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Abstract 

Background The tumor immune microenvironment can influence the prognosis and treatment response to immu-
notherapy. We aimed to develop a non-invasive radiomic signature in high-grade glioma (HGG) to predict the abso-
lute density of tumor-associated macrophages (TAMs), the preponderant immune cells in the microenvironment 
of HGG. We also aimed to evaluate the association between the signature, and tumor immune phenotype as well 
as response to immunotherapy.

Methods In this retrospective setting, total of 379 patients with HGG from three independent cohorts were 
included to construct a radiomic model named Radiomics Immunological Biomarker (RIB) for predicting the absolute 
density of M2-like TAM using the mRMR feature ranking method and LASSO classifier. Among them, 145 patients 
from the TCGA microarray cohort were randomly allocated into a training set (N=101) and an internal validation 
set (N=44), while the immune-phenotype cohort (N=203) and the immunotherapy-treated cohort (N=31, patients 
from a prospective clinical trial treated with DC vaccine) recruited from Huashan Hospital were used as two exter-
nal validation sets. The immunotherapy-treated cohort was also used to evaluate the relationship between RIB 
and immunotherapy response. Radiogenomic analysis was performed to find functional annotations using RNA 
sequencing data from TAM cells.

Results An 11-feature radiomic model for M2-like TAM was developed and validated in four datasets of HGG patients 
(area under the curve = 0.849, 0.719, 0.674, and 0.671) using MRI images of post contrast enhanced T1-weighted 
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(T1CE). Patients with high RIB scores had a strong inflammatory response. Four hub-genes (SLC7A7, RNASE6, HLA-
DRB1 and CD300A) expressed by TAM were identified to be closely related to the RIB, providing important evidence 
for biological interpretation. Only individuals with a high RIB score were shown to have survival benefits from DC 
vaccine [DC vaccine vs. Placebo: median progression-free survival (mPFS), 10.0 mos vs. 4.5 mos, HR=0.17, P=0.0056, 
95%CI=0.041-0.68; median overall survival (mOS), 15.0 mos vs. 7.0 mos, HR=0.17, P =0.0076, 95%CI=0.04-0.68]. 
Multivariate analyses also confirmed that treatment by DC vaccine was an independent factor for improved survival 
in the high RIB score group. However, in the low RIB score group, DC vaccine was not associated with improved sur-
vival. Furthermore, a radiomic nomogram based on the RIB score and clinical factors could efficiently predict the 1-, 2-, 
and 3-year survival rates, as confirmed by ROC curve analysis (AUC for 1-, 2- and 3-year survival: 0.705, 0.729 and 0.684, 
respectively).

Conclusions The radiomic model could allow for non-invasive assessment of the absolute density of TAM from MRI 
images in HGG patients. Of note, our RIB model is the first immunological radiomic model confirmed to have the abil-
ity to predict survival benefits from DC vaccine in gliomas, thereby providing a novel tool to inform treatment deci-
sions and monitor patient treatment course by radiomics.

Keywords Glioma, Magnetic resonance imaging, Radiomics, Macrophages, Immunotherapy, Prognosis

Introduction
Cancer immunotherapy has made significant and 
promising advancements in extending the survival of 
patients with various malignancies, achieved through 
clinical treatments involving immune checkpoint inhibi-
tors (ICIs), DC vaccines and adoptive cell therapies [1]. 
Unfortunately, not all patients will respond to immuno-
therapies and only 20–50% of patients with advanced 
solid tumors derive clinical benefit [2]. Biomarkers are 
needed to identify patients who are most likely to benefit 
from this treatment before therapy. The tumor immune 
microenvironment (TIM) is a complex ecosystem con-
taining various immune factors, which plays a key role in 
tumor progression and therapeutic response [3]. Several 
biomarkers associated with immunological status have 
been discovered with variable success, including tumor 
mutation burden (TMB) [4], specific genetic mutations 
[5], expression level of PD-L1 [6] and presence of tumor 
immune infiltrates [7]. Regarding immune infiltrates, two 
distinct immune-phenotypes have been described [8]: 
“hot” tumors infiltrated with abundant immune cells and 
“cold” tumors characterized by sparse immune infiltra-
tion. Therefore, the absolute density of immune infiltra-
tion can be a critical indicator of the immune-phenotype. 
Patients categorized as having “cold” tumors often have 
a lower overall response to immunotherapy, which indi-
cates that the evaluation of immune cell infiltration is 
useful in immunotherapy.

Current histological or molecular evaluation of tumor 
phenotypes requires tissue specimens acquired via 
surgery. However, a large proportion of patients with 
advanced tumors are not qualified to receive invasive 
procedures because of potential morbidity or inoper-
ability. Moreover, when biopsy is feasible, sampling 
bias induced by intratumor spatial heterogeneity is a 

considerable problem. Given the dynamic nature of the 
TIM during tumor progression and treatment delivery, 
a non-invasive way to assess the tumoral immune infil-
trates would be useful to predict the efficacy of immu-
notherapy without surgical sampling bias, particularly in 
brain tumors where tumor sampling is not always practi-
cal and can cause morbidity.

Radiomics, a quantitative approach originating from 
radiographic imaging, has achieved remarkable successes 
in diagnosis, prognosis predicting, and response evalua-
tion in patients with cancer. High-dimensional imaging 
data referred to radiomics can provide more in-depth 
characterization than achieved by eye. Through a quan-
titative radiomics model, rich information of the cellu-
lar and molecular properties in the entire tumor region 
can be visualized. Specific features from images have 
been confirmed to be linked with tumor phenotype [9], 
not only containing cancer cell-intrinsic characteristics 
but also TIM status. Several studies found a strong cor-
relation between imaging features and tumor-infiltrating 
lymphocytes (TILs) [10] or the expression level of PD-L1 
[11]. Moreover, good performance from radiomics in 
predicting the response to blockade of PD-1/PD-L1 has 
been observed in lung cancer [12]. Therefore, radiomic 
signatures are complementary to biopsies and have the 
advantage of being non-invasive, which allow an unbi-
ased and longitudinal assessment of immune infiltration 
throughout the treatment course.

