
Jin et al. Biomarker Research          (2023) 11:102  
https://doi.org/10.1186/s40364-023-00539-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Biomarker Research

Improving the prediction of Spreading 
Through Air Spaces (STAS) in primary lung 
cancer with a dynamic dual-delta hybrid 
machine learning model: a multicenter cohort 
study
Weiqiu Jin1, Leilei Shen2,3,4, Yu Tian1, Hongda Zhu1, Ningyuan Zou1, Mengwei Zhang5, Qian Chen6, 
Changzi Dong7, Qisheng Yang8, Long Jiang1, Jia Huang1*, Zheng Yuan9*, Xiaodan Ye2,3,4,10* and Qingquan Luo1* 

Abstract 

Background Reliable pre-surgical prediction of spreading through air spaces (STAS) in primary lung cancer is essen-
tial for precision treatment and surgical decision-making. We aimed to develop and validate a dual-delta deep-
learning and radiomics model based on pretreatment computed tomography (CT) image series to predict the STAS 
in patients with lung cancer.

Method Six hundred seventy-four patients with pre-surgery CT follow-up scans (with a minimum interval of two 
weeks) and primary lung cancer diagnosed by surgery were retrospectively recruited from three Chinese hospi-
tals. The training cohort and internal validation cohort, comprising 509 and 76 patients respectively, were selected 
from Shanghai Chest Hospital; the external validation cohorts comprised 36 and 53 patients from two other centers, 
respectively. Four imaging signatures (classic radiomics features and deep learning [DL] features, delta-radiomics 
and delta-DL features) reflecting the STAS status were constructed from the pretreatment CT images by comprehen-
sive methods including handcrafting, 3D views extraction, image registration and subtraction. A stepwise optimized 
three-step procedure, including feature extraction (by DL and time-base radiomics slope), feature selection (by repro-
ducibility check and 45 selection algorithms), and classification (32 classifiers considered), was applied for signature 
building and methodology optimization. The interpretability of the proposed model was further assessed with Grad-
CAM for DL-features and feature ranking for radiomics features.

Results The dual-delta model showed satisfactory discrimination between STAS and non-STAS and yielded the areas 
under the receiver operating curve (AUCs) of 0.94 (95% CI, 0.92–0.96), 0.84 (95% CI, 0.82–0.86), and 0.84 (95% CI, 
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0.83–0.85) in the internal and two external validation cohorts, respectively, with interpretable core feature sets 
and feature maps.

Conclusion The coupling of delta-DL model with delta-radiomics features enriches information such as anisotropy 
of tumor growth and heterogeneous changes within the tumor during the radiological follow-up, which could pro-
vide valuable information for STAS prediction in primary lung cancer.

Keywords Deep learning, Radiomics, Spreading through air spaces (STAS), Lung cancer

Background
Lung cancer is currently the second most commonly 
diagnosed malignancy with the highest mortality rate 
according to the GLOBOCAN study [1]. Due to its his-
tological peculiarities, lung cancer has its own unique 
mode of invasion. In addition to the classic direct infiltra-
tion, lymphatic metastasis and hematogenous metastasis, 
another mode of invasion has been identified in recent 
years: spread through air space (STAS). This concept was 
first introduced by Kadota et  al. in 2015 [2], defining it 
as the spread of tumor cells (as micropapillary structures, 
solid nests or single cells) in the airspace beyond the mar-
gins of the primary tumor. This definition was officially 
established by the World Health Organization (WHO) in 
the same year. Recent studies have shown that the pres-
ence of STAS often indicates more aggressive tumor biol-
ogy, higher risk of recurrence and lymph node metastasis, 
and lower survival rates [3]. Furthermore, numerous clin-
ical studies have confirmed that STAS is a high-risk factor 
for recurrence in sub-lobar resection and that lobectomy 
demonstrates a lower recurrence rate and overall sur-
vival in STAS-positive patients compared to sub-lobar 
resection [4, 5]. Therefore, the assessment of STAS in 
lung cancer can significantly influence clinical decisions 
such as the choice of surgical procedure, the extent of 
lymph node dissection, and the need for post-operative 
chemotherapy. Currently, the assessment of STAS relies 
on histological analysis after biopsy. However, due to the 
diversity of STAS pathology, the inconsistent criteria and 
the interference of intraoperative treatment with dis-
crete artefacts [6], the sensitivity of STAS detection by 
Intraoperative frozen sections is currently low (55%) [7], 
which cannot provide reliable guidance for clinical situa-
tions, especially the surgical decision making. Therefore, 
new strategies for reliable preoperative STAS detection 
need to be developed.

