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Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a 
crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING 
pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting 
effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to 
low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-
based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The 
encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for 
antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, 
highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient 
intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-
NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell 
activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the 
review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such 
as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. 
These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately 
amplifying the potential for antitumor immunotherapy.
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Introduction
Over the decades, immunotherapy has emerged as a 
promising option for several advanced and refractory 
tumors. Various immunotherapeutic approaches, such 
as immune checkpoint inhibitors (ICIs), vaccines, and 
chimeric antigen receptor (CAR) T-cell therapy, have 
been investigated in the preclinical and clinical stages 
for different malignancies [1]. However, the success of 
immunotherapy is still limited, mainly due to insufficient 
immune responses. A common obstacle to effective can-
cer immunotherapy is the presence of an immunosup-
pressive tumor microenvironment (TME). The TME is 
a complex entity consisting of immune cells, fibroblasts, 
endothelial cells, vasculature, cytokines, and chemo-
kines. These components interact with tumor cells and 
are critical in tumor progression and therapeutic effects 
[2, 3]. For example, within the TME, immunostimula-
tory dendritic cells (DCs) can experience deficiencies or 
dysfunction, impacting T-cell proliferation and promot-
ing heightened immune evasion across various cancer 
types [4]. Furthermore, specific inflammatory cytokines, 
such as interferon (IFN) and tumor necrosis factor-alpha 
(TNF-α), are primarily orchestrated by DCs and tumor-
associated macrophages (TAMs) in the TME, and signifi-
cantly influence tumor progression and occurrence [5]. 
In addition, TME components can inhibit drug penetra-
tion, leading to reduced responses to immunotherapy [6]. 
These challenges underscore the need to explore novel 
strategies for modulating TME to improve antitumor 
immunity.

In recent years, the cyclic GMP-AMP synthase (cGAS)-
stimulator of interferon genes (STING) signaling path-
way has emerged as a crucial player in cancer immunity. 
Activation of the STING signaling pathway can stimulate 
innate inflammatory immune responses and potentially 
overcome immunosuppression in TME [7]. In particu-
lar, STING activation can induce DC activity, leading to 
infiltration of IFN-γ-producing T cells in colorectal can-
cers [8]. Furthermore, STING-mediated type I interferon 
signaling amplifies the stem cell-like CD8+ T cell differ-
entiation program, enhancing the generation of stem-like 
central memory CD8+ T cells from cancer tissues [9]. 
The prospects of STING agonism in antitumor immu-
notherapy have been steadily increasing. Several natu-
ral and synthetic STING agonists have been discovered, 
developed, and evaluated in preclinical models and clini-
cal trials for multiple cancer therapies [10]. For instance, 
several cocktail strategies containing STING agonists 
(e.g. Mn2+ and MSA-2) and immune checkpoint inhibi-
tors (e.g. YM101) have been demonstrated to conquer 
resistance to immunotherapy and generate broad-spec-
trum antitumor properties in preclinical studies [11, 12]. 
In a phase I clinical trial, Mn2+ (a potent cGAS-STING 
activator) plus anti-PD-1 antibody exhibited encouraging 

antitumor activities and favorable safety profiles in 
patients with advanced metastatic solid tumors [13]. 
However, conventional STING agonists often face chal-
lenges such as random diffusion, rapid clearance, and 
limited membrane permeability, leading to toxic cytokine 
storms and reduced bioavailability, compromising their 
clinical translation [14]. Therefore, there is a pressing 
need to explore new strategies to improve immunothera-
peutic efficacy and reduce the adverse effects of STING 
agonists.

Nanotechnology has rapidly developed and are widely 
used in the biomedical field. Numerous nanoparticles 
(NPs) are used in cancer therapy to encapsulate and 
efficiently deliver active pharmaceutical ingredients to 
tumor sites [15, 16]. Various nanotechnology platforms, 
such as liposomes, polymersomes, and metal-based 
nanomedicines, have been approved by the US Food and 
Drug Administration (FDA) to load antitumor agents 
such as Doxil, DaunoXome, and Onivyde [17]. Recently, 
a new trend has emerged that focuses on nanoplatforms 
that encapsulate STING agonists using organic and inor-
ganic nanomaterials. These therapeutic NP platforms are 
designed to promote tumor penetration and accumula-
tion, enhance cellular uptake, and reduce the rapid degra-
dation of STING agonists.

Regarding antitumor immunity, NPs that carry STING 
agonists have shown promising results. They effectively 
activate the STING signaling pathway, improving the 
innate and adaptive immune responses of various cancers 
[18]. This review highlights the potential prospects and 
advantages of STING-activating nanoparticles (STING-
NPs). We discuss the robust immune modulation exerted 
by STING-NPs on the TME composition. Furthermore, 
we emphasize the pleiotropic antitumor immunity 
achieved by co-delivering nanoplatforms incorporating 
STING agonists and other antitumor agents. Based on 
current investigations, STING-NPs present a promising 
new approach to cancer immunotherapy, offering a novel 
perspective to explore more effective treatments.

Overview of cGAS-STING pathways in mediating 
immune responses
The discovery of cGAS-STING pathways has acceler-
ated significantly in the past decade, making them a 
promising and potent area of research in the field of the 
immune system. As a sensor for cytosol DNA, activation 
of STING signaling can strongly induce innate immune 
programming in various diseases characterized by the 
expressions of interferons and pro-inflammatory cyto-
kines (Table  1). In addition, STING-inducible innate 
immune responses are crucial in activating antigen-
presenting cells (APCs) and T-cell priming, promot-
ing adaptive immunity in anticancer therapy. Recent 
advances in our understanding of the molecular biology 
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of the cGAS-STING pathway have highlighted the poten-
tial for pharmacological regulation, making STING an 
attractive target for modulating the immune response. 
In particular, the development of small-molecule STING 
agonists has emerged as a promising strategy for cancer 
immunotherapy.

Activation of cGAS-STING
The cGAS-STING pathway regulates both tumors and 
immune cells through innate immune mechanisms [19]. 
It can be activated by various factors, including patho-
gen detection, cellular stress, and damage, leading to 
the accumulation of cytosolic double-stranded DNA 
(dsDNA) [20]. Among these pathways, cGAS acts as a 
central cellular cytosolic dsDNA sensor. When binding to 
dsDNA, cGAS undergoes a conformational change and 
further catalyzes the production of second messenger 

cyclic GMP-AMP (cGAMP) [21]. Synthesized from ATP 
and GTP, cGAMP interacts with STING, an endoplasmic 
reticulum (ER) membrane protein. This interaction trig-
gers a high-order oligomerization of STING, followed 
by its translocation from the ER to the Golgi apparatus 
and post-Golgi compartments [22]. In Golgi, STING 
oligomerization recruits TANK binding kinase 1 (TBK1), 
which transphosphorylates STING, leading to the 
recruitment of interferon regulatory factor 3 (IRF3) [23]. 
TBK1 further facilitates the phosphorylation of IRF3, 
causing its dimerization and translocation to the nucleus. 
This process stimulates the expression of type I IFNs and 
other pro-inflammatory genes [24]. Furthermore, TBK1 
recruitment also phosphorylates IκB kinase, stimulating 
nuclear factor-κB (NF-κB). The translocation of NF-κB 
and IRF3 into the nucleus promotes the transcription of 
type I IFN and the induction of the interferon-stimulated 
genes [25, 26] (Fig. 1).

As the primary production of STING activation, type 
I IFNs mainly include IFN-α and IFN-β, which interact 
with heterodimer interferon receptors (IFNαR), activat-
ing both innate and adaptive immunity [27]. After acti-
vation of the cGAS-STING pathways, type I interferon 
production is instrumental in DC maturation and its 
cross-presentation of tumor antigens (TAs) to antigen-
specific CD8+ T cells, which exerts adaptive antitumor 
immunity [28, 29]. Other innate immune cells, such 
as natural killer (NK) cells and neutrophils, are also 
increased in TME, with enhanced antitumor responses 
after activation of the STING pathways [30, 31]. Immu-
nosuppressive cells also convert their characteristics 
by activating STING, such as reducing myeloid-derived 
suppressor cells and repolarizing macrophages [32, 33]. 
Therefore, STING-mediated production of IFNs reforms 
the immunogenicity of TME and increases the antitumor 
immune response.