Glioma is the deadliest tumor in the central nervous 
system (CNS) with poor survival time, especially for the 
high-grade glioma (HGG) [13]. Due to limited selection 
in treatment, immunotherapy has been used more fre-
quently for glioma patients in clinical trials [14]. Unfor-
tunately, only a subset of patients responds to treatment, 
which indicates that a predictive biomarker is urgently 
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needed in glioma to improve responses. Studies have 
demonstrated that subgroups in glioma with more 
immune infiltrates could benefit from modern immuno-
therapy approaches [15]. We previously developed a new 
glioma immune-phenotype using gene expression signa-
tures [16], which identified a “super-cold” group with a 
lower absolute proportion of tumor-infiltrating immune 
cells, including M2-like tumor-associated macrophage 
(TAM), lymphocytes, and neutrophils. MRI-based radi-
omic features were confirmed to have an association with 
TIM in gliomas [17–20], especially for TAM infiltration 
[21]. However, to our knowledge, there is no evidence yet 
for the potential performance of this kind of immunolog-
ical radiomics in predicting responses to immunotherapy 
in gliomas.

In this study, we hypothesize that radiomics will allow 
for non-invasive evaluation of immune infiltration to 
determine the immune-phenotypes in HGG, and can 
lead to the identification of novel predictors for immu-
notherapy. The primary objective of this study was to 
develop an MRI-based radiomic signature [Radiomics 
Immunological Biomarker (RIB)] to predict the classes 

of M2-like TAM infiltration which significantly changed 
among immune-phenotypes in our previous study, and 
to assess the ability of this signature to identify “cold” or 
“hot” gliomas. The secondary study objective is also to 
test RIB’s ability to predict clinical response to DC vac-
cine using HGG patients from a randomized controlled 
clinical trial.

Methods and materials
Study design and participants
The overall study design is depicted in Fig.  1. A total 
of 379 HGG patients from three independent cohorts 
were enrolled retrospectively to construct and vali-
date a radiomic model (Fig. 2 and Table 1). The TCGA 
microarray cohort (n=145) extracted from The Cancer 
Imaging Archive (TCIA) was randomly divided into 
two sets at a ratio of 7:3 using computer-generated 
random numbers (101 and 44 patients in the training 
and internal validation sets, respectively) (Additional 
file  1: Table  S1). Two external validation sets included 
patients from the immune-phenotype cohort (n=203) 
and the immunotherapy-treated cohort (n=31) at 

Fig. 1 Workflow of radiomics analysis
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Huashan Hospital, Fudan University. All of the patients 
were enrolled following these primary criteria: histo-
logically confirmed high-grade gliomas; the availability 
of MRI images in DICOM (Digital Imaging and Com-
munications in Medicine) format, specifically T1 con-
trast gadolinium-enhanced images, performed prior 
to surgery; and available for gene expression data or 
immunohistochemistry (IHC) data to obtain absolute 
level of M2-like TAMs.

Since MRI images were not available for patients in 
three other public datasets (CGGA_325 cohort, N=139; 
CGGA_693 cohort, N=249; TCGA-RNAseq cohort, 
N=169), a total of 557 HGG patients were included to 
perform biological validation using gene expression data. 
Another 20 patients with gene expression data of tumor 
tissue derived macrophages were extracted from the 
Brain Disease Immunotherapy Atlas (BDIA) in Huashan 
Hospital, Fudan University, and the gene expression data 

Fig. 2 Study design for the development and validation of the radiomic model for the absolute density of M2-like TAM in HGG patients

Table 1 Characteristics of HGG patients in three independent cohorts

a Patients information was extracted from a randomized controlled prospective clinical trial (NCT01567202) whose MRI images are available. Clinicopathological 
characteristics can be also found in our previous  paper22

Characteristics TCGA microarray cohort (N=145) 
Median (range, %)

Immune-phenotype cohort (N=203) 
Median (range, %)

Immunotherapy-treated 
cohort (N=31) a Median 
(range, %)

Age 60(14-86) 56(37-77) 51(22-71)

 >40 131(90.3%) 175(86.2%) 22(71.0%)

 ≤40 14(9.7%) 28(13.8%) 9(29.0%)

Gender
 Male 92(63.4%) 113(55.7%) 17(54.8%)

 Female 53(36.6%) 90(44.3%) 14(45.2%)

Tumor location NA

 Frontal / 83(40.9%) 16(51.6%)

 Non-frontal / 120(59.1%) 15(48.4%)

IDH1 mutation NA

 Yes 3(2.1%) 19(9.4%) 1(3.2%)

 No 116(80.0%) 132(65.0%) 30(96.8%)

 NA 26(17.9%) 52(25.6%) /

TERT promoter mutation NA

 Yes 10(6.9%) / 14(45.2%)

 No 1(0.7%) / 17(54.8%)

 NA 134(92.4%) / /
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was uploaded in The National Omics Data Encyclopedia 
(NODE, OEP003422).

Patients in the dendritic cell (DC) vaccine immuno-
therapy-treated cohort were extracted from our pub-
lished clinical trial (NCT01567202) whose MRI images 
were accessible [22]. These patients were randomized for 
treatment with DC vaccine or placebo. In this immuno-
therapy cohort, progression-free survival (PFS) and over-
all survival (OS) were defined as the time from the day 
of random assignment to disease progression and death, 
respectively. All procedures were approved by the Insti-
tutional Review Board of Huashan Hospital, Fudan Uni-
versity (KY2020-009).

