 
both in vitro and in vivo models. Ad5CMV-p53, an oral 
infusion or intramucosal injection, has the potential to 
prevent oral or pharyngeal precancerous lesions, with 
an estimated 1-year progression-free survival rate of 92% 
(Table 5). In the case of the phase II trial of Ad5CMV-p53 
combined with chemotherapy, the estimated 3-year sur-
vival rate was 84% [154].

rAd‑mediated "suicide gene" for toxic molecule delivery
rAd can also target tumor cells by expressing enzymes 
that convert prodrugs into toxic compounds (Table  5). 
For instance, purine nucleoside phosphorylase (PNP) 
converts fludarabine phosphate (F-araAMP) into cyto-
toxic fluoroadenine. The first-in-human clinical trial 
found that rAd-PNP combined with intravenous 
F-araAMP shows potential in treating advanced glioma 
[204]. With herpes simplex virus thymidine kinase (HSV-
TK) transforming ganciclovir into nucleotides toxic to 
dividing cells, rAd-TK plus ganciclovir therapy has been 
employed in numerous clinical trials for solid tumor 
treatment [158]. Additionally, cytosine deaminase (CD) 
converts the prodrug 5-fluorocytosine (5-FC) into toxic 
5-fluorouridine (5-FU), which is metabolized into 5-fluo-
rouracil triphosphate (5-FUTP) and 5-fluorodeoxyur-
idine monophosphate (5-FdUMP), causing thymidylate 
synthesis blockade and DNA damage. Concomitant with 
prodrug therapy of 5-FC and ganciclovir, clinical tri-
als showed that replication-competent Ad5-CD/TKrep 
carrying CD and TK chimeric genes exerted long-term 
effectiveness [161, 162].

rAd in reshaping the TME
To inhibit tumor angiogenesis, vasohibin has been iden-
tified as an intrinsic and specific angiogenesis inhibitor. 
The therapeutic potential of the rAd-vasohibin, which 
encodes vasohibin, has been explored. When adminis-
tered via tail vein injection, rAd-vasohibin prevented 
tumor cell growth in a subcutaneous tumor model by 
inhibiting angiogenesis without apparent side effects 
[205]. Additionally, targeting cancer-associated fibro-
blasts (CAFs) in the immunosuppressive TME is crucial. 
Fibroblast activation protein (FAP), a cell surface serine 
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protease highly expressed on CAFs, was targeted by rAd-
FAP. As a result, rAd-FAP enables in vivo gene delivery to 
stromal cells in the TME, resulting in attenuated tumor 
growth [206].

Synergistic interaction between rAd and cellular 
therapeutics for targeting tumor sites
The ability of rAd to synergistically interact with vari-
ous cell types, particularly immune cells, creates a potent 
combination for targeting tumor sites and potentiates 
cellular therapies in oncology (Fig.  3d). The advantage 
of this approach lies in its dual functionality: while rAd 
can enhance the tumor-targeting ability and therapeutic 
payload delivery of cells, as mentioned before, the cells 
themselves offer a biologically compatible and dynamic 
method for rAd transport. This is particularly relevant in 
residual and metastatic tumors, where the physical barri-
ers and immunosuppressive nature of the TME pose sig-
nificant challenges for conventional therapies.

rAd hitchhiking on/in immune cells
For oncolytic virus (OV) delivery, CAR-T and TCR-T 
cells have been proven to be effective vehicle cells, espe-
cially for oncolytic vesicular stomatitis virus (VSV), 
myxoma virus (MYXV) and reovirus [23, 25]. In previ-
ous studies, OV-loaded CAR-T cells were shown to have 
enhanced activity and efficacy against solid tumor mod-
els and to augment expansion rate in vivo via homolo-
gous boosting [25]. OVs loaded in/on cells can be directly 
delivered into solid tumors in a CAR/TCR-directed fash-
ion, avoiding recognition by the host innate defense sys-
tem [23]. Analogously, Epstein-Barr virus (EBV)-specific 
CTLs provide an innovative approach for delivering 
therapeutic Ad5F35 to tumor sites, not only to locally 
accessible macroscopic tumors, but also to disseminated 
metastatic disease [24]. These CTLs, which are transgenic 
for the adenoviral E1 gene under the CD40L promoter, 
produce and release infectious Ad5F35 upon exposure 
to HLA-matched EBV-expressing targets but not in 
response to HLA-mismatched or irrelevant cells, which 
can avoid the risks associated with systemic administra-
tion of large doses of rAd.