The development of STING agonists
Researchers have been devoted to exploring a wide range 
of STING agonists in recent years, continuously evalu-
ating their potential in antitumor treatments (Table  2). 
Several small-molecule agents, such as cyclic dinucleo-
tides (CDNs), are potential ligands directly targeting the 
STING protein. As the main constituents of STING ago-
nists, CDNs can function as a second messenger to acti-
vate innate immune responses through IRF3-dependent 
production of type I IFNs [34]. Natural CDNs consist of 
exogenous small molecules generated from bacteria, such 
as cyclic dimeric guanosine monophosphate (c-di-GMP, 
CDG), cyclic dimeric adenosine monophosphate (c-di-
AMP, CDA), 3′3′-cyclic AMP-GMP (3′3′-cGAMP), and 
endogenous 2′3′-cGAMP produced in mammalian cells 
[35]. These CDNs improve immunogenicity and tumor 
suppression in mouse cancer models, such as melanoma, 

Table 1  The major components of STING pathway
Components Characteristics Role in STING pathway
cGAS An evolutionarily 

conserved cytosolic 
DNA sensor

It uses ATP and GTP as 
substrates to catalyze the 
synthesis of cGAMP

cGAMP A cyclic dinu-
cleotide second 
messenger

It binds to STING localized 
on the ER membrane, which 
promotes STING oligomeriza-
tion and translocation from 
the ER to the Golgi apparatus

STING An ER membrane 
protein as a key 
adaptor in innate 
immunity,

Its oligomerization recruits 
TBK1 and further triggers 
IRF3- and NF-κB-dependent 
transcription of type I IFNs

TBK1 A serine/threonine 
kinase

It phosphorylates STING and 
subsequently activates both 
IRF3 and NF-κB

IRF3 A transcription 
regulator

After phosphorylated by 
TBK1, it subsequently translo-
cates to the nucleus, where it 
induces the transcription of 
inflammatory factors

NF-κB A transcription 
regulator

After activated byTBK1 and 
IκB kinase epsilon, it syner-
gizes with IRF3 to induce the 
transcription of inflammatory 
factors

Type I IFNs Major downstream 
molecules (IFN-α 
and IFN-β) of STING 
pathway

IFN-α and IFN-β involve 
in host innate immune 
activation

Other proinflam-
matory factors

Inflammatory 
cytokines (such as 
TNF, IL-6 and IL-12) 
and chemokines 
(such as CXCL9 and 
CXCL10)

The STING activation is also 
required for the induction of 
many other genes encodings 
proinflammatory factors that 
regulates both innate and 
adaptive immunity

Abbreviation: STING: stimulator of interferon genes; cGAS: cyclic guanosine 
monophosphate–adenosine monophosphate (GMP-AMP) synthase; ATP: 
adenosine triphosphate; GTP: guanosine triphosphate; cGAMP: cyclic GMP-
AMP; TBK1: TANK-binding kinase 1; ER: endoplasmic reticulum; IRF3: interferon 
regulatory factor 3; NF-κB: nuclear factor kappa-B; Type I IFNs: type I Interferons
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breast, and colorectal cancers [36–38]. However, natural 
CDNs typically exhibit hydrophilic and electronegative 
properties and are susceptible to rapid enzymatic deg-
radation, limiting their penetration and bioavailability 
in tumor treatment [39]. Some attempts are being made 
to address these challenges, such as developing syn-
thetic CDNs and vehicles or particles to target delivery in 
tumor tissues [40].

In addition to CDNs, the pharmacological properties 
of non-CDN agents have become increasingly appar-
ent in the activation of cGAS-STING. DMXAA, a clas-
sical model drug directly targeting murine STING, has 
shown disruption in the tumor vasculature [41]. Unfor-
tunately, DMXAA did not succeed in clinical applica-
tions, as it does not bind to the human STING protein 
[42]. Based on the DMXAA structure, its analogs and 
derivatives have inspired the potential development of 
novel antitumor STING agonists [43, 44]. Furthermore, 
Ramanjulu et al. reported a novel non-CDN, diABZI, 
developed based on symmetry-related amidobenzimid-
azole (ABZI) [45]. This novel agonist demonstrates a high 
binding affinity to human STING and has shown prom-
ising results by inducing systemic tumor regression in 

mice with colorectal cancer [45]. Soon afterward, more 
stable non-CDN STING agonists have been discovered, 
such as SR-717 and MSA-2, which have high affinities for 
STING and show favorable antitumor potencies [46, 47]. 
Although these approaches have achieved satisfactory 
progress, the limitations of these small-molecule STING 
agonists, such as random dissemination, rapid clearance, 
and low accumulation at tumor sites, restrict the effi-
cacy of existing immunotherapies [48]. There has been 
a growing interest in utilizing NPs for packaging small-
molecule STING agonists. These NPs offer superior cel-
lular uptake and improved tumor accumulation. As a 
result, nanotechnology holds the potential to overcome 
the limitations of free STING agonists. It offers a prom-
ising approach to enhance their effectiveness, a concept 
that will be examined more extensively below.

Nanocarriers for encapsulating STING agonists
Despite the profound antitumor immune responses pro-
duced by current small-molecule STING agonists, their 
clinical translation faces challenges, including rapid 
clearance, low efficacy for tumor targeting, and the risk 
of random diffusion leading to unwanted autoimmune 

Fig. 1  The activation of cGAS-STING pathways mediating the cytosolic nucleic acid sensing and innate immunity
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toxicity. In response to these challenges, scientists have 
recently directed their attention toward creating diverse 
nanomaterials featuring unique surface modifications. 
These modifications aid in encapsulating and precisely 
delivering STING agonists to particular locations, such 
as TMEs and LNs. NPs that transport STING agonists 
offer several advantages over their free counterparts, 
including improved biocompatibility and greater flexibil-
ity in intracellular delivery. These attributes contribute to 
heightened STING-mediated immune responses (Fig. 2). 
In the following sections, we will briefly introduce the 
compositions, properties, and advantages of nanocarri-
ers with incorporated STING agonists, along with their 
effects on STING-related agonism. Furthermore, we 
outline the current nanomaterials for encapsulation of 
STING agonists in Table 3.

Liposome
Liposomes are spherical-shaped artificial vesicles with 
one or more phospholipid bilayers surrounding a central 
aqueous compartment [49, 50]. Based on their amphipa-
thic characteristics, liposomes have become promising 
drug delivery systems in various therapeutic areas [51]. 
In 1995, the FDA approved the first liposome product 
(Doxil®) to treat patients with ovarian cancers, highlight-
ing its wide clinical application for cancer therapy [52]. 
Recently, chemical optimization in liposomes has been 
explored to enhance tumor penetration, intracellular 
uptake, and cytosol release of STING agonists. For exam-
ple, cGAMP was encapsulated in DOTAP/cholesterol 
liposomes, preventing cGAMP from enzymatic degra-
dation and systemic clearance. These liposomes were 
coated with mannose on their surface, enabling specific 

Table 2  STING agonists involving in clinical development
Agents molecular types Route With or without combi-

national agents
Targeting cancers Phase Clinical Trial 

NCT Code
ADU-S100
/MIW815

CDN analog IT alone or + Ipilimumab Advanced/​metastatic solid tumors or 
lymphomas

Phase 1 NCT02675439

IT +PDR001 Advanced/​metastatic solid tumors or 
lymphomas

Phase 
1/1b

NCT03172936

IT +Pembrolizumab HNSCC Phase 2 NCT03937141
BMS-986,301 CDN analog IV/IT/

IM
Alone or+ Nivolumab and 
Ipilimumab

Advanced solid tumors Phase 1 NCT03956680

BI-1,387,446 CDN analog IT Alone or + Ezabenlimab Advanced/​metastatic solid tumors Phase 1 NCT04147234
IMSA-101 CDN analog IT Alone or + ICI/+IO Advanced solid tumors or lymphomas Phase 

1/2
NCT04020185

IT +PULSAR, Pembrolizumab 
and Nivolumab

NSCLC and RCC Phase 2 NCT05846646

IT +PULSAR, Pembrolizumab 
and Nivolumab

Oligoprogressive solid tumors Phase 2 NCT05846659

MK-1454 CDN analog IT + Alone or Pembrolizumab Advanced/​metastatic solid tumors or 
lymphomas

Phase 1 NCT03010176

IT +Pembrolizumab Metastatic or unresectable, recurrent HNSCC Phase 2 NCT04220866
SB11285 CDN analog IV Alone or + Atezolizumab Advanced solid tumors Phase 1 NCT04096638
TAK-676 CDN analog IV + Pembrolizumab NSCLC, TNBC and HNSCC Phase 1 NCT04879849

IV Alone or + Pembrolizumab Advanced/​metastatic solid tumors Phase 1 NCT04420884
E7766 non-CDN molecule IT Alone NMIBC Phase 

1/1b
NCT04109092

IT Alone Advanced/​metastatic solid tumors or 
lymphomas

Phase 
1/1b

NCT04144140

GSK3745417 non-CDN molecule IV Alone AML and HR-MDS Phase 1 NCT05424380
IV Alone or + Dostarlimab Advanced solid tumors Phase 1 NCT03843359

HG-381 non-CDN molecule IV Alone Advanced solid tumors Phase 1 NCT04998422
KL340399 non-CDN molecule IT Alone Advanced solid tumors Phase 1 NCT05549804
SNX281 non-CDN molecule IV Alone or + Pembrolizumab Advanced solid tumors or lymphomas Phase 1 NCT04609579
TAK-500 antibody drug 

conjugate
IV Alone or + Pembrolizumab Advanced/​metastatic solid tumors Phase 

1/2
NCT05070247

SYNB1891 Engineered bacteria 
vectors

IT Alone or + Atezolizumab Advanced/​metastatic solid tumors or 
lymphomas

Phase 1 NCT04167137

Abbreviations: CDN: cyclic dinucleotide; HNSCC: head and neck squamous cell carcinoma; NSCLC: non-small cell lung cancer; RCC: renal cell carcinoma; TNBC: triple-
negative breast cancer (TNBC); NMIBC: non-muscle invasive bladder cancer; AML: acute myeloid leukemia; HR-MDS: High-risk myelodysplastic syndrome; ICI: 
immune checkpoint inhibitor; IO: Immuno-oncology; PULSAR: personalized ultra-fractionated stereotactic adaptive radiotherapy; IT: intratumoral; IV: intravenous; 
IM: intramuscular
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delivery of cGAMP to DCs, through targeting the abun-
dant expression of mannose receptors on DCs. Mannose-
coated liposomes with cGAMP encapsulation improved 
uptake by DCs, thus inducing pro-inflammatory cyto-
kines related to STING compared to free cGAMP [53]. In 
another example, Liu et al. developed a cGAMP-loaded 
liposome that was surface modified with phosphatidyl-
serine (PS) to enhance its recognition by PS receptors 
located in APCs. Furthermore, they established an inter-
action between PS and calcium ions (Ca2+) to facilitate 
the precipitation of cGAMP within the liposomal core 
using calcium phosphate (CaP). Once engulfed by APCs, 
the liposomes were disassembled at acidic endosomal pH, 
during which cGAMP was accurately released into the 
cytosol, thus promoting the initialization of STING sig-
naling and the production of type I IFNs [54]. In addition 
to pH-responsive manners, the photothermally respon-
sive liposome could also improve drug accumulation in 
tumor tissues by converting external light into heat [55]. 
Zhan et al. constructed a photothermally responsive 
liposome coated with ferrous sulfide (FeS2) that absorbs 
near-infrared (NIR). The photothermally responsive lipo-
some shell could be melted by NIR, causing an effective 

accumulation of cGAMP in tumor tissues with a potent 
activation of the STING pathways [56]. It is important to 
note that incomplete drug release may still occur in this 
liposome formulation, highlighting the need for further 
strategies to enhance drug release efficiency. Addition-
ally, careful control of the temperature is crucial when 
using photothermally sensitive liposomes. Excess ther-
mal doses run the risk of inducing necrosis in normal tis-
sues surrounding tumors [56].