Calculation of the absolute fraction of M2-like TAM
There are two kinds of data resources used to cal-
culate the absolute proportion of M2-like TAM in 
tumors. For cohorts with gene expression data, includ-
ing the TCGA microarray cohort, CGGA_325 cohort, 
CGGA_693 cohort and TCGA-RNAseq cohort, the 
absolute immune cell fractions for 22 immune cell 
populations were predicted by CIBERSORT (Cell-
type Identification By Estimating Relative Subsets 
Of RNA Transcripts) and ESTIMATE (Estimation of 
Stromal and Immune cells in MAlignant Tumour tis-
sues using Expression data) as described previously 
[16, 23] (Additional file  2: Supplementary methods). 
IHC staining with CD163 in FFPE tumor tissue sec-
tions was used to quantify the density of infiltrating 
M2-like TAM in two patient cohorts from Huashan 
Hospital (Additional file  2: Supplementary methods). 
In the IHC cohort, the patients were defined as high-
M2 group (>20%) and low-M2 group (<20%) with a 
cut-off using the rate of CD133-positive cells (20%) 
(Additional file 1: Fig. S1). The median value was used 
to classify the high-M2 group and low-M2 group in the 
TCGA microarray cohort.

Image processing and lesion segmentations
All patients underwent MRI examination that included 
post contrast enhanced T1-weighted (T1CE) prior to 
tumor resection. The detailed scanning parameters in 
MRI images of the TCGA dataset can be found on the 
TCIA website (https:// www. cance rimag ingar chive. net/). 
This included MRI images from Huashan Hospital that 
were generated with scanners manufactured by Siemens 
(Avanto 1.5T and Verio 3.0T, Germany) or GE (SIGNA 
EXCITE 3.0T, USA).

Each patient’s images of T1CE were collated and masked 
by two radiologists (Jing Wang and Jun Zhang) as fol-
lows: For each case, the tumor outline was drawn by the 
first radiologist (JW), and then was checked by the senior 
radiologist (JZ). The region of the whole enhanced lesion 

(tumor) was depicted using MITK (Medical Imaging Inter-
action Toolkit, version 2016.11.0, http:// mitk. org/ wiki/ 
MITK) in each layer. The nonenhanced area (necrosis) 
inside of the enhanced lesion was also included. The bleed-
ing lesion inside of the enhanced lesion and the edema area 
outside of the enhanced lesion were not included in the 
analysis. All MRI images were bias-field corrected using 
the N4 bias field correction algorithm from the SimpleITK 
(Additional file 1: Fig. S2).

Before feature extraction, Z-score normalization built 
into Pyradiomics (v.2.0.0; http:// www. radio mics. io/ pyrad 
iomics. html) was performed in T1CE sequences of all 
the cohorts to reduce the potential effects of scanning 
parameters, scanners, and vendors.

Construction of a radiomic model
A simple randomization method was used to divide 
patients from the TCGA microarray cohort with a ratio 
of 7:3 into the training set and internal validation set, in 
which a radiomic model to predict absolute counts of 
M2-like TAM was developed [Radiomics Immunologi-
cal Biomarker (RIB)]. Radiomic feature extraction was 
performed using PyRadiomics. In total, 841 radiomic fea-
tures were extracted from the T1CE sequence, and were 
subdivided into eight classes, such as shape features, first 
order features and wavelet features. The detailed imag-
ing features are described in Supplementary methods. 
Feature selection was then conducted to eliminate the 
highly correlated and low reproducible features. After 
elimination of redundant features, the minimum redun-
dancy maximum relevance (mRMR) method was used 
to identify the most discriminant feature subset from 
the remaining features and only the top-ranking features 
were retained. The least absolute shrinkage and selec-
tion operator (LASSO) classifier were used to select the 
most predictive radiomic features from the top-ranking 
features and establish a radiomic model for predicting 
classes of the absolute fraction of M2-like TAM. The clas-
sifier was trained using 4-fold cross-validation on the 
training set to determine the optimal parameter configu-
ration. The receiver operating characteristic curve (ROC) 
was used to assess the RIB’s ability to distinguish high 
and low-M2 groups. The optimal cut-off value for RIB 
was determined using Youden’s index in the training set. 
More detail on constructing the signature can be found 
online (Additional file 2: Supplementary methods).

Association with prognosis and immunotherapy response
We explored the potential association between the radi-
omic model and immunotherapy efficacy in the immu-
notherapy-treated cohort. The RIB score was applied to 
evaluate benefit stratification via comparison of survival 
time. Within this cohort, patients were stratified into 

https://www.cancerimagingarchive.net/
http://mitk.org/wiki/MITK
http://mitk.org/wiki/MITK
http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
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high and low RIB groups based on the median value of 
the RIB score. Kaplan-Meier curves were employed to 
assess the disparities in overall survival (OS) and pro-
gression-free survival (PFS) between patients who under-
went immunotherapy and those who did not within each 
respective group. In order to evaluate the prognostic 
value of the RIB score, we built a radiomic nomogram 
combined with the RIB score and clinicopathological fac-
tors to predict the 1-, 2-, and 3-year survival probabilities 
in the TCGA microarray cohort and immune-phenotype 
cohort. The ROC curves, calibration curves and decision 
curves were included to evaluate the potential ability to 
determine predictive value utility.