Replication-competent KGHV500, carrying anti-
p21Ras single-chain variable fragment antibody (scFv), 
has shown potential for blocking the Ras signaling path-
way and inhibiting Ras-driven cancers. In several Ras-
driven cancers, the CIK cell-based delivery of KGHV500 
has been validated through both in vitro and in vivo 
studies, which confirmed the tumor-targeting efficacy 
and systemic safety of OAV-loaded CIK cells [129, 207–
209]. Likewise, the oncolytic agent ZD55 introduces 
the CD40L promoter to regulate replication, ensuring 
that cell proliferation is strictly controlled by CIK cell 

activation. This targeted delivery by CIK cells enhances 
antitumor efficacy and precision in tumor targeting and 
minimizes infection in nontumor tissues [210].

With their innate tumor-homing ability, NK cells func-
tion as bioreactors that support OAV loading, protection, 
replication, amplification, and targeted release. Arming 
NK cells with OAV not only boosts antitumor immunity 
through IFN signaling but also alleviates immunosup-
pression in the TME, promoting DC maturation and M1 
macrophage polarization. Both in vitro and in vivo data 
highlight the potent antitumor and antimetastatic func-
tions of this NK cell-mediated OAV delivery system 
[211].

Use of stem cell as carriers of rAd
The abilities to home to tumors, shield rAd from host 
antiviral responses, and infiltrate tumor tissues through 
the TME make stem cells ideal candidates as delivery 
vehicles for rAd in cancer therapy [28, 212–215]. As 
listed in Table 6, mesenchymal stem cells (MSCs) trans-
duced with the IFNβ expressing nonreplicating rAd 
(MSC-rAd.IFNβ) have shown promise in suppressing 
pulmonary metastasis through IFNβ production within 
the TME [216]. MSCs efficiently delivered rAd express-
ing IL-12 (MSC-rAd.IL-12) in glioma but does not com-
pletely arrest the invasive growth pattern of these lesions 
[217]. However, MSCs transduced with rAd carrying the 
secretable trimeric form of tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) (MSC-rAd.stTRAIL) 
significantly inhibited tumor growth and prolonged sur-
vival in glioma-bearing mice [48, 218].

In terms of replication-competent rAd, the intraperi-
toneal administration of MSC-preloaded OAVΔ24RGD 
(MSC-Δ24RGD) can efficiently target ovarian tumor cells 
and reduce the systemic toxicity of naked virions in mice 
[220]. In a glioma xenograft murine model, MSC-guided 
delivery of MSC-Δ24RGD could migrate to tumors and 
exert antitumor effects via intravenous injection [213]. 
Furthermore, the endovascular selective intra-arterial 
(ESIA) infusion of MSC-Δ24RGD is a rapidly evolving 
strategy for treating glioma in a clinically relevant fash-
ion [229]. In seeking to increase the viral infection and 
production by MSCs, a bunch of OAV chimerisms have 
been designed [223]. Engineered Ad5F3 expressing the 
TRAIL or FCU1 would enhance oncolysis by improved 
virus production in MSCs, thereby implementing deliv-
ery into established and primary pancreatic cancer cells 
[222]. In a xenograft model of glioma, systemic adminis-
tration of MCSs loaded with Ad5F35 carrying IL-24 and/
or endostatin and regulated by a Tet-on system (Ad5F35-
Tet-on-E1B-Pro-Δ24-IL-24/endostatin) showed promise 
for glioma treatment while sparing normal cells [221].
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In the context of hepatocellular carcinoma (HCC), 
MSCs loaded with OAV have demonstrated the ability 
to home to HCC cells and differentiate into hepatocyte-
like cells within the TME [224]. They effectively package 
and release progeny virions that contain an adenovirus 
E1A gene regulated by the α-fetoprotein (AFP) pro-
moter and microRNA-122 target sequence (AdAFPp-
E1A-miR122), resulting in dramatic tumor inhibition 
in mouse models. Another oncolytic Ad5F35, which 
can replicate under the control of the AFP-positive 