Polymersome
Polymersomes are amphiphilic vesicles developed from 
the self-assembly of diblock or triblock copolymers 
[57]. Most reported polymersomes contain an aqueous 
core for efficient drug incorporation, with a morphol-
ogy similar to that of liposomes [57, 58]. Furthermore, 
the assembly of copolymers can be tailored to align with 
specific external stimuli-responsive requirements, allow-
ing customized properties. To load STING agonists, 
several studies have used an amphiphilic diblock copo-
lymer (poly(ethylene glycol)-block-[(2-diethylamino-
ethyl methacrylate)-co-(butyl methacrylate)-co-(pyridyl 
disulfide ethyl methacrylate)]) (PEG-DBP) to form a 

Fig. 2  The overview presenting each type of nanocarriers encapsulating the STING agonists, and highlighting the advantages of STING-NP administra-
tion in aspects of stability, tumor/LNs accumulation, cellular uptake and release
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Nanomaterials Encapsu-
lated STING 
agonists

Encap-
sulated 
anti-tumor 
agents

Key design features Targeting com-
ponents of STING 
pathways

in vivo model Ref

Liposome cGAMP N/A Mannose-coated NPs for DCs’ reorganization 
and uptake

Upregulation of IFN-β 
and IL-12

V600E BRAF-mutated 
and B16F10 mela-
noma model

 [53]

cGAMP N/A Phosphatidylserine-coated surface for APCs’ 
reorganization and uptake

Upregulation of IFN-β, 
TNF-α, IL-6, p-TBK1 
and p-IRF3

4T1 breast cancer 
and B16-OVA mela-
noma model

 [54]

cGAMP N/A A photothermal segment (FeS2) for generating 
hydroxyl radic; bromelain-modified surface for 
ECM degradation

Upregulation of 
TNF-α and IL-6

4T1 breast 
cancer model

 [56]

CDG MPLA The hydrophilic CDG into the NP core and 
hydrophobic MPLA into the lipid bilayer

Upregulation of IFN-β 
and TNF-α

B16F10 melanoma, 
4T1 and D2.A1 breast 
cancer model

 
[138]

CDG MPLA The hydrophilic CDG into the NP core and 
hydrophobic MPLA into the lipid bilayer

Upregulation of IFN-β Panc02 pancreatic 
cancer model

 
[137]

diABZI αPD-L1 and 
αCD47

A lipid NP with dual linkages of αCD47 and 
αPD-L1

Upregulation of TNF-
α, CXCL9 and CXCL10

CT-2 A and PVPF8 
glioma model

 
[129]

Polymersomes cGAMP N/A pH-sensitive segments (DEAEMA) with hydro-
phobic BMA for endosomal escapes

Upregulation of IFN-β, 
CXCL9 and CXCL10

B16F10 melanoma 
model

 [59, 
62]

cGAMP N/A pH-sensitive segments (DEAEMA) with hydro-
phobic BMA for endosomal escapes

Upregulation of IFN-β, 
TNF-α, IL-12, CXCL10 
and p-IRF3

B16F10 melanoma 
model

 [61]

cGAMP N/A pH-sensitive segments (DEAEMA) with hydro-
phobic BMA for endosomal escapes

Upregulation of IFN-β, 
CXCL10, TNF, IL-12, 
p-IRF3

Neuro-2a and 9464D 
neuroblastoma 
model

 [60]

cGAMP Tumor anti-
gen (OVA)

pH-sensitive segments (DEAEMA) with hydro-
phobic BMA for endosomal escapes

Upregulation of IFN-α, 
IFN-β, TNF-α and IL-6

B16F10 melanoma 
and MC38 colorectal 
cancer model

 
[133]

Micelles cGAMP N/A PC7A NP as a polyvalent STING agonist for 
amplifying activation of STING pathway

Upregulation of IFN-β 
and CXCL10

MC38 colorectal 
cancer model

 [68]

cGAMP Tumor anti-
gen (OVA)

A cationic PDMA for electrostatic complex-
ation with negatively charged cGAMP; a 
pH-responsive segment (PDPA) for NPs’ cellular 
disassembly and endosomal escapes

Upregulation of 
IFN-β, TNF-α, CXCL9, 
CXCL10 and IL-12

EG7 lymphoblasto-
ma, MC38 colorectal 
and TC-1 cervical 
cancer model

 [69]

Other Polymeric 
NPs

DMXAA Tumor anti-
gen (OVA)

Co-assembly of PEG-b-PDPA diblock copo-
lymer with OEI-C14 for facilizing endosome 
escapes; surface modification with mannose 
for APCs’ reorganization

Upregulation of IFN-β, 
TNF-α, IL-6, CXCL10, 
Isg-15, p-IRF3 and 
p-TBK1

B16-OVA melanoma 
and 4T1 breast can-
cer model

 
[132]

Table 3  The nanomaterials for delivery of STING agonists
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Nanomaterials Encapsu-
lated STING 
agonists

Encap-
sulated 
anti-tumor 
agents

Key design features Targeting com-
ponents of STING 
pathways

in vivo model Ref

DMXAA SN38 SN38-grafted block as a chemotherapeutic 
prodrug; amine-containing DEAEMA group 
providing a positive charge for effective en-
capsulation and cellular internalization

Upregulation of 
IFN-β, TNF-α, CXCL9, 
CXCL10 and IRF7

B16F10 melanoma 
and 4T1 breast 
cancer model

 [63]

CDNs N/A Cationic PBAEs as carriers for binding CDNs, 
specific cellular uptake and effective endo-
somal escapes

Upregulation of IRF3 B16F1 melanoma 
model

 [86]

diABZI αPD-L1 and 
Gemcitabine

αPD-L1-coated surface for enhancing cellular 
uptake and antitumor efficacy; Gemcitabine-
PLA segment as a chemotherapeutic prodrug

Upregulation of IRF7, 
IL-6, CXCL9, CXCL10 
and IFN‐β

Panc02 pancreatic 
cancer, B16F10 mela-
noma and 4T1 breast 
cancer model

 
[125]

cGAMP siSIRPα cationic lipid DOTAP and PEG-b-PLGA forming 
NPs that enhances encapsulation efficiency 
and cellular uptake

Upregulation of IFN-α 
and IFN-β

B16F10 melanoma 
model

 [87]

3′3 cGAMP CpG ODNs, 
5′ppp-
dsRNA, and 
tumor anti-
gen (TRP2)

carboxylic acid-terminated PLGA for prevent-
ing aggregation and embolisms upon intrave-
nous injection

Upregulation of 
TNF-α and IL-12

B16F10 melanoma 
model

 [88]

CDG αCD47 MPC as a zwitterionic polymer for superior BBB 
penetration; a FAP-α-responsive crosslinker 
targeted by the FAP-α enzyme in TME for effec-
tive release of CDG

Upregulation of IFN-β 
and TNF-α

GL261 glioma model  
[127]

cGAMP Tumor anti-
gen (OVA)

Self-degradable framework PBAEs for endo-
somal escape

Upregulation of IFN-β, 
TNF-α, CXCL9 and 
CXCL10

B16F10 melanoma 
model

 [89]

Mn2+-based NPs CDA N/A Mn2+ as a STING agonist that self-assembles 
with CDNs and amplifies STING activation

Upregulation of IFN-β, 
TNF-α, CXCL-9 and 
CXCL10

B16F10 melanoma 
and CT26 colorectal 
cancer model

 [71]

INOP-based NPs MSA-2 Tumor anti-
gen (OVA)

Acid INOPs for augmenting STING activation 
and endosomal escapes

Upregulation of 
IFN-β, TNF-α, IL-6 and 
CXCL10

B16-OVA melanoma 
and MC38 colorectal 
cancer model

 [72]

Zinc-based NPs CDA N/A A non-toxic zinc phosphate hydrophilic core 
with surrounding lipid bilayer

upregulation of IFN-β, 
TNF-α and IL-6

B16F10 melanoma. 
MC38 colorectal 
cancer and GL261 
glioma model

 [73]

MOFs SR-717 N/A A photosensitizer (TCPP) for controlling 
oxidation-responsive SR-717 release

Upregulation of IFN-β 
and IL-6

4T1 breast 
cancer model

 [78]

DMXAA CpG ODNs MOF-801 as a STING agonist that self-assem-
bles with DMXAA and CpG ODNs

Upregulation of 
IL-6, TNF-α, and 
cGAS-STING-NF-κB 
signaling

Hepa1-6 hepatoma 
carcinoma model

 
[141]

Mesoporous 
silica

CDG N/A Amine-modified surface electrostatically inter-
acts with the anionic phospholipid membrane 
and ECM for enhancive local adherence

Upregulation of TNF-α B16F10 melanoma 
model

 [81]

CDG N/A PEGylated modification and quaternary 
ammonium-modified surface for stable blood 
circulation, enhancive tumor accumulation, 
and cellular uptake

Upregulation of 
IL-1β, IFN-β, IL-6 and 
p-STING

4T1 breast 
cancer model

 [82]

CDG N/A Amine functionalization facilitating high CDG 
loading and effective release of CDG upon 
cellular internalization.