Statistical analysis
The Chi-square test or Fisher’s exact test was used for 
categorical variables and the t-test or Wilcoxon rank sum 
test were used for continuous variables between groups, 
when appropriate. Benjamini and Hochberg was used in 
GO term, KEGG pathway and GSEA analysis for multi-
ple comparisons. For correlation analysis, the Spearman’s 
correlation coefficient was selected. Survival curves were 
generated according to the Kaplan-Meier method and 
compared by the log-rank test. Univariate and multivari-
ate analyses were completed with the Cox proportional 
hazards model. All statistical analyses were two-sided 
performed by SPSS software or R software (version 3.5.1, 
https:// www.r- proje ct. org/). A P value <0.05 was consid-
ered to be statistically significant.

Results
Patient characteristics of the cohorts
The different cohorts and clinicopathological characteris-
tics of enrolled patients (N=379) (Figs. 1 and 2) for radi-
omic analysis are shown in Table 1, whereby 222 (59.0%) 
were men, with a median age of 57.0 (14.0 to 86.0) years. 
There were no statistically significant differences in clin-
icopathologic features between the raining set and the 
internal validation set (Additional file  1: Table  S1). In 
addition, RNA sequencing data from another 577 HGG 
patients were extracted from the TCGA, CGGA and 
BDIA datasets for correlation analysis.

Three independent cohorts were included to estab-
lish the radiomic model. The TCGA microarray cohort 
(N=145) was recruited from the TCGA database and 
were randomly divided into a training set (N=101) 
and an internal validation set (N=44) at a ratio of 7:3. 
The immune-phenotype cohort (N=203) and immu-
notherapy-treated cohort (N=31) were recruited from 
Huashan Hospital, Shanghai as two external validation 
sets. The patients in the immunotherapy-treated cohort 
extracted from a randomized controlled clinical trial 
(NCT01567202) were treated by DC vaccine or placebo. 

The absolute fraction of M2-like TAM was estimated 
in the TCGA microarray cohort using the CIBERSORT 
and ESTIMATE algorithms. For patients in cohorts from 
Huashan Hospital, the density of M2-like TAM was cal-
culated by IHC staining with CD163 in the tumor slides. 
Tissue-derived TAM cells were isolated from 20 patients 
in the immune-phenotype cohort and sequenced to get 
gene expression, which was used in the radiogenomic 
analysis (WGCNA).

Construction and validation of the radiomic model
In the training set, the 11 most discerning radiomic fea-
tures from the top-ranking features were selected to for-
mulate the final radiomic signature (RIB). The detailed 
features and their corresponding coefficients are shown 
in the supplemental table (Additional file  1: Table  S2). 
The area under the curve (AUC) for RIB was used to 
classify the high- versus low-M2 group which was 0.849 
(95% CI: 0.77 to 0.92) in the training set and 0.719 (95% 
CI: 0.56 to 0.88) in the internal validation set (Fig.  3a). 
In the pathologist’s quantification of tumor-infiltrating 
M2-like TAM in the two external validation sets, the 
accuracy of RIB was observed with AUCs of 0.674 (95% 
CI: 0.60 to 0.75) and 0.671 (95% CI: 0.46 to 0.88), respec-
tively (Fig.  3a). In addition, there was a significant (P < 
0.0001) positive correlation (R=0.44, R=0.3, respec-
tively) between the RIB score and the absolute fraction 
of M2-like TAM (Fig. 3b). Figure 3c shows that the RIB 
score was significantly higher in the high-M2 group than 
that in the low-M2 group (P < 0.0001). All patients were 
defined into a high-M2RIB group (>0.65) and a low-M2RIB 
group (<0.65) according to the optimal cut-off (0.65) of 
the RIB score based on the Youden index in the training 
set (Additional file  1: Fig. S3). These results suggested 
that the MRI image-based radiomic model may be useful 
for non-invasive estimation of tumor-infiltrating immune 
cells in HGG patients. In order to evaluate the reliability 
of the model, we randomly split the TCGA microarray 
cohort two times. The detailed results of each partition 
were shown in the Table S3 and Fig. S4, which indicated 
that the model performance remained stable and was not 
significantly influenced by variations in data partitioning.

Relationship between the RIB score 
and immune-phenotype
In our previous study, gliomas with a lower absolute 
density of M2-like TAM could be defined as “super-
cold” tumors which are characterized by limited infil-
tration of immune cells, including TILs and TAMs. 
Here, we also found that tumors in the high-M2 group 
were highly enriched in immune response activity, like 
phagocytosis, production and secretion of cytokine/
chemokine, and T-cell mediated immunity, which are 

https://www.r-project.org/


Page 7 of 16Chen et al. Biomarker Research           (2024) 12:14  

Fig. 3 Performance of the RIB model in training and validation sets. a ROC curves of the RIB showed the favorable accuracy in four datasets. b 
Significant correlations were found between RIB score and absolute fraction of M2-like TAM. c RIB score in high- and low-M2 groups. d GSEA 
enrichment analysis showed more extensive immune responses in patients from high-M2 group. e GSEA enrichment analysis also showed more 
extensive immune responses in patients from high-M2RIB group. f Both of the estimated absolute fraction of M2-like TAM (left) and RIB score (right) 
had positive correlation with immune signatures characterized in hot tumors (eg immunescore) as well as negative correlation with tumor purity 
characterized in cold tumors. The block diagrams filled with white had no significant p values (p≥0.05), and the correlation coefficient (R) were 
embedded in each diagram
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macrophage-specific functions (Fig.  3d). Moreover, 
analysis showed a significant correlation between the 
absolute fraction of M2-like TAM and signatures of 
TIM (Fig. 3f and Additional file 1: Fig. S5). Furthermore, 
similar results were discovered for RIB scores (Fig. 3e-f ), 
demonstrating that tumors with higher RIB score were 
analogous to “hot” tumors possessing a stronger intratu-
moral immune response. In addition, the IDH wild-type 
(IDHwt) glioma patients from the TCGA microarray 
cohort were selected to conduct relation analysis, which 
demonstrated that IDH wild-type glioma patients with 
higher RIB scores also had more extensive immune 
response (Additional file 1: Fig. S6).