Several studies have shown that STAS leads to 
changes in the CT presentation of lung cancer [8, 9], 
which correlates with the presence of notch, vascular 
convergence, pleural indentation, central low attenu-
ation, ill-defined opacity, air bronchogram, and per-
centage of solid components, suggesting the potential 
value of lung radiology to predict STAS. However, 
there are many limitations to conventional radiological 

diagnostic indexes and signs, such as differences in 
technical parameters such as layer thickness of CT and 
subjective errors in reader judgement due to inconsist-
ent and uncertain imaging criteria for STAS. With the 
development of radiomics, computer extraction of his-
tological features from CT images can quantify image 
information in high throughput, reduce the interfer-
ence of subjective judgement and improve prediction 
performance. Several studies have shown that radi-
omics can quantify tumor characteristics and predict 
STAS in lung cancer. Jiang et  al. first applied a CT-
based radiomics random forest (RF) model to predict 
STAS in lung adenocarcinoma and achieved an AUC of 
0.754 (sensitivity of 0.880 and specificity of 0.588) [10]. 
The CT radiomics with plain Bayesian model devel-
oped by Chen et al. also showed good performance in 
predicting STAS in stage I lung adenocarcinoma pre-
operatively (externally validated AUC = 0.69) [11]. Tao 
et  al. evaluated the efficacy of conventional radiom-
ics models, Computer Vision (CV) models, 3D-CNN 
models and combination models in predicting STAS 
status in non-small cell lung cancer (NSCLC) and 
identified 3D-CNN as the best prediction model [12]. 
Liao et al. and Takehana et al. incorporated peri-tumor 
information into the radiomics feature extraction pro-
cess and identified the peri-tumor range with the best 
predictive effect [13, 14]. All of these studies suggest 
that the radiomics is a potential pipeline for non-inva-
sive clinical biomarker discovery for STAS (a summary 
provided in Additional file 1: Appendix A).

Existing studies predicted STAS with CT scan at a 
single timepoint. However, in today’s clinical prac-
tice, follow-up has become one of the most important 
and frequent clinical activities in pulmonary oncol-
ogy. Physicians usually need to combine the follow-up 
imaging and psychological expectations of patients to 
design personalized examination or treatment plans 
for them. Therefore, how to correctly interpret and 
fully exploit the content of imaging information has 
become a key issue in the era of artificial intelligence 
and precision medicine. Classic radiomics or DL usu-
ally gives assessment or reference based on medical 
images at a certain timepoint, which does not seem 
to provide an adequate quantitative description of 



Page 3 of 17Jin et al. Biomarker Research          (2023) 11:102  

dynamic follow-up observations in the clinic. As an 
emerging radiomics method focusing on the dynamic 
tracking of characteristic changes in lesion sites over 
time, delta-radiomics, a system of metrics for mak-
ing differences between two radiomics indexes, has 
been showing powerful prediction efficacy in differen-
tial diagnosis, prognosis analysis, treatment response 
prediction, and side effect assessment [15]. Moreo-
ver, some studies have demonstrated its increasingly 
important role in predicting pathological features such 
as malignancy and aggressiveness of pulmonary nod-
ules [16, 17]. For example, Alahmari et  al. evaluated 
the use of machine learning to combine delta-radiom-
ics with conventional (non-delta) radiomics features in 
predicting lung nodal malignancies and found a signif-
icant performance improvement [16]. Ma et al. showed 
that delta-radiomics outperformed conventional radi-
omics in distinguishing between pre-infiltrative and 
invasive ground-glass nodules (GGNs) [17]. Due to 
the aggressive biology of STAS-positive tumor such as 
a higher proportion of micropapillary or solid growth 
characteristics with their unique aggressiveness [18], 
the use of delta-radiomics to dynamically monitor 
and describe the tumor growth and development may 
be more beneficial for the discriminative diagnosis of 
STAS. However, the traditional delta-radiomics model 
could be limited by the strict restriction on the follow-
up time interval in most of the previous studies. Addi-
tionally, this metric system is based on the quantitative 
description of the image, which is less intuitive than 
visual models such as CNN-based DL.