Upregulation of IFN-β GL261 glioma model  [83]

CDA N/A A larger pore size (5–10 nm) and a thinner Si-
O-Si matrix for rapid release of CDA

Upregulation of IFN-β, 
CXCL10, CCL2, and 
CCL5

B16F10 melanoma 
model

 [84]

Table 3  (continued) 
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polymersome [59–62]. The PEG-DBP vesicle membrane 
was designed for pH-responsive disassembly, which 
further orchestrated endosomal escape and cytosolic 
delivery of STING agonists. In vitro and in vivo assays 
revealed that treatment of cGAMP-loaded PEG-DBP 
could create highly efficient uptake by APCs and NK cells 
and a broad distribution in tumor-draining lymph nodes 
(TDLNs). In a murine melanoma model, cGAMP-loaded 
PEG-DBP elevated inflammatory STING-driven produc-
tion, while unencapsulated cGAMP barely triggered a 
response above baseline [59]. Similar to polymersomes, 
other polymeric NPs that are made up of blocks have 
shown enormous potentials for delivery of STING ago-
nists. For instance, Liang et al. constructed a two-in-one 
polymeric NPs from triblock copolymers (poly(ethylene 
glycol)-block-poly-(DTM ASN38)-block-poly[2-
(diethylamino)-ethyl methacrylate]) (PEG-PSN38-PDEA) 
for the co-delivery of DMXAA and the prodrug of the 
chemotherapeutic agent SN-38. PEG-PSN38-PDEA 
comprised a cleavable prodrug (PSN38) to trigger redox 
stimuli in tumors, but its building block also formed a 
hydrophobic inner core during self-assembly. This nano-
encapsulation further increased the cellular content of 
DMXAA in APCs and caused immunostimulation of 
the type I IFN pathway in murine melanoma. This block 
copolymers represents a novel design concept for a co-
delivery nanoplatform that could lead to synergistic anti-
tumor responses [63]. However, it is essential to note 
that this NP formulation involves more than two compo-
nents, which may present challenges to overcome, such 
as manufacturing hurdles and the possibility of unwanted 
toxicity.

Micelles
The nanosized micelle system comprises amphiphilic 
molecules that can improve the solubility, bioavailabil-
ity, and tumor targetability of hydrophobic anticancer 
drugs [64]. As spherical colloidal particles, micelles are 
self-assembled with a hydrophobic core to load poorly 
soluble compounds and a hydrophilic shell to achieve 
steric stability and less nonspecific uptake [65]. In recent 
years, pH-sensitive micelles have exhibited the ability to 
disrupt endosomal function for cytosolic drug delivery 
[66]. For example, a nanoscale poly(ethylene glycol)-b-
poly(2-hexamethyleneimino ethyl methacrylate) (PC7A) 
micelle was developed as a pH-sensitive polymer with a 
seven-membered ring [67]. PC7A could induce innate 
immunity pathways through polyvalent interaction with 
another surface site of the STING protein, different from 
that of the STING-cGAMP binding pocket. Thus, PC7A 
NPs loaded with cGAMP synergistically generated robust 
pro-inflammatory chemokines [68]. Su et al. also synthe-
sized a pH-responsive polymeric micelle to co-load with 
cGAMP and peptide antigens. After endocytosis, NPs 
were disassembled in the acidic endosome, facilitating 
the release of cGAMP into the cytosol for STING acti-
vation. Moreover, these NPs demonstrated high targeting 
specificity to APCs, effectively overcoming random dis-
semination of peptide antigens and reducing potential 
immune toxicity [69].

Metal-based NPs
Metallic NPs are made in various forms, including pure 
metal, metal oxide, and metal salt [70]. Emerging evi-
dence has revealed that metal NPs have the potential to 

Nanomaterials Encapsu-
lated STING 
agonists

Encap-
sulated 
anti-tumor 
agents

Key design features Targeting com-
ponents of STING 
pathways

in vivo model Ref

Sono-driven NPs MSA-2 N/A A semiconducting polymer as a sonosensitizer 
that links with MSA-2 through a singlet oxygen 
cleavable linker (diphenoxyethene)

Upregulation of IFN-β, 
p-TBK1 and p-IRF3

SCC-7 head and 
neck squamous cell 
carcinoma model

 [91]

Lipid nanodisc
(LND)

CDNs N/A A flexible high-aspect-ratio morphology 
for improving penetration capacity; the 
conjugation of CDN prodrug and LND 
could be cleaved by cathepsin after cellular 
internalization

Upregulation of IFN-β, 
TNF-α and IL-6

MC38 colorectal 
cancer, TC-1 cervical 
cancer and 4T1 
breast cancer model

 [93]

Supramolecular
NP

CDG N/A A hydrophobic nucleotide lipid (3’,5’-diOA-dC) 
assembling with CDG through various supra-
molecular forces

Upregulation of 
IFN-β, TNF-α, CXCL9, 
CXCL10, STING and 
p-IRF3

B16F10 melanoma 
model

 [95]

Extracellular 
vehicles (EVs)

CDNs N/A EVs as a delivery vehicle with favorable 
biocompatibility

upregulation of IFN-β, 
CXCL-9 and CXCL10

B16F10 melanoma 
and CT26 colorectal 
cancer model

 [97]

Abbreviations: p-TBK1: phosphorylated TBK1; p-IRF3: phosphorylated IRF3; p-STING: phosphorylated STING; OVA: ovalbumin; ECM: extracellular matrix; αCD47: 
CD47 antibody: αPD-L1: PD-L1 antibody; DEAEMA: 2-diethylaminoethyl methacrylate; BMA: butyl methacrylate; PBAEs: Poly (beta-amino esters); PLA: poly(lactic 
acid); MPC: 2-methacryloyloxyethyl phosphorylcholine; FAP-α: fibroblast activation protein α; PDMA: poly((2-dimethylaminoethyl) methacrylate; PDPA: poly(2-
(diisopropylamino)ethyl methacrylate); INOPs: Acid-ionizable iron NPs; MOFs: metal–organic framework; TCPP: meso-tetra(carboxyphenyl)porphyrin; PLGA: 
poly(lactic-co-glycolic acid); DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; PEG: polyethylene glycol; Isg-15: Interferon stimulated gene 15

Table 3  (continued) 
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serve as multipurpose agents. To deliver STING ago-
nists, metallic ions, such as Fe2+/3+, Zn2+, and Mn2+, 
can assemble with CDNs into spherical NPs that act as 
vectors for targeted delivery. Among these metal ions, 
Mn2+ was identified to stimulate STING-independent 
immunity by inducing phosphorylation of TBK1 and 
the expression of NF-κB p65 in monocytes [71]. Sun 
et al. established a manganese-based nanoplatform by 
self-assembling CDA and Mn2+ through a coordination 
ligand. CDA-Mn-NPs showed superior cell uptake and 
cytosolic localization in bone marrow-derived dendritic 
cells (BMDCs), followed by increased IFN-β responses 
by more than 20 times, compared to a free admixture of 
CDA and Mn2+ [71]. Similarly, a STING agonist (MSA-
2) was co-assembled with iron oxide-based copolymers, 
forming acid-ionizable iron NPs (INOPs). Under condi-
tions similar to the acidic endosomal environment, INOP 
protonation was significant in initiating the dissociation 
and subsequent release of MSA-2. IONPs also led to 
intracellular reactive oxygen species (ROS) through the 
Fenton reaction, which amplified MSA-2-induced type I 
IFN production [72]. Moreover, Yang et al. engineered a 
nanoparticle (NP) loaded with CDA, featuring a hydro-
philic core composed of zinc phosphate formed through 
coordination polymerization. Zn-CDA-NPs exhibited 
pharmacokinetic advantages over conventional liposome 
formulations. Specifically, Zn-CDA-NPs effectively atten-
uated CDA degradation in serum and prolonged CDA 
circulation half-life compared to a CDA-loaded liposome 
[73].

Furthermore, the remarkable properties of metal-
organic framework (MOF) nanomaterials have received 
significant attention, leading to their exploration in 
diverse biological applications. Nanoscale MOFs are a 
class of porous materials composed of metallic ions or 
clusters interconnected by organic linkers [74]. The supe-
rior attributes of MOFs, such as specific surface area and 
porosity, high biocompatibility, and thermal stability, 
provide promising opportunities as carriers of the STING 
agonist [75–77]. Zhou et al. constructed a polymeric 
MOF (PMOF) NP that encapsulated a STING agonist 
(SR-717). For the regulated release of SR-717, a specific 
photosensitizer (meso-tetra(carboxyphenyl)porphyrin, 
TCPP) was incorporated into the PMOF to enable the 
controlled separation of SR-717 through singlet oxygen 
(1O2) mediation. Under light irradiation, TCPP gen-
erated 1O2, which broke thioketal bonds and further 
destroyed the PMOF structure to release SR-717. Conse-
quently, ROS generation and the release of SR-717 from 
PMOF have demonstrated a synergistic effect, effectively 
enhancing the activation of the STING pathway [78].