Biological annotations of the RIB
To explain the intrinsic connection between RIB and 
immune-phenotype, we generated radiogenomic maps 
associated RIB with biological processes and pathways 
by the WGCNA method (Additional file  2: Supplemen-
tary methods). Firstly, tumor tissue derived macrophages 
from 20 HGG patients were sequenced to obtain gene 
expression data. The genes with low or no differen-
tial expression between samples were excluded from 
WGCNA, whereby 18,895 genes were included for analy-
sis. No outlier samples were observed in the clustering 
analysis (Fig. 4a). Finally, 29 gene modules revealing dif-
ferent biological functions in TAMs were produced in 
the coexpression network and shown in the cluster den-
drogram (Fig.  4b). Gene counts for each module were 
noted in the histogram (Fig. 4c). Then, we calculated and 
mapped the relationship between each module and the 
RIB score or radiomic features. There were 19 pairwise 
correlations that were statistically significant (P<0.05) in 
the radiogenomic correlation map (Fig. 4d).

The annotations of these significant gene modules in 
GO terms (biological processes) and KEGG pathways 
found three dominating modules named by different 
colors (pink, brown and tan) correlated with immune 
processes (Additional file  1: Fig. S7a-b). Of these three 
modules, the RIB score was strongly correlated with the 
tan gene module. Hence, the enrichment score for genes 
in the tan module was calculated using the gene set vari-
ation analysis (GSVA) in four cohorts (TCGA microarray 
cohort, CGGA_325 cohort, CGGA_693 cohort, TCGA-
RNAseq cohort) with gene expression data, which 
showed similar or even better accuracy in predicting the 
absolute density of M2-like TAM when compared with 
RIB (Additional file 1: Figs. S7c and S8a). In performing 
mapping analysis, we found that there was a strong cor-
relation between tan GSVA score and immune-related 
gene signatures (Additional file  1: Figs. S7d and S8b). 
Then, we calculated the correlation between the gene 
and tan module (MM) as well as the gene and RIB (GS) 

to screen the potential key genes in the tan module. We 
selected 73 key genes when setting a threshold of GS > 
0.5 and MM > 0.8 (Additional file  1: Fig. S9a). In addi-
tion, another 447 genes with a significant correlation (cor 
> 0.2) with the RIB score in the TCGA microarray cohort 
were selected. Following intersection, 4 hub-genes were 
identified (SLC7A7, RNASE6, HLA-DRB1 and CD300A) 
(Additional file  1: Fig. S9b). For further exploration, we 
elaborated on these hub-genes by correlative analysis 
(Additional file  1: Fig. S9c) and literature review, which 
confirmed that they play a key role in regulating immune 
responses. Radiogenomic correlation and biological vali-
dation above revealed at the single-gene level that our 
RIB model had significant predictive ability to display 
intratumoral immunological status non-invasively.

Predictive value of the RIB score for benefits to DC vaccine
Previous clinical studies have suggested that immuno-
logical signatures in the tumor microenvironment (TME) 
could predict responses to immunotherapy. We con-
firmed in this study that HGG patients with high RIB 
score had abundant immune cell infiltrating and stronger 
immune response as immunologically “hot” tumors. 
Therefore, we assessed the predictive value of the RIB 
score within an immunotherapy-treated cohort. Firstly, 
the patients were classified into a high RIB score group 
and a low RIB score group for further analysis based on 
their median value of RIB score. Within the high RIB 
group, patients who received DC vaccine immunother-
apy had significantly extended survival time compared 
with patients receiving placebo as expressed in progres-
sion-free survival time (10.0 mos vs. 4.5 mos, HR=0.17, 
P=0.0056, 95%CI=0.041-0.68; Fig.  5a) and overall sur-
vival time (15.0 mos vs. 7.0 mos, HR=0.17, P=0.0076, 
95%CI=0.04-0.68; Fig.  5b). The 1-year OS was 77.8% 
and 33.3% for immunotherapy-treated patients versus 
placebo-treated patients respectively in the high RIB 
group. However, for the low RIB group, no significant 
clinical benefits were obtained for patients receiving DC 
vaccine in PFS (7.0 mos vs. 8.0 mos, HR=1.7, P=0.32, 
95%CI=0.59-4.7; Fig.  5c), OS (15.0 mos vs. 12.0 mos, 
HR=0.67, P=0.53, 95%CI=0.2-2.3; Fig.  5d) and 1-year 
OS (42.9% vs. 44.4%). Multivariate cox regression analy-
sis revealed that immunotherapy remained a strong and 
independent factor to prolong survival in patients with 
high RIB score but not in patients with low RIB score 
(Table  2). In addition, the patients in immunotherapy-
treated cohort were divided into two subgroups again 
using the optimal cut-off value (0.65) obtained from 
ROC curve analysis to confirm the predictive value of 
RIB. Both of Kaplan-Meier analysis (Additional file 1: Fig. 
S10) and multivariate cox regression analysis (Additional 
file 1: Table S4) also indicated that patients with high RIB 
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score (>0.65) could benefit from DC vaccine, while those 
with low RIB score (<0.65) were less likely to have sur-
vival benefits to DC vaccine.