In this way, we developed a delta-radiomics machine 
learning model combined with DL networks extract-
ing features from the post-registration subtracted 
images to predict STAS in primary lung cancer (Fig. 1). 
This work explored the feasibility of feature merg-
ing with radiomics and deep-learning. More specifi-
cally, the value of combining the features extracted 
by deep network (CNNs) from the subtracted images 
after registration and the delta-radiomics was system-
atically studied. We defined this approach as a dual-
delta model since both the delta-radiomics based on 
the slope of classic radiomics indexes within a time 
interval and the registration-based CNN deep-fea-
tures describing the difference of lung tumor between 
the baseline and follow-up scans are ways to detect 
and quantify the growth and change of lung nodules, 
namely the “delta” attributions of tumors. Our results 
demonstrated that this model is not only suitable for 
various follow-up intervals, but also more interpret-
able and intuitive than the classic DL model, which is 
one of the most powerful models for STAS prediction 
at present.

Methods
Patients
This study was approved by the ethical number KS1832 
from the Shanghai Chest Hospital, and all patient imag-
ing, pathological, and clinical information was processed 
under anonymized conditions to fully ensure patient 
privacy. Under the approval of multicenter study ethics 
number IS2126, patient information from Zhongshan 
Hospital (ethical number: B2023-039) and the Ninth Peo-
ple’s Hospital (ethical number: SH9H-2023-T158-1) was 
also extracted for further cross-center analysis under 
the same anonymization processes. Considering the 
retrospective nature of this study, the ethics commit-
tee waived written informed consent from patients at all 
three centers. A retrospective analysis of 2,812 patients 
with primary lung cancer diagnosed by surgery and pre-
operative CT follow-up scans (with minimum interval of 
over 2 weeks required) from January 2017 to December 
2020 at Shanghai Lung Cancer Center in Shanghai Chest 
Hospital was performed (Fig. 2A). Of these, 2227 patients 
were excluded due to the interval between two scans 
greater than 12  months (n = 490) or less than 21  days 
(n = 599), poor parameter matching of two CT scans 
(n = 383), previous neoadjuvant drug therapy (n = 97), 
no plain CT imaging (n = 34), previous tumor history 
(n = 23), preoperative biopsy (n = 19), history of ipsilat-
eral lung surgery (n = 356), interval between surgery and 
the last CT scan greater than 3 months (n = 25), incom-
plete clinical data (n = 7), and other reasons (n = 194, 
detailed in figure caption). A total of 585 patients (143 
STAS-positive and 442 STAS-negative) were included in 
the final CHEST Cohort and 175 patients from June 2020 
to December 2020 were removed from training set for in-
center validation (IVC). Underlying clinical information, 
including age, gender, stages, type of surgery, pathologi-
cal subtypes of adenocarcinoma, immunohistochemistry, 
and molecular pathology were obtained from medical 
records (Fig.  2B). Data from Zhongshan Hospital and 
Shanghai Ninth People’s Hospital were collected across 
centers in this study, and 36 (ZS Cohort in Zhongshan 
Hospital, with 12 STAS-positive patients) and 53 patients 
(Ninth Cohort in Ninth People’s Hospital, with 12 STAS 
positive patients) were included, respectively. The enroll-
ment of patients and post-processing methods of the 
scans were in consistency with the approaches described 
above for CHEST Cohort. For concrete enrollment and 
baseline information of the external cohorts, please refer 
to the Additional file  1: Appendix B. The original data-
set did not have a balanced number ratio on STAS ( +) 
and STAS (-) and differed in some of the baseline infor-
mation. We performed propensity score matching (PSM) 
on the original dataset based on six shape or first-order 
features to obtain a balanced dataset of 120 patients 
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Fig. 1 The framework of this study. This work mainly contained three steps: feature extraction by delta-radiomics and deep learning 
from the delta-images of lung tumors acquired by image registration, feature merging and selection where ICC values were applied to select 
the features with reliability and 45 methods were applied to optimize the feature set, optimized classification where 32 AI methods were tested. 
Model performances were evaluated by ROAUC and confusion matrix where two external cohort (ZS Cohort and Ninth Cohort) were used 
for cross-center validation
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each with and without STAS, which was likewise fur-
ther divided into training and validation sets to examine 
the power of high-dimensional features on differential 