Mesoporous silica
As inorganic nanomaterials, mesoporous silica NPs 
(MSNPs) could be functionalized as an enhancement 
of endocytosis by targeted cells with less toxicity [79]. 
The electrostatic interaction between cationic NPs and 
the anionic phospholipid membrane of tumor cells has 
been shown to increase the penetration and distribu-
tion of NPs in TME [80]. To form a cationic MSNP, an 
amine-modified MSNP was designed, and it electrostati-
cally binds to negatively charged CDG. The introduction 
of amine-modified MSNPs led to enhanced retention of 
CDG at tumor sites, in contrast to the rapid dispersion 
observed with free CDG [81]. Chen et al. also synthe-
sized a CDG-loaded MSNP with a small diameter for its 
easy penetration through the tumor matrix. PEGylated 
modification and quaternary ammonium-modified cat-
ionic molecules were also introduced to these MSNPs, 
increasing the stability of blood circulation, tumor accu-
mulation, and cellular uptake. Compared to free CDG, 
quaternary ammonium-based MSNPs loaded with CDG 
efficiently triggered STING activation in macrophages 
[82]. Similarly, Bielecki et al. also formulated protonat-
able primary and secondary amines on the surface of 
MSNPs, which facilitated the uptake of CDG by APCs 
and released those into the cytosol. Induction of pro-
inflammatory IFN-β was also observed in these amine-
functionalized MSNPs that wrap CDG in macrophages 
[83]. However, several drawbacks, such as small pore 
sizes for drug delivery, slow biodegradation, and long-
term retention in normal tissue, restrict the application 
of conventional MSNPs. Therefore, Park et al., engi-
neered a biodegradable MSNP characterized by a larger 
pore size (5–10  nm) and a thinner Si-O-Si matrix that 
allowed rapid degradation under physiological condi-
tions. Further studies showed efficient cytosolic delivery 
of CDA incorporated in this wide-apertural MSNP, along 
with solid STING activation in monocyte-derived cells 
[84].

Other nanocarriers
So far, polymeric nanomaterials have emerged as ver-
satile tools to improve drug bioavailability or specific 
delivery at tumor sites [85]. Several frequently used poly-
mers, such as poly(lactic-co-glycolic acid) (PLGA) and 
poly(beta-amino esters) (PBAEs), have been tested for 
the encapsulation of STING agonists [86–89]. Recently, 
some novel and reformative approaches have been per-
formed to optimize the structure of polymeric NPs for 
encapsulating STING agonists. Semiconducting poly-
meric NPs (SPNs) have growing promise due to their 
high tumor penetration and specific drug release by 
external stimuli, such as sonodynamic conversion [90]. 
Jiang et al. exploited a sonodynamic SPN for loading 
MSA-2 and driving STING activation in head and neck 
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squamous cell carcinoma. The semiconducting polymer 
skeleton could be an MSA-2 sonosensitizer through a 
1O2 cleavable linker. Through sono-irradiation directed 
to tumor sites, MSA-2 could be accurately released in 
TME through cleavage of the diphenoxyethane bond. 
Unleashed MSA-2 further triggered IFN-β secretion 
through the phosphorylation of TBK1 and IRF3, thus 
increasing the activation of APCs. This in situ sono-
driven STING activation action presents a novel strategy 
to provide immunomodulation with precise spatio-tem-
poral control [91].

Recent studies have highlighted the increased pen-
etration capacity of nanomaterials with morphologies 
of high aspect ratios [92]. Dane et al. thus employed a 
PEGylated lipid nanodisc (LND) with a flexible high-
aspect ratio. The CDN prodrug was conjugated to LND 
and cleaved by cathepsin after cellular internalization 
into the endosome. Compared to the CDN-loaded lipo-
some, CDN-loaded LND showed superior accumulation 
and penetration of CDNs into tumor sites and LNs in a 
mouse model of colorectal cancer [93]. However, using 
PEGylated NPs raises potential concerns about preex-
isting anti-PEG responses, such as allergic reactions, 
alerting developers to the side effects of exogenous modi-
fication on nanocarriers [94]. To improve the biosafety of 
drug carriers, Xu et al. introduced supramolecular inter-
actions in the synthesis of nanomaterials. The hydrophilic 
CDG was assembled with hydrophobic 3′,5′-diOA-dC 
via supramolecular interactions, including hydrogen 
bonding and hydrophobic interaction, avoiding the use 
of a non-clinically exogenous carrier. Considering the 
biosafety, 3′,5′-diOA-dC can be metabolized to relatively 
safe ingredients, such as oleic acid and deoxycytidine, in 
vivo. Compared to free CDG, supramolecular CDG-NPs 
also showed increased accumulation and retention of 
CDG in murine melanoma tumor tissues, accompanied 
by increased secretion of type I IFNs [95]. Furthermore, 
extracellular vehicles (EVs) have been identified as natu-
ral NPs separated by lipid bilayers secreted from various 
cells, with favorable biocompatibility for drug delivery 
[96]. Jang et al. employed exogenously loaded EVs with 
CDNs. This led to substantial tumor retention and a 
notable increase in IFN-β production, exhibiting approxi-
mately 100 times higher potency than free CDNs [97].

The promising immune responses caused by 
nanoencapsulation of single STING agonists
TME comprises host-derived microvasculature, stromal, 
and immune cells interacting with cancer cells. Some 
cancers are characterized by an immunologically “cold” 
nature, insufficiently infiltrating effector CD8+ T cells, 
and abundant immunosuppressive cell subtypes. The 
STING-associated pathway has recently emerged as a 
critical player in activating innate and adaptive immune 

responses. Innovatively, NPs integrated with STING ago-
nists have been proposed as a novel approach to enhance 
antitumor effects. Unlike soluble forms, NPs loaded with 
STING agonists have demonstrated superior aspects, 
particularly in treating low-immunogenic cancers. In this 
summary, we discuss the modulation of immune com-
ponents within the TME by encapsulating single STING 
agonists in NPs (Fig. 3).

Secretion of cytokines
NPs carrying STING agonists show a solid potency to 
expand the release of pro-inflammatory cytokines and 
chemokines, which recruit CD8+ T cells infiltrating in 
TME, and strengthen immune responses in various can-
cers. In a murine model with glioma, ferritin-assembled 
NP loaded with SR717 improved IFN-β, TNF-α, CXCL-
9, and CXCL-10 expressions in TME. In contrast to 
free SR717, mice exposed to SR717-ferritin-NP in the 
presence of glioma exhibited markedly increased levels 
of CD8+ T cell infiltrating, resulting in reduced tumor 
growth and extended survival [98]. In another colorec-
tal mouse model, intravenous injection of Mn-CDA-NP 
significantly increased serum levels of IFN-β, TNF-α, 
CXCL-9, and CXCL-10, along with increased antigen-
specific CD8+ T cell responses [71]. TDLNs are crucial 
sites for antitumor T cell priming and effective systemic 
immunity [99]. After treatment with polymeric cGAMP-
loaded NPs, CXCL-10 expression in melanoma TDLN 
was upregulated, consistent with a significant increase 
in CD8+ T cell infiltration in TME [61]. Other cytokines, 
such as IL-6 and IL-12, were also increased by STING-
NPs in TME, which promote the recruitment and activa-
tion of anticancer immune cells [54, 100]. Furthermore, 
STING-NPs improved the pro-inflammatory transpira-
tion profiles of CD8+ T cells in TME. Intratumoral injec-
tion of the cGAMP-loaded polymersome significantly 
increased the frequency of TNF-α positive CD8+ T cells 
compared to using free cGAMP in melanoma TME 
[59]. The IFN-γ is secreted mainly by cytotoxic CD8+ 
T cells, which can mediate tumor rejection [101]. An 
et al. reported that CDG-loaded MSNPs improved the 
percentages of TNF-α positive CD8+ T cells and IFN-γ 
positive CD8+ T cells compared to those treated with 
free CDG, leading to the inhibition of tumor growth in 
a murine melanoma model [81]. These findings sug-
gest that STING-NPs can induce cytotoxic CD8+ T cells 
capable of secreting pro-inflammatory cytokines, such as 
IFN-γ and TNF-α, potentially resulting in robust antitu-
mor immune activities.