To further elucidate the credibility of the RIB score to 
predict clinical response to DC vaccine, we showed two 
representative cases receiving DC vaccine treatment 
whose tumor tissues were accessible for assessment in 
Fig.  5. For the first patient in the high RIB score group 
(Fig.  5e), abundant infiltrating of TAMs and TILs were 
detected in the TME pre-immunotherapy assessment, 

demonstrating that extratumoral immune cells could 
migrate into tumor more easily which underlies the func-
tion of the DC vaccine. In contrast, few immune cells 
were observed in tumor of another patient from the low 
RIB group (Fig.  5f ), indicating that the TME was weak 
in the ability to recruit immune cells, which resulted in 
the poor efficacy of the DC vaccine treatment. Notably, 
the first patient with a high RIB score (RIB=0.77) had a 
longer survival time (PFS, 7.0 mos vs. 3.0 mos; OS, 13.0 
mos vs. 7.0 mos) than the second patient with a low RIB 

Fig. 4 WGCNA identifies key gene modules correlating with RIB and each radiomic feature. a No outlier was detected in sample clustering. b Gene 
dendrogram after clustering showed twenty-nine gene modules, and each color indicating one gene module. c Counts for each gene module. d 
Module trait relationships were evaluated by correlations between module eigengenes and RIB score or each radiomic feature. P < 0.05 represents 
statistical significance, which were marked by red frame
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Fig. 5 Kaplan-Meier analyses of progression-free survival (PFS) and overall survival (OS) according to RIB score in patients with HGG 
from immunotherapy-treated cohort. a Patients with high RIB score could prolong PFS by treatment from DC vaccine. b Patients with high RIB score 
could prolong OS by treatment from DC vaccine. No significant survival differences of PFS (c) or OS (d) were found between patients treated by DC 
vaccine and placebo in subgroup with low RIB score. e Multiplexed immunostaining demonstrated one patient with high RIB score was infiltrated 
by abundant T cells and TAM in TIM, who could be defined as hot immune-phenotype and got an incremental survival from immunotherapy. f Few 
immune cells were observed in another patient with low RIB score, who got attenuated clinical benefit from DC vaccine and was classified into cold 
immune-phenotype
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score (RIB=0.42). Taken together, these data suggest that 
the RIB signature is a strong predictive biomarker to non-
invasively identify patients who benefit from DC vaccine.

Prognostic value of RIB in the nomogram model 
for estimating outcome
Immunological signatures were previously confirmed 
to be associated with the survival of glioma patients. 
Therefore, a radiomic nomogram integrated with the RIB 
score (Fig. 6) was constructed using the TCGA microar-
ray cohort (N=145) followed by being validated in the 
immune-phenotype cohort (N=203). ROC curves in the 
radiomic nomogram showed good efficacy in predicting 
survival probability at 1, 2, and 3-years in the primary 
cohort (Fig. 6b and e). Good agreement between the esti-
mations and the actual outcomes of the radiomic nomo-
gram in the primary and validation cohorts were shown 
in the calibration curves (Fig.  6c and f ). The decision 
curves (Fig. 6d and g) had advantages across almost the 

entire range of reasonable threshold probabilities which 
verified good performance for the radiomic nomogram. 
The radiomic nomogram also had good performance 
for C-index values in the primary and validation cohorts 
(Additional file 1: Table S5). These data indicated that the 
radiomic nomogram based on the radiomic signature and 
clinicopathologic factors were useful for clinical outcome 
prediction in HGG patients.

Discussion
Although TIM has been determined to be an important 
factor in immunotherapy, noninvasive predictors based 
on radiographs have only recently been developed as bio-
markers for immunotherapy in solid tumors [10]. To our 
knowledge, no radiomic biomarker has been verified for 
immunotherapy in gliomas. Considering that T1CE MRI 
images are used commonly for diagnosis of HGG, we 
developed and validated a radiomic signature named RIB 
to predict classes of M2-like TAM by radiomic analysis 

Table 2 Univariate and multivariate cox regression analysis in subgroups from immunotherapy-treated cohort for OS and PFS

Factor Univariate Cox regression Multivariate Cox regression

HR (95% CI) P value HR (95% CI) P value

OS for patients with high RIB (N=15)
 Age (≤40 vs >40 ) 0.87 (0.23-3.4) 0.85 / /

 Gender (Male vs Female) 1 (0.29-3.6) 0.98 / /

 Location (Non-frontal vs Frontal) 1 (0.31-3.3) 0.97 / /

  IDH1wtTERTmt (Yes vs No) 1.2 (0.35-3.9) 0.79 0.43 (0.093-2.01) 0.285

 Patient (Recurrent vs Newly Diagnosed) 0.82 (0.25-2.7) 0.74 0.96 (0.268-3.41) 0.944

 Treatment (DC Vaccine vs Placebo) 0.17 (0.04-0.68) 0.013 0.1 (0.018-0.58) 0.01
OS for patients with low RIB (N=16)
 Age (≤40 vs >40 ) 0.27 (0.058-1.3) 0.099 0.11 (0.016-0.77) 0.026
 Gender (Male vs Female) 0.4 (0.12-1.3) 0.13 / /

 Location (Non-frontal vs Frontal) 0.43 (0.13-1.4) 0.16 / /

  IDH1wtTERTmt (Yes vs No) 1.7 (0.5-5.6) 0.41 1.33 (0.326-5.42) 0.692

 Patient (Recurrent vs Newly Diagnosed) 0.65 (0.21-2.1) 0.47 0.26 (0.053-1.29) 0.099

 Treatment (DC Vaccine vs Placebo) 0.67 (0.2-2.3) 0.51 0.84 (0.230-3.05) 0.787

PFS for patients with high RIB (N=15)
 Age (≤40 vs >40 ) 0.52 (0.14-1.9) 0.32 / /

 Gender (Male vs Female) 0.58 (0.18-1.8) 0.36 / /

 Location (Non-frontal vs Frontal) 0.91 (0.29-2.8) 0.86 / /

  IDH1wtTERTmt (Yes vs No) 0.78 (0.25-2.4) 0.67 0.36 (0.091-1.40) 0.14

 Patient (Recurrent vs Newly Diagnosed) 0.88 (0.28-2.8) 0.83 1.16 (0.349-3.86) 0.808