diagnosis and the performance of the model on a bal-
anced dataset. The sample size evaluation was given in 
Additional file 1: Appendix O.

Fig. 2 The building of CHEST cohort and its baseline information. A The enrollment eligibility for CHEST cohort and the data allocation 
in the experimental and validation setups. B The baseline information of the studied cohort (Gender, age, smoking history, AJCC stages, invasion 
status, molecular and paraffin pathology with LUAD subtypes, and the CT signs in baseline scan). Abbreviations: lepidic, L; acinar, A; papillary, P; 
micropapillary, MP; solid, S; complex glandular pattern, C; Not applicable, N.A.; American Joint Committee on Cancer, AJCC
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Histopathological analysis
Two pathologists with years of experience in thoracic 
pathology blinded to clinical findings reviewed forma-
lin-fixed paraffin-embedded sections from all included 
patients using microscopy independently. According 
to the WHO, STAS was defined as micropapillary clus-
ters, solid nests, or single cells beyond the edge of the 
tumor extending into the air spaces in the surrounding 
lung parenchyma, which consisted of three main forms: 
(1) airspaces filled by micropapillary structure without 
central fibrovascular cores; (2) airspaces filled by solid 
tumor components; (3) airspaces filled by multiple dis-
crete and discontinuous single cells. When there was 
disagreement, the final diagnosis was decided by dis-
cussion between the two pathologists.

CT radiomics feature extraction
Two radiologists with 2  years’ and 16  years’ experi-
ence in chest radiology viewed the CT images to deter-
mine the C/T ratio and the CT signs. The scanned 
images were compressed and packaged in anonymized 
DICOM format and then the tumors were segmented 
on each layer using 3D Slicer 5.0.3. A senior radiolo-
gist with 16  years of working experience (Participant 
A), a thoracic surgeon of mid-level seniority with 
12 years of working experiences (Participant B), a radi-
ologist underdoing residency training (Participant C), 
and a thoracic surgeon undergoing residency train-
ing (Participant D) were invited to manually delineate 
the boundaries of the nodule on the CT image layer by 
layer using 3D slicer, and the 3D tumor volume could 
be automatically reconstructed according to their 
delineation. The radiomics features were extracted by 
PyRadiomics v3.0 open-source software program. A 
total of 851 features were extracted, including 14 shape 
features, 18 first-order statistical features, 24  Gy level 
co-occurrence matrix (GLCM) features, 14  Gy level 
dependence matrix (GLDM) features, 16  Gy level run 
length matrix (GLRLM) features, 16 Gy level size zone 
matrix (GLSZM) features, 5 neighboring gray tone dif-
ference matrix (NGTDM) features and 744 wavelet fil-
tered features as described above. 744 wavelet filtered 
features were also extracted (using 8 sets of filters: LLL, 
LLH, LHL, HLL, LHH, HLH, HHL, HHH). The con-
crete content of radiomics features is introduced in 
Additional file 1: Appendix C. Large blood vessels and 
bronchi were excluded from the volume of the nod-
ules as much as possible. The area within 3 mm of the 
tumor region was defined as the peritumor region, and 
similar feature extraction was performed for the peri-
tumor region. The features extracted were normalized 
with min–max normalization method. For the scan 

parameters and settings of three centers, please refer to 
Additional file 1: Appendix B2.