DC activation and TA presentation
As essential components of APCs, DCs activate effec-
tor responses by presenting TAs to T cells [102]. In 
response to TAs, DCs undergo immunogenic maturation 
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that confers up-regulation of molecules of the major 
histocompatibility complex (MHC) and co-stimulatory 
molecules (e.g., CD80 and CD86) [103]. Various NPs 
incorporating STING agonists have been well studied in 
the aspects of DC maturation and presentation of TAs. 
For example, in vitro research discovered that coculture 
of cGAMP-NP-treated neuroblastoma cells and BMDCs 
caused DC maturation with up-regulated expression of 
MHCII, CD86, and CD80 [60]. Liu et al. also reported an 
increased expression of CD86 and MHC-II in DCs within 
the TME of 4T1 (breast cancer) metastases-bearing lungs 
after inhaled treatment with cGAMP-loaded NPs [54]. To 
trigger systemic immunity, mature DCs can present exog-
enous antigens by cross-presenting MHC-I with CD8+ 
T cells [104]. Liu et al. further utilized the ovalbumin 
(OVA)-expressed melanoma murine model to investi-
gate the cross-presentation of TA since the OVA peptide 
SIINFEKL can serve as an exogenous TA for tumor-
specific T cell priming. After the combined therapy of 
irradiation (IR) treatment and cGAMP-loaded NPs, the 
TA complex (SIINFEKL-MHC-I molecules) was signifi-
cantly improved in mature DCs that migrated to TDLNs, 
accompanying the expansion of tumor-specific CD8+ 

T cells [54]. Immunogenic cell death (ICD) is perceived 
as a type of cancer cell death that unleashes endogenous 
damage-associated molecular patterns (DAMPs), result-
ing in efficient tumor‐specific immunity [105]. Using 
an NIR light, a FeS2 and cGAMP photothermal-medi-
ated liposome loading induced ICD by the generation 
of hydroxyl radical (·OH) at tumor sites. ICD-induced 
DAMPs increased calreticulin, HMGB1, and ATP, and 
accelerated DC maturation (CD80+CD86+). The com-
binational action of ICD and STING activation also 
increased CD4+ and CD8+ T cell trafficking to primary 
and distant tumors in a triple-negative breast cancer 
(TNBC) mouse model [56]. Doxorubicin (DOX) is a well-
known chemotherapeutic agent to induce ICD [106]. 
Chen et al. developed a cGAMP-loaded liposome that 
captures TAs generated by DOX-induced ICD within the 
melanoma TME. These cGAMP-NPs additionally aided 
in transporting TAs to TDLNs for uptake by mature DCs. 
This led to robust activation of CD8+ T cells, resulting 
in significant suppression observed in both primary and 
rechallenged melanoma models [107].

Fig. 3  The modulation of STING-NPs on immune components of TME and LNs for anti-cancer immunotherapy
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The reinvigoration of TAMs
TAMs are versatile immunocytes in the formation of 
TME and are often polarized into phenotypes M1 (clas-
sically activated) and M2 (alternatively activated) [108]. 
M1 phenotype macrophages tend to exert tumor-killing 
functions that trap, phagocytize and eliminate tumor 
cells, while M2 phenotype macrophages dampen T-cell 
activation and promote tumor progression [109]. NP-
based STING agonists have been identified for interven-
tion in the spectrum of repolarization of TAMs in vivo. 
In melanoma TME, cGAMP-loaded NPs reduced the 
differentiation tendency of M2 macrophages and down-
regulated an M2 marker CD206 [53, 59]. In another 
example, in situ treatment combined with DOX and NP-
delivered cGAMP synergistically contributes to a shift of 
macrophages into M1-polarized subtypes in melanoma 
[107]. Further evidence indicates transcriptional modu-
lation in M1/M2 phenotypes in which cGAMP-NPs 
improves the repolarization of M2 toward M1 macro-
phages through downregulation of M2-like genes (Ym1 
and Arg1) and upregulation of M1-like genes (TNF and 
IL-6) in a murine TNBC model [100]. The other role of 
macrophages may be as APCs at the start of therapy. 
However, unlike DCs, they might not play a crucial 
role in generating sufficient antitumor efficacy. In vitro 
research showed that the coculturing of splenic isolated 
CD3+ T cells with TA-pulsed macrophages treated with 
cGAMP-NP B16F10 (melanoma) triggered remarkable 
secretion of IFN-γ, suggesting that NPs increased anti-
gen presentation and T cell priming [100]. Yang et al. also 
reported that Zn-CDA-NPs were involved in antigen-
specific CD8+ T cell responses depending on endogenous 
activation of TAMs by STING in colon cancers. The 
STING agonism of Zn-CDA-NPs promoted the func-
tions of TAMs in the presentation of TAs by upregulat-
ing the expression of co-stimulatory factors (CD80 and 
CD86) and MHC-I. Meanwhile, Zn-CDA-NPs were 
found to effectively suppress antigen degradation by lyso-
somes through the downregulation of lysosomal enzyme-
related genes in TAMs. This process plays a crucial role 
in ensuring the presentation of TAs to T cells [73].

Targeting the vasculature
Tumor vasculature, characterized by an abnormal vas-
cular structure, restricts immunotherapeutic agents that 
penetrate tumors and hinders the immune response 
against tumors [110]. Recently, targeting receptors in 
the tumor vasculature served as potential pharmaco-
logical targets for the design of STING-NPs. NPs with 
vascular ligands that target fibronectin, αvβ3 integrin, 
and P-selectin have been formulated to anchor STING 
agonists to APC-rich perivascular TME [111]. Further-
more, STING-NPs demonstrated enhanced accumula-
tion and penetration within the TME by disrupting the 

tumor vasculature. This disruption transformed the TME 
into an immune-favorable environment [73]. In addi-
tion, structurally and functionally abnormal vasculature 
hinders antitumor immunity by restricting immune cells 
from migrating to TME. Tumor-associated endothelial 
cells (ECs) within the tumor vasculature have been rec-
ognized for their ability to downregulate the expression 
of cell adhesion molecules, potentially hindering the infil-
tration of T cells into tumors [112]. Bishop et al. revealed 
that intravenous treatment of cGAMP-loaded polymers 
upregulated cell adhesion molecules, such as VCAM-1 
and ICAM-1, which normalized vascular ECs and pro-
moted CD8+ T cell transmigration in renal cell carci-
noma TME. Furthermore, normalization of ECs further 
triggered the infiltration of endogenous and adoptively 
transferred T cells in response to cGAMP-loaded NPs in 
orthotopic EO771 breast tumors [113].

Other immune components of TME
Immunosuppressive cellular components in TME often 
limit efforts to restore a curative response [114]. Regu-
latory T cells (Tregs), a specialized subpopulation of T 
cells, suppress the activation and differentiation of helper 
CD4+ T cells and cytotoxic CD8+ T cells to inhibit anti-
cancer immunity [115]. NPs loaded with STING agonists 
have been developed to block Treg recruitment in TME. 
For example, NPs containing cGAMP have been shown 
to down-regulate the expression of the Foxp3 transcrip-
tion factor, facilitating a reduction in the Treg popula-
tion within the neuroblastoma TME [54]. Similarly, a 
liposome with cGAMP delivery reversed IR-induced 
Treg infiltrations. It improved the CD8+ T/Treg ratio, 
suggesting effective prevention of NPs in Treg infiltra-
tion in TME [54]. Furthermore, exhausted T cells (Tex) 
are characterized by dysfunction of effector functions 
that contribute to failures in immunotherapy [116]. Yu 
et al. developed an NP composed of a neutral cytidinyl 
liposome and a cationic liposome (mix) incorporated 
with CDG for treatment of breast cancers. Compared 
to free CDG, intratumoral treatment of CDG/Mix-NPs 
significantly decreased Tex in TME. CDG/Mix-NPs 
also reversed the Tex by down-regulating the transcrip-
tion factors Tox and Nr4a of Tex [117]. Furthermore, the 
action of immune checkpoints has been described to 
cause cytotoxic T-cell exhaustion and dysfunction [118]. 
Adaptive immune resistance could be generated, such 
as up-regulation of PD-L1 in tumor cells in response 
to STING activation [53]. To address these obstacles, 
STING-NPs were applied to synergize immune check-
point blockade (e.g., anti-PD-1/anti-PD-L1, anti-CTL4) 
therapy, which reduced tumor growth, promoted long-
term survival, and induced immunological memory [53, 
59, 61].
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NK cells, known as “tumor killers,” are generally 
involved in the innate immune response. Intratumoral 
activation of NK cells was observed within STING-NP 
treatment [84, 98]. Recent studies have revealed that 
PD-1/PD-L1 interactions inhibit NK cell responses 
[119]. Therefore, a combination of PD-1 antibodies and 
STING-NPs could activate NK cells to overcome resis-
tance to immunotherapy. Nakamura et al. developed lipid 
CDG-loaded NPs that induced systemic activation of NK 
cells, and part of them obtained PD-1 expression. When 
combined with anti-PD-1 treatment, CDG-loaded NPs 
sensitized the antitumor effects of PD-1 blockade by pro-
moting the capacity of NK cells to kill melanoma tumors 
[120]. Similar results revealed that PD-1 expression was 
elevated in NK cells during second-cycle treatment with 
lipid CDG-loaded NPs, further strengthening anti-PD-1 
treatment against lung metastases in a mouse model with 
melanoma [121].

Immunomodulation by co-delivery nanoplatform 
of STING agonists and antitumor agents
In recent years, the co-encapsulation of STING activators 
along with various immunotherapeutic agents into nano-
carriers has received increased attention from research-
ers. Promising candidates for co-encapsulation include 
ICIs, peptide antigens, immune adjuvants, and chemo-
therapeutic agents. These combinations have the poten-
tial to synergize and enhance the antitumor effects of 
STING agonists. Therefore, we describe co-encapsulated 
nanoplatforms and explore their impacts on immune 
responses in cancer therapy (Fig. 4).