 Treatment (DC Vaccine vs Placebo) 0.17 (0.041-0.68) 0.013 0.1 (0.020-0.51) 0.005
PFS for patients with low RIB (N=16)
 Age (≤40 vs >40 ) 0.22 (0.047-1) 0.049 0.19 (0.033-1.1) 0.07

 Gender (Male vs Female) 0.93 (0.33-2.6) 0.89 / /

 Location (Non-frontal vs Frontal) 0.4 (0.13-1.2) 0.1 0.3 (0.047-1.9) 0.205

  IDH1wtTERTmt (Yes vs No) 1.4 (0.48-4.3) 0.52 1.25 (0.315-5.0) 0.749

 Patient (Recurrent vs Newly Diagnosed) 1.5 (0.51-4.3) 0.47 0.6 (0.102-3.5) 0.572

 Treatment (DC Vaccine vs Placebo) 1.7 (0.59-4.7) 0.34 2.83 (0.839-9.6) 0.094
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based on the T1CE sequence. Moreover, we also assessed 
the association between the radiomic model, immuno-
logical signatures, and immunotherapy efficacy. Our 

RIB showed credible predictive ability and reproducibil-
ity across different cohorts with favorable performance 
(AUC=0.849, 0.719, 0.674, 0.671 in four sets respectively) 

Fig. 6 Nomogram, ROC curves, calibration curves, and decision curves to estimate survival probability at 1, 2, and 3-year in the radiomic 
nomogram. a Development of the radiomic nomogram for estimating survival probability integrated with RIB score and clinicopathological 
information in the primary cohort (TCGA microarray cohort, N=145). The ROC curves for the radiomic nomogram in the primary (b) and validation 
(e, immune phenotype cohort, N=203) cohorts. The calibration curves in the primary (c) and validation (f) cohorts, the error bars were defined 
as s.e.m., which represent the 95% CI. The decision curves in the primary (d) and validation (g) cohorts
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to predict classes of absolute fraction of TAM. Addition-
ally, this radiomic model was in close relationship with 
signatures of the immune microenvironment, which 
showed that patients with higher RIB score acted as 
“hot” tumors whereby the TME had more immune cells 
and stronger immune response. Furthermore, we were 
able to confirm the prognostic value of the RIB signature 
because a radiomic nomogram combining the radiomic 
signature with clinicopathological characteristics had a 
good ability to predict survival time. Of note, we demon-
strated for the first time that the radiomic model could 
predict clinical responses to immunotherapy in glioma 
patients treated by DC vaccine.

The histopathological analysis of resected tumors 
is indispensable in the current evaluation of the TIM, 
which can only be carried out in patients undergoing 
surgery or biopsy. Moreover, the histological evaluation 
can be complicated by spatial heterogeneity and tempo-
ral evolution of the TIM as studies have recently shown 
[24]. A radiomic model based on radiographical imaging 
has been demonstrated to be a desirable biomarker in 
solid neoplasms to reflect tumor features non-invasively 
prior to surgery and throughout the treatment course, 
such as genomic mutations, metastasis, and therapeu-
tic responses. For the TIM, previous studies have estab-
lished radiomic models to predict immune signatures 
in solid tumors [25, 26], including the expression level 
of immune checkpoint molecules such as PD-L1 [11] 
and counts of tumor-infiltrating immune cells such as 
 CD8+ T cells [10]. However, a radiomic model predict-
ing signature of TIM in gliomas is still in the early stage 
of development. Xuanwei Zhang et  al established sev-
eral radiomic models [18–20] to extrapolate immune 
signatures in gliomas, such as the estimated infiltra-
tion of immune cells. There is more importance in the 
assessment of glioma using radiomics because elective 
surgery or biopsy is not often practical, which indicates 
that information from images becomes a more critical 
clinical tool for treatment decisions in brain tumors. In a 
study, Chul-Kee Park et al [17] verified that radiomic sig-
natures could predict the real fraction of immune cells 
in gliomas. However, these previous studies had limi-
tations, including a small number of patients or a lack 
of clinical data to evaluate performance for predicting 
response to immunotherapy. These proof-of-principle 
studies were conducted without biological interpreta-
tion utilizing transcriptomic analysis of immune cells. 
Here, we validated our RIB model for absolute counts 
of M2-like TAM in a large dataset of 379 patients from 
three independent cohorts, and also provided func-
tional annotation using RNA sequencing data from 577 
patients from four independent cohorts. In addition, 
we confirmed that our radiomic model will be useful 

to facilitate longitudinal assessment of clinical benefits 
throughout immunotherapy-treated course in a previous 
clinical trial for HGG patients using DC vaccine [22].