Acquisition of the 3D view for registration
The above four participants were provided with 
anonymized DICOM files. They were asked to select 
the largest cross-section of the studied tumors in the 
x-direction (i.e. the left–right direction of the body), 
the y-direction (i.e. the anterior–posterior direction of 
the body), and in the z-direction (corresponding to the 
superior-inferior direction of the body), and to acquire 
the smallest square image including their boundaries for 
further registration (see Additional file 1: Appendix D-F 
for the concrete procedures for deep learning-based fea-
ture extraction, the consistency of lesion segmentation, 
and the relative working arrangement). In the pre-exper-
iment, we found that for some tumors that grow too fast 
in size or have strong anisotropy in growth, the registra-
tion may be unsuccessful. Therefore, four participants 
were simultaneously asked to delineate the morphology 
of the spine section at the same section with the lung 
tumor and frame the tumor with a minimum square if 
they found that the isotropy or degree of tumor growth 
was too obvious for registration methods to detect the 
feature points. In the subsequent registration procedure, 
these registrations will be performed according to the 
morphology of the spine, and the transformations will be 
obtained and then applied to the lung nodule images.

Calculation of the delta‑radiomics features
The definition of the delta-radiomics feature used in this 
work was based on the slope of time:

where Ifollowup − Ibaseline denotes the difference between 
the radiomics metrics for the baseline and the follow-up 
tumor volumes, and tfollowup − tbaseline is the time differ-
ence between the follow-up time and the baseline time. 
The metrics of delta-radiomics are essentially the slopes 
of the individual baseline metrics.

Extraction of the deep‑network‑based features
A combination of graph cut and ROI manual delinea-
tion was applied to complete the initial establishment 
of ROI regions, followed by SNAKES (active contour 
algorithm) to refine the regions, and four morphological 
operations (erode, dilate, open, and close) to eliminate or 
fill specific areas (detailed in Additional file 1: Appendix 
D). A mask matrix could be obtained by the ROI mask-
ing, and it would be multiplied by the elements of the 
original image to obtain a masked ROI for subsequent 

Indexdelta =
Ifollowup − Ibaseline

tfollowup − tbaseline
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registration. Various classic registration algorithms were 
used to detect features (detailed in Additional file  1: 
Appendix D). The transform matrix was then extracted 
by registration and applied to the baseline CT images to 
eliminate the adverse effect of body position, pose, etc. 
on further image subtraction, and then the transformed 
image was subtracted by matrix elements with the images 
from follow-up CT to obtain the delta-image, which 
was further fed into the deep CNN to extract the deep-
learning feature set. We chose the AlexNet with balanced 
performance as the original CNN model, and modified 
it to extract features in the fully connected layer, where 
the neuron number (i.e., the number of delta-DL fea-
tures) was 10 for each view (detailed in Additional file 1: 
Appendix G). The masking, registration, and CNN train-
ing were performed with MATLAB R2021b (Mathworks 
Inc.). An overall procedure of the feature extraction pro-
cess and the characteristics of these two different kinds of 
features were given in Fig. 3.

Feature selection and classifier
As described above, a total of 3404 radiomics and delta-
radiomics features were extracted via intra-tumoral and 
peri-tumoral 3  mm volume of interest (VOI) delinea-
tions. Considering the reproducibility of the study, we 
chose intra/inter-class correlation coefficient (ICC) val-
ues as a criterion to measure whether these features could 
be consistently extracted by the same observer according 
to intra-group ICC values, and evaluated the consistency 
of these features across observers by inter-group ICC 
values. We select features with ICC values greater than 
0.75 to enter the feature selection process. A total of 45 
feature selection algorithms were taken into account to 
select the features (detailed in Additional file  1: Appen-
dix H). These 45 algorithms and 32 classifiers (introduced 
in Additional file 1: Appendix I) formed 1,440 combina-
tions. We selected the best combination with the highest 
average AUC as the final optimized model by trial-and-
error method.