Co-delivery of STING agonists and chemotherapeutic 
agents
Recent studies have shown that chemoimmunother-
apy nanosystems provide an opportunity to reshape 
immunosuppressive TME through innate and adaptive 
immunities [118]. SN38 is an active metabolite of the 
topoisomerase I inhibitor irinotecan for treating colon or 
rectal cancers [122]. Zhao et al. screened SN38 as a potent 
candidate to stimulate activation of the STING pathway 

Fig. 4  The anti-tumor immune responses induced by co-delivered NPs with STING agonists and anti-tumor agents. Note: CpG ODNs + cGAMP + TRP-2 
particles are nanoporous (40–100 nm) microparticles for STING agonism
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and production of type I IFNs in breast cancer cells. Fur-
thermore, they constructed a polymeric NP for SN38 
delivery that provoked innate immune responses, includ-
ing induction of pro-inflammatory cytokines with acti-
vated DCs and NK cells. However, no significant changes 
in T cells were observed within the SN38-NP treatments 
compared to free SN38. It implies that a single encapsu-
lation of SN38 in NPs may not be sufficient to provoke 
adaptive immune responses [123]. In another research 
by Liang et al., the addition of DMXAA encapsulation to 
SN38-loaded NPs (PEG-PSN38-PDEA) increased innate 
and adaptive immunity in a melanoma mouse model. 
Compared to NPs with a single loaded SN38, intravenous 
injection of DMXAA-SN38-NPs increased the secre-
tion of pro-inflammatory cytokines, including IFN-β, 
IFN-γ, and TNF-α, in TME. Incorporation of DMXAA 
in SN38-NPs also amplified DC maturation and recruit-
ment in TME and LNs, activating antigen-specific CD8+ 
T cells in B16-OVA murine models. Administration of 
DMXAA-SN38-NPs resulted in a notable increase in the 
IFN-γ positive effector CD8+ T cells and a higher ratio of 
CD8+/CD4+ infiltrating tumors. This combination led to 
a powerful suppression of melanoma growth [63].

Co-delivery of STING agonists and ICIs
A growing body of evidence has recommended STING 
agonists as adjuvants to ICIs to synergize antitumor 
immunity [124]. Based on the concept of combined 
immunotherapy, co-delivery of ICIs and STING agonists 
via nanotechnology is prone to strengthen immune sur-
veillance. Shi et al. designed a triple-combination immu-
nogenic nanovesicle that included gemcitabine (GEM), 
αPD-L1, and diABZI (Gemcitabine-αPD-L1-STING 
agonist, GPS). The GEM prodrug, with functional moi-
eties at the 4-(N) position, is covalently ligated to a bio-
degradable polymer through covalent linkage. αPD-L1 
was then conjugated to polymer GEM nanovesicles that 
further encapsulated diABZI. The coating αPD-L1 on the 
GPS surface enhanced the interaction between cancer 
cells and increased the accumulation of intratumor NPs. 
It is worth noting that GPS maintains a preferable dura-
tion of TNBC and pancreatic cancer inhibition, and a sig-
nificant reduction in metastatic challenges compared to 
joint treatment of these free drugs. In terms of its immu-
noenhancement properties, GPS treatment triggered DC 
maturation with elevated expression of CD80 and CD86, 
resulting in the highest secretion of IFN-γ and TNF‐α 
within the TME of TNBC. Furthermore, GPS also exhib-
ited a robust antigen-specific T-cell response, coincident 
with potent memorized immunity against tumor rechal-
lenges in the B16‐OVA melanoma model [125].

Immune checkpoints can also prompt cancer cells to 
readily evade phagocytosis of APCs. CD47 serves as a “do 
not eat me” signaling checkpoint, facilitating cancer cells 

to evade macrophage-mediated phagocytosis through its 
interaction with signal-regulatory protein alpha (SIRPα) 
[126]. A recent study has co-delivered a small interfer-
ing RNA targeting SIRPα (siSIRPα) and cGAMP in APCs 
by polymeric NPs. This study illustrates that the encap-
sulation of siSIRPα and cGAMP leads to a heightened 
expansion of CD8+ T cells infiltrating the tumor tissues. 
Consequently, this approach triggers comprehensive 
antitumor immune responses in melanoma mice [87]. 
These findings suggest that combining STING activation 
with inhibition of CD47-SIRPα signaling could synergis-
tically improve APC phagocytosis within TME. Zhou et 
al. engineered a polymer layer encapsulating anti-CD47 
antibodies (αCD47) and CDG by free radical polymer-
ization. The surface modifications designed to mimic 
natural nicotinic acetylcholine substantially improved the 
blood-brain barrier (BBB) penetration and the glioma-
targeting efficacy of CDG-αCD47-NPs. Compared to free 
αCD47, glioma growth was significantly inhibited by syn-
ergistically enhanced macrophages and microglial phago-
cytosis in the presence of CDG-αCD47-NPs. Moreover, 
CDG-αCD47-NPs re-educated TAMs and microglia 
to the M1 phenotype, thus increasing the infiltration of 
CD8+ cytotoxic T cells into glioma TME [127].

In another study, Peng et al. found highly expressed 
PD-L1 in tumor-associated myeloid cells (TAMCs) after 
IR pretreatment. TAMCs consist of TAMs and myeloid-
derived suppressor cells, conferring immunosuppression 
and resistance to antitumor therapy [128]. To achieve 
TAMC-targeted therapeutic intervention, they designed 
bridge lipid NPs (B-LNP) containing diABZI and dual 
linkages of αCD47 and αPD-L1. The αCD47 in B-LNP 
inhibited CD47 overexpression in glioma cells, whereas 
the αPD-L1 was used to block up-regulated PD-L1 in 
TAMCs. The diABZI-loaded B-LNP was characterized by 
evident expression of pro-inflammatory genes related to 
interferon in TAMCs. Furthermore, the metabolic phe-
notypes of TAMCs were reprogrammed, manifesting as 
higher levels of iNOS-derived metabolites and reduced 
levels of arginase-derived metabolites. The reshaped 
TAMCs further affected the landscape of adaptive antitu-
mor immunity in glioma TME and featured activation of 
CD8+ T cells along with increased levels of CXCL10 and 
CCL2. As a result, diABZI-loaded B-LNP favored RT-
triggered antitumor immune responses, with over 60% 
tumor elimination in mice carrying glioma [129].

Co-delivery of STING agonists and peptide antigens
DCs play a crucial role as coordinators in cancer ther-
apy by facilitating antigen uptake and initiating antigen-
specific T-cell priming responses [130]. Inspired by the 
endogenous mechanisms of the cGAS-STING pathway 
on DC activation, nanovaccines are formulated by co-
assembling STING agonists and peptide antigens. The 
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OVA-SIINFEKL peptides are common antigens that can 
be co-encapsulated with different STING agonists, such 
as CDG, 2’3’cGAMP, and DMXAA [131, 132]. Based on 
a pH-responsive modification of nanovaccines, cargos of 
STING agonists and OVA peptides escape the endosome 
and are released to the cytosol [69, 133]. Compared to 
free agonists or OVA peptides, nanovaccines with incor-
porated OVA and STING agonists were adequately accu-
mulated in LNs for DC uptake and STING activation, 
and then DCs matured with higher expression of MHC 
and co-stimulatory molecules [69, 132]. The complex of 
MHC-I-SIINFEKL on the surface of DCs also increased 
markedly, suggesting the increased antigen presentation 
efficiency of co-delivered nanovaccines [132]. Addition-
ally, co-delivered nanovaccines increase the generation 
of pro-inflammatory cytokines by DCs, such as IFN-β, 
TNF-α, CXCL-9, and CXCL-10, which promote the pro-
liferation and recruitment of antigen-specific CD8+ T 
cells in melanoma TME [89]. Gao et al. also reported a 
cGAMP/OVA nanovaccine targeting Clec9a+ DCs with 
increased expressions of CXCL-10, IL-21, and IL-6 and 
primed responses of CD8+ T cells [134]. These studies 
have also shown that nanovaccine-induced CD8+ T cells 
further inhibit tumor growth in melanoma-bearing mice 
[89, 134]. Additionally, in a 4T1 breast tumor model, a 
nanovaccine containing DMXAA and OVA peptides 
suppressed lung metastasis in combination with αPD-L1 
[132]. In another study by Su et al., cGAMP/OVA could 
generate durable antigen-specific T‐cell responses and 
inhibit rechallenged lymphoblastoma by producing CD8+ 
TEM cells and CD8+ TCM cells, especially abundant 
OVA‐specific CD8+ TEM cells [69]. These findings sug-
gest that the rational design of nanovaccines with STING 
agonists and peptide antigens is expected to emerge for 
cancer immunotherapy.

Co-delivery of STING agonists and TLR agonists
In addition to STING signaling, immune pathways such 
as Toll-like receptors (TLRs) and RIG-I‐like receptor 
ligands have been evaluated for their antitumor poten-
cies [135]. TLRs, a family of evolutionarily conserved 
pathogen recognition molecules, are crucial regulators of 
innate immune responses. Among toll members, surface-
located TLR4 can induce the activation of transcription 
factors NF-κB and IRFs to stimulate IFN-related inflam-
matory responses [136]. Considering the synergistic 
production of the IFN response through STING and 
TLR4 agonism, a lipid-bilayer NP was engineered for 
the co-delivery of CDG and a TLR4 agonist (monophos-
phoryl lipid A, MPLA). MPLA/CDG-NP lipid accumu-
lated preferentially in the APC-rich perivascular regions 
of pancreatic tumors, with high-efficiency uptake by 
DCs. Compared to the combinational treatment of free 
agonists, MPLA/CDG-NPs significantly increased the 

proportions of DCs and macrophages in TME, indicat-
ing the tendency to activation in innate immunity [137]. 
Furthermore, the dual-agonist nanosystem (MPLA/
CDG) combined with anti-PD-1 administration effec-
tively curbed tumor growth in melanoma-bearing mice. 
This approach bolstered the presence of CD8+ T cells and 
significantly increased the CD8+ T cell to Treg ratio at 
the tumor sites. Furthermore, the synergistic treatment 
effectively targeted exhausted CD8+ T cells, resulting in 
heightened development of immunological memory in 
melanoma [138].