To our knowledge, our RIB is the first kind of immu-
nological radiomic model verified to be a non-invasive 
predictor of response to immunotherapy in gliomas. In 
patients with glioma, biomarkers for selecting candi-
dates suitable for immunotherapy remain ambiguous. In 
our previous study, we found that glioma patients with 
high expression of B7-H4 had no survival benefits from 
DC vaccine, one of the main forms of immunothera-
pies, whereas others having low expression benefited 
with improved survival time from immunotherapy [22]. 
Meanwhile, Genova C et  al [27] also confirmed that 
expression level of B7-H4 was a risk factor in lung can-
cer patients treated with ICIs. Furthermore, the patients 
in the glioma subgroup defined by high expression levels 
of B7-H4 could be identified as “super-cold” tumors in 
our data [16]. “Super-cold” tumor patients were detected 
with lower absolute counts of immune cells in the TME, 
including M2-like TAM, indicating that these patients 
may be insensitive to existing forms of immunotherapy. 
The absolute fraction of M2-like TAM had a significant 
positive correlation with immune infiltrations and was 
also reduced markedly in “super-cold” tumors, though 
it is the dominant immunosuppressive cell type in the 
glioma microenvironment [28]. Although previous stud-
ies have constructed immunological radiomics in glio-
mas but no patients treated with immunotherapy were 
included. Several studies found significant association 
between macroscopical imaging features and survival 
in gliomas patients treated by immunotherapy [29–31]. 
Recently, a radiomic model has been developed and 
trained by E. George to predict survival time in glioma 
cohort treated by anti-PD-L1 antibody [32]. However, 
this radiomics model was only verified to have a favora-
ble outcome prediction, and there was no ability to detect 
differences in radiomic scores between responders and 
non-responders; therefore, it could not identify patients 
who could benefit from immunotherapy. In our study, 
we showed that the RIB signature could identify glioma 
patients who are more likely to benefit in immunother-
apy from our randomized controlled prospective clinical 
trial. Specifically, patients with a high RIB score were able 
to derive survival benefit from DC vaccine compared to 
patients treated by placebo. Patient group having a high 
RIB score had more intense immune response in the 
TME while RIB score also had meaningful positive cor-
relation with immune infiltration (immunescore pre-
dicted by ESTIMATE). This also predicted that it would 
be unlikely that low-RIB HGG would respond to DC 
vaccine. Therefore, the RIB model is a composite meas-
ure of TIM that likely not only depict absolute fraction 
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of M2-like TAM but also represents specific network 
of local immunity in the tumor. The density of M2-like 
TAM has been associated with a poor prognosis of gli-
oma patients in previous studies [33], and we provided 
further evidence from our cohorts that combing the radi-
omic signature with clinicopathological information in a 
radiomic nomogram had great efficacy to predict survival 
probability in HGG patients without immunotherapy. 
This may be because that high-dimensional data from 
normalized images could provide additional characteri-
zations, which also allowed radiomics to be less confused 
by patient distributions from different cohorts.

In order to explain why our RIB signature could decode 
intrinsic characteristics of the gliomas TIM and predict 
immunotherapy responses, we uncovered gene clusters 
in close relationship with the RIB score by WGCNA 
analysis using RNA sequencing data of patient-derived 
TAM cells. Genes enriched in pathways related to 
macrophage-specific immune function, including anti-
gen processing and presentation, T cell response and 
phagocytosis, were highly correlated to RIB. Then, we 
extracted the top four hub-genes positively related to 
RIB score to expound biological annotation, including 
SLC7A7, RNASE6, HLA-DRB1 and CD300A, all of which 
have been confirmed to play a key role in TIM especially 
in biology triggered by TAM [34–37]. CD300A belongs 
to the CD300 receptor family, constituting a type I trans-
membrane protein which was involved in pathways for 
immune suppression and activation, such as its role in 
regulating the chemotaxis of immune cells. HLA anti-
gens are indispensable in the antigen presentation pro-
cess, participating in the activation of T lymphocytes. 
HLA-DRB1 is one of the gene phenotypes of HLA-DR, 
classified as an HLA class II antigen, which is primarily 
associated with the activation of CD4+ T-cells. Stud-
ies demonstrated that the expression level of the HLA-
DRB1 were correlated with characteristics of immune 
microenvironment. RNASE6 belongs to the ribonu-
clease family and has been confirmed to be involved 
in the polarization of M2-likeTAM. The gene muta-
tions of the amino acid transport protein SLC7A7 have 
been confirmed to be the risk factors for the develop-
ment of tumors, including glioblastoma. Additionally, 
these mutations in SLC7A7 gene were associated with 
immune functions, such as the regulation of inflamma-
tory responses by macrophages. Generally, this was the 
first study in gliomas to provide functional annotation 
for radiomics in a particular population of immune cells.

This study has some limitations. First, the RIB was 
constructed retrospectively, which renders it susceptible 
to possible selection bias. However, the negative effect 
was attenuated when we have included large independ-
ent cohorts of patients from multicenters to investigate 

our findings and validate the reproducibility. Moreover, 
patients in a randomized controlled, double blind, pro-
spective clinical trial published previously were included 
in the analysis to ensure the ability of RIB to predict clini-
cal benefits from immunotherapy. Second, the model 
was trained and validated using absolute cell counts of 
M2-like TAM from different data sources. The estimated 
cell counts predicted by hundreds of genes were used in 
the training set and internal validation set, while the cell 
fraction was calculated in FFPE sections stained with 
CD163 by IHC in two external validation sets. Further-
more, the cut-off values to define the low- or the high-M2 
group in the four sets were also different. The contra-
dictions mentioned above may contribute to the lower 
performance in external validation sets (AUC=0.674 
and 0.671). However, we found a significant positive 
correlation between the RIB score and the density of 
CD163-positive cells, as well as a higher RIB score in 
the high-M2 group defined by CD163, which showed a 
favorable agreement between the radiomic score and 
pathology. Another prospective cohort with fresh tis-
sues to calculate real cell counts is needed to validate this 
study in the future.

Conclusion
In this work, we identified an MRI-based radiomic model 
named RIB that allows the non-invasive evaluation of the 
HGG immune microenvironment, specifically the abso-
lute fraction of M2-like TAM. Moreover, we confirmed 
for the first time in glioma patients that the immuno-
logical radiomics could be used to predict and monitor 
the response to DC vaccine, one of the immunothera-
pies. Furthermore, we assessed the biological funda-
ment of the non-invasive biomarker and verified it to 
be correlated with the immune response triggered by 
macrophages. Although large-scale prospective studies 
are needed for validation, our study has provided exten-
sive evidence that MRI-based radiomic biomarkers may 
serve as non-invasive predictors of clinical benefits from 
immunotherapy in glioma patients.
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