HCC-specific Ha2bm promoter and express the WNT 
inhibitory (WNTi) bait receptor, was transfected into 
MSCs, which were then intravenously injected into 
HCC-bearing mice. Compared with WNTi without a 
cell carrier, the therapeutic effect was much more sat-
isfactory [26]. Newer versions of OAV armed with BiTE 
have shown enhanced antitumor effects, reduced liver 
injury, and improved T-cell infiltration and activation 
in orthotopic transplantation model mice [225]. In con-
clusion, the use of rAd-mediated hitchhiking of MSCs 

Table 6 Clinical and preclinical trials using stem cells as delivery vehicle for OAV

Cancer Vehicle Construct Transgene/Feature Administration Phase ClinicalTrials. 
gov ID

Ref. Combination

Liver cancer MSC MSC-rAdCD-
3scFv

anti-CD3scFv Preclinical [219] LentiR.E1A, 
5-FU

Solid tumor MSC-rAd.IFNβ IFNβ Intravenous Preclinical [216]

Glioma MSC-rAd.IL-12 IL-12 Peritumoral Preclinical [217]

Glioma MSC-rAd.
stTRAIL

PTD, stTRAIL Intratumoral Preclinical [218]

Ovarian 
cancer

MSC-Ad5pK7-
meso64-TR3

Truncated mesothelin, 
TRAIL, pk7

Intraperitoneal Preclinical [47]

Ovarian can-
cer Glioma

MSC-Δ24RGD Intravenous Preclinical [213, 220]

Glioma MSC-Ad5F35-
Tet-on-
E1BPro-
∆24-IL-24/
endostatin

IL-24/endostatin Intravenous Preclinical [221]

Pancreatic 
cancer

MSC-Ad5F3-
∆E1B19K-
TRAIL

∆E1B19K, TRAIL Preclinical [222]

Colorectal 
cancer

MSC-Ad5F11-
hTERT-
E1AΔ24

Intraperitoneal Preclinical [223]

Liver cancer MSC-AdAFPp-
E1A-miR122

AFP 
promoter,microRNA-122

Intratumoral Preclinical [224]

Liver cancer MSC-rAd-E1A-
αCD3HAC

BiTE targeting the PD-L1 
and CD3

Intravenous Preclinical [225] PBMCs

Liver cancer MSC-Ad5F35-
Ha2bm-E1A-
WNTi

Ha2bm promoter, WNTi Intravenous Preclinical [26]

Glioma NSC-CRAd-
S-pK7

NSC-CRAd-
Survivin-pK7

pK7 Intracranial Phase I NCT03072134
NCT05139056

[30] Tumor 
resection, 
temozolomide 
and radio-
therapy
Tumor resec-
tion

Glioma MSC-
DNX-2401

MSC-Ad5-
∆24-RGD4C

Intraarterial Phase I NCT03896568 [226] Tumor resec-
tion

Glioma MSC-ICO-
VIR-17

MSC-Ad5-
E2F-∆24-
RGD-PH20

PH20 Intratumoral Preclinical [227]

Melanoma MSC-ICOVIR-5 MSC-Ad5-E2F-
∆24-RGD

Intravenous Phase I NCT01864759 [228] Chemotherapy 
and radio-
therapy

Solid tumor Intravenous Phase II NCT01844661

Glioma Intravenous Phase II NCT04758533
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has demonstrated safety in preclinical studies and a 
pleiotropic profile of tumor destruction.