TLR9 is another member of the Toll family that is dis-
tributed in the endosome and serves as the primary sen-
sor for the recognition and binding of CpG-DNA [139]. 
Cytosine-phosphate-guanine oligodeoxynucleotides 
(CpG ODNs) are TLR9 agonists that induce the produc-
tion of pro-inflammatory cytokines for cancer therapy 
[140]. Chen et al. designed a multifunctional nanoplat-
form, DMXAA-CpG ODNs-MOF, with co-delivery of 
CpG ODNs and DMXAA via coordination bonds on 
MOF-801. Compared to CpG-MOF or DMXAA-MOF 
treatments, DMXAA-CpG ODNs-MOF treatment 
significantly improved immunosuppressive TME by 
reprogramming TAMs, inducing DC maturation, and 
disrupting the tumor blood vascular system in hepatocel-
lular carcinoma [141]. Furthermore, extensive research 
has been conducted on utilizing multiple immune adju-
vants and antigen delivery strategies [88, 142, 143]. Levy 
et al. established a polymeric nanosystem that was co-
encapsulated with muti-immune adjuvants, including 
CpG ODN, 3′3-cGAMP, a RIG-I agonist (5′ppp-dsRNA), 
and a TRP-2 melanoma peptide. This multinano-struc-
tured platform containing immune agonist cocktails 
is highly internalized by DCs, and broadly enhances 
DC maturation in LNs and the spleen. This multinano 
platform facilitated the localization of TRP-2-specific 
T-cells in the TME of B16F10 lung metastasis, increas-
ing the production of IFN-γ by effector CD8+ T cells [88]. 
Another approach involved co-encapsulation of cGAMP, 
CpG, and TRP-2 (cGAMP-CpG-TRP-2) within nanopo-
rous (40–100  nm) microparticles, which could be more 
effectively distributed to the LNs than the smaller lipo-
somes. The administered cGAMP-CpG-TRP-2 particles 
improved the maturation and migration of CD8+ and 
CD103+ DCs to LNs, leading to rejection in metastatic 
lung B16 tumors [143].

Clinical trials
Current studies have revealed that STING agonists are 
novel candidates for antitumor immunotherapy in vari-
ous phases of clinical trials. Until now, approximately 
20 trials, including phase I and II, have been carried 
out to assess the clinical application of STING agonists 
[144]. For example, a phase I study evaluated the safety, 
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pharmacokinetics, and efficacy of synthetic CDN 
(MIW815) in patients with advanced/metastatic can-
cers, providing evidence of systemic immune activation 
(NCT02675439) [145]. The efficacy and safety of intra-
tumoral MIW815 combined with pembrolizumab are 
also being evaluated in adults with recurrent or meta-
static head and neck squamous cell carcinoma positive 
for PD-L1 (NCT03937141). However, loading the deliv-
ery system with STING agonists is still scarce in clini-
cal trials. A phase 1/2 open-label study (NCT04592484) 
is underway to investigate the dose increase, safety, and 
pharmacodynamic profile of exoSTING (CDK-002) in 
individuals with advanced/metastatic, recurrent, and 
injectable solid tumors. Furthermore, a microparticle 
with STING agonist delivery is being investigated in sub-
jects with autoimmune encephalomyelitis and multiple 
sclerosis (NCT05705986).

Perspective
Intralesional administration is a necessary route for free 
STING agonists, as the drug-like properties of CDNs are 
rapidly cleared from the circulation after intravenous 
administration [146]. Consequently, NP-based STING 
agonist carriers are designed to improve tumor accumu-
lation and enhance STING agonism for systemic admin-
istration. So far, nanosystems with encapsulated STING 
agonists have demonstrated several advantages over free 
forms, including improved pharmacokinetic behavior 
and reduced side effects. For example, nanoencapsulation 
of cGAMP in a polymersome increased the half-life of 
cGAMP 40 times compared to the free form [61]. Stud-
ies have shown that NPs encapsulating STING agonists 
induce negligible systemic toxicity in preclinical models. 
Systemic treatment with STING-NPs did not produce 
apparent changes in body weight, blood indices, liver 
function, or histological damage to normal organs [56, 
71, 93].

The synergistic approaches of STING agonists with 
ICIs, especially PD-1/PD-L1 blockade, could enhance the 
low immunogenicity of TME, thereby offering a promis-
ing combined strategy for cancer immunotherapy [147]. 
Nevertheless, systemic administration of free ICIs carries 
the risk of off-target problems, which can lead to severe 
adverse reactions [148]. To address this issue, co-encap-
sulated nanocapsules of STING agents and ICIs can 
release these agents at the tumor site, minimizing damage 
to normal tissues [125]. Similarly, other immune adju-
vants, such as peptide antigens and CpG ODNs, suffer 
from poor pharmacokinetics due to their small size and 
electrostatic charges. Therefore, co-delivery nanosystems 
are ideal for co-assembling CDNs and other immune 
adjuvants in immunomodulatory tissues and cells, where 
NPs can exert antitumor immunity [69]. All of the evi-
dence above suggests that STING-NPs hold promise for 

effective cancer immunotherapy with minimal nonspe-
cific immunotoxicity. However, more research is needed 
to determine the optimal dose of STING-NPs, investigate 
the extent of the systemic distribution, and monitor for 
potential toxicities.

In addition to nanoplatforms encapsulated with regu-
lar STING agonists, other nanoagonists can also induce 
STING activation through various approaches. One 
approach involves utilizing dsDNA to create nanopar-
ticles, capitalizing on the inherent sensing capabilities of 
the cGAS-STING pathway. In a 4T1 mouse model, treat-
ment with dsDNA-loaded nanoparticles induced IFN-β 
production and increased infiltration of effector T cells 
[149]. Furthermore, specific chemotherapeutic agents 
can indirectly activate STING-related pathways by caus-
ing DNA damage in cancer cells. For example, Cao et al. 
documented a nanoparticle co-assembled with the DNA-
targeted drugs cisplatin and camptothecin. Respond-
ing to ROS, cisplatin and camptothecin were released at 
the tumor site, triggering activation of the cGAS-STING 
pathway through double DNA damage. This led to the 
maturation of DC cells and the recruitment of CD8+ 
T cells in a mouse model of colorectal cancer [150]. 
Another telomere-targeting drug, 6-thio-2’-deoxyguano-
sine (6-thio-dG), can also induce DNA damage in tumor 
cells. Qin et al. developed a photodynamic nanodrug that 
simultaneously delivered chlorin e6 to induce immuno-
genic cell death, celecoxib to attract DCs, and 6-thio-dG 
for STING pathway activation. Each component of the 
nanoplatform played a unique role, resulting in a robust 
DC-initiated immune response against colorectal tumors 
[151].

Recent research has discovered that metal ions, par-
ticularly Mn2+, can enhance the sensitivity of cGAS 
to dsDNA and increase the binding affinity between 
cGAMP and STING [152]. Several studies have shown 
that Mn2+-based nanoparticles can activate immune 
responses and strengthen antitumor immunotherapy. 
For example, Zheng et al. developed a Prussian blue 
(PB)-mediated photothermal nanodrug formulation 
with MnOx and Mn2+-doped PB (MnPB-MnOx). The 
enriched Mn2+ promoted cytokine secretion through 
cGAS-STING activation, leading to DC maturation and 
transport to TDLNs for adaptive immune responses in 
a 4T1 mouse model. MnPB-MnOx also facilitated the 
release of TAs from tumor cells through the generation 
of ROS catalyzed with MnOx under NIR radiation, fur-
ther promoting antigen-specific immune responses [153]. 
In another example, nanoparticles containing MnO2 and 
αPDL1 encapsulation improved DC maturation and cyto-
toxic CD8+ T cell infiltration by amplifying the STING 
signal, resulting in profound antitumor effects against 
metastasis in CT26 tumor models [154]. Additionally, 
Xu et al. presented a nanoplatform co-loading CDA and 
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Mn2+, which exhibited versatile capabilities in address-
ing both cancer and SARS-CoV-2 infections through the 
restoration of immune responses [155].

The primary objective of exploring and developing 
nanodrugs for cancer is to translate them into clinical 
applications. However, the path of STING-NPs toward 
clinical translation still faces several hurdles at vari-
ous stages. Firstly, the potential toxicity and side effects 
might be raised from the nanocarriers of STING-NPs, 
such as cationic materials or metal-based architectures. 
The interactions between these nanocarriers and physi-
ological tissues may cause unwanted outcomes, such 
as formation of thrombi, cytotoxicity, and genotoxicity 
[95, 156, 157]. Secondly, NPs stability can be affected by 
biomolecules and components suspended in circula-
tion. Upon contacting with these compositions in blood, 
NPs could be recognized by innate immune system to 
accelerate their clearance [158]. While modifications on 
STING-NPs are employed to extend their circulation and 
improve delivery, there is a challenge in balancing the 
stable loading, targeted location and biological responses 
[159]. Thirdly, although some STING-NPs have dem-
onstrated favorable stability, distribution and efficacy in 
animal models, some of them may fail to produce attrac-
tive effects in human bodies [160]. The gaps between 
animal and human studies are nonnegligible, leading to 
distinct behavior and functionality of nanomedicines. 
Thus, further directions should be attached importance 
to understand and overcome these obstacles in cancer 
management. To achieve safe and reliable nanoplatforms, 
the optimal of size, dosage and surface charges of NPs 
are crucial for future researches. Moreover, it is notable 
to streamline the NP formulation complexity and ensure 
reproducibility, so that NPs can be easily characterizable 
for evaluation in clinical trials. A comprehensive explo-
ration of the pharmacokinetics, retention, and efficacy 
of the formulated STING-NPs is also essential for their 
eventual clinical translation. Overall, it is foreseeable 
that through meticulous design and safety assessment, 
STING-NPs hold potential as a promising strategy in 
cancer immunotherapy.
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