Clinical trials of rAd hitchhiking
A pioneering trial of children with relapsed or refrac-
tory neuroblastoma used autologous MSCs carrying 
ICOVIR-5 (Ad5-E2F-Δ24-RGD4C; Table  6). The trial 
reported disease stabilization or remission in patients, 
with no toxicity or progressive disease observed [228]. 
This groundbreaking study paved the way for further 
exploration of the use of ICOVIR-5-loaded MSCs in 
treating late-stage solid tumors in both adults and chil-
dren. Two additional ongoing trials (NCT01864759 and 
NCT04758533) are utilizing ICOVIR-5 in conjunction 
with allogeneic MSCs, to treat advanced or metastatic 
melanoma and gliomas. However, as of the last update, 
the results from these trials have not been reported. Con-
cordantly, a separate study involving MSCs loaded with 
hyaluronidase-expressing ICOVIR-17 demonstrated 
a significant reduction in glioblastoma growth and 
increased survival in a clinically relevant murine model 
[227]. This approach is being further investigated in a 
phase I clinical trial (Table  6), where autologous MSCs 
loaded with DNX-2401 are evaluated for their therapeu-
tic effects on glioblastoma with the support of endovas-
cular super-selective intra-arterial infusion [226].

The commercial OAV loaded in neural stem cells has 
been underway [132, 230]. The safety and efficacy of the 
neural stem cell delivered CRAd-Survivin-pK7 (NSC-
CRAd-Survivin-pK7) under the survivin promoter were 
evaluated in the first human clinical trial of malignant 
glioma, in which the median progression-free survival 
was 9.1 months and the median overall survival was 18.4 
months (Table 6) [30].

Conclusions and future perspectives
In this review, we present an integral toolkit for rAd 
application according to four different antitumor mecha-
nisms (Fig 3), i.e., a) direct oncolysis, b) immune activa-
tion: DCs priming CTL; synergies with cellular therapies, 
c) reshaping tumor dynamics and ’firing up’ the TME, 
d) tumor targeting by carrier cells. With their natural 
tropism for epithelial cells, adenoviruses are inherently 
suited for targeting the majority of solid tumors. The 
strategic utilization of rAd in cancer therapy, particu-
larly through replication-competent OAV, has shown 
significant promise. Despite challenges such as immune 
reactions against the virus, ongoing clinical evalua-
tions of various rAd-equipped ACTs and combined 
cancer immunotherapy strategies are yielding encour-
aging results in terms of both safety and efficacy. In addi-
tion, the integration of immune cells and/or stem cells 
with rAd is pivotal in understanding cell-type-specific 

oncolysis within the TME and controlling tumor growth 
through diverse mechanisms. The development of effec-
tive rAd delivery vehicles is crucial, with criteria includ-
ing high cellular infection rates, effective gene expression 
or replication, and the capability of carrier cells to target 
tumors.

Of particular interest is the role of rAd in CAR-M 
therapy. Macrophages, critical players in tumor progres-
sion, can be genetically modified ex  vivo for adoptive 
transfer [231]. CAR-M, representing a groundbreaking 
approach in immunotherapy, exhibits functions like tar-
geted phagocytosis, induction of a proinflammatory M1 
phenotype, antigen presentation, and epitope spreading. 
Early studies have shown the effectiveness of CAR-M 
against blood tumors and solid tumors, like ovarian 
cancer, highlighting its potential to reshape TME [232, 
233]. However, the application of CAR-M faces chal-
lenges. Macrophages’ inherent defense mechanisms 
against viral infections, such as the production of antivi-
ral IFNs and undergoing apoptosis, make them less sus-
ceptible to common viral vectors used in gene delivery. 
This challenge is addressed by the discovery of Ad5F35 
as an efficient gene carrier for macrophages, leveraging 
their abundant CD46 expression. Ad5F35-infected mac-
rophages not only demonstrate antigen-specific phago-
cytosis but also maintain a sustained proinflammatory 
M1 phenotype and present tumor antigens to T cells 
[234–236]. Importantly, CAR-Ms, especially those trans-
duced with Ad5F35, have shown potential in priming T 
cells against neoantigens, reducing antigen escape and 
recurrence.

In summary, engineering rAd holds immense poten-
tial for enhancing cellular immunity and synergisti-
cally improving anti-tumor effects alongside other novel 
cancer immunotherapies. As research progresses, the 
unique advantages of rAd in targeting and reshaping the 
TME combined with innovative approaches will become 
increasingly significant in anti-tumor immunity.
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