Model evaluation
The ROC (Receiver Operating Characteristic)-AUC val-
ues were calculated for the evaluation of the model per-
formances, and the Grad-CAM (Class Activation Map) 
were applied to visualize the attention of the deep-learn-
ing model (detailed in Additional file 1: Appendix J).

Statistical analysis
Normally distributed variable (Age) was recorded as 
mean ± standard deviation (SD) or median [quartiles]. 
Categorical variables (variables except the age) were 
recorded as frequencies (proportions). The differences in 
the baseline characteristics between STAS ( +) and STAS 

(-) patients were compared using the independent t-test 
for continuous variable (Age), and Fisher’s exact test or 
Chi-square test (with or without Yeats correction) for 
categorical variables (variables except the age), as appro-
priate. A two-sided p < 0.05 was considered statistically 
significant. Statistical analyses were performed with 
IBM SPSS Statistics 23 (IBM, Armonk, NY, USA) and R 
software (version 4.0.1, the R Foundation for Statistical 
Computing, Vienna, Austria). The means and confidence 
intervals (CI) of model performance metrices (e.g. AUC, 
accuracy, etc.) were given after 40 independent replica-
tions of the experiments (results given in Additional 
file 1: Appendix K).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writ-
ing of the report. All authors confirm that they had full 
access to all the analyzed data in the study and accept the 
responsibility to submit for publication.

Results
Baseline information
The clinical information (Fig. 2B) of the patients included 
in this study was largely similar to the current studies in 
this field. Both age and gender distribution of patients 
were similar to previous studies [11, 13]. The percent-
age of female patients was 61.4% compared to 55.8% [11] 
and 52.3% [14] in the existing studies. The interquartile 
distribution of the age of patients was 60 [56,69] years 
compared to 60 [35,82] years in the study by Chen et al. 
[11], while the median age of STAS negative and posi-
tive patients included in Liao et al. was 62 [53,79] and 62 
[53,87], respectively [14]. The percentage of patients in 
this study who were STAS positive was 24.4%, which is 
essentially similar to the previous researches (29.6% [11] 
and 33.2% [14]). The most predominant LUAD patholog-
ical subtypes in our study were the alveolar, papillary and 
lepidic types with proportions of 42.0%, 18.4% and 15.5%, 
respectively, which were similar in the study of Chen 
et al. with the predominant pathological subtypes being 
the alveolar (38.2%), lepidic (36.1%) and papillary (14.2%) 
types [11]. In terms of tumor staging, the percentage of 
patients with  T1,  T2, and  T3 staging in this study was 
86.7%, 7.5%, and 2.5%, respectively, compared to 75.5% 
and 24.5% of patients with  T1 and  T2 staging in the study 
by Chen et al. These differences may be related to the fact 
that only patients with two follow-up CTs were included 
in this study, whereas patients with multiple follow-ups 
were generally staged earlier and progressed more slowly. 
A significant improvement in the baseline information 
balance after PSM was achieved, as we have discussed in 
detail in Additional file 1: Appendix L.
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Registration results
Figure  4A shows the performances of various regis-
tration methods. The multimodal registration meth-
ods yielded the highest SSIM values with the value of 

0.9587 (Engineer α) and 0.9580 (Engineer β). Figure 4B 
demonstrates the some SSIM scores and examples of 
the three different types of registration methods.

Fig. 3 The feature extraction processes in this study and the characteristics of the extracted features. A The extraction of dual-delta hybrid features. 
B The characteristics (pros and cons) of deep-learning-extracted features and radiomics features compared from three aspects: interpretability 
and repeatability, stability, vulnerability and data-demand
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Diagnostic capabilities of models in the real world
As mentioned previously, the data were allocated in two 
different ways, corresponding to the real-world situa-
tion (without PSM) and to the situation when the shape 
and first-order features of tumors are essentially similar 
(with PSM where these features were selected for match-
ing). The power of the model for differential diagnosis 

in the real world was first assessed (Fig. 5). Figure 5A is 
the training curve of AlexNet for extracting Delta deep-
learning (delta-DL) features, which showed that the 
model was able to converge. Figure  5B shows the con-
fusion matrix that was closest to the average categorical 
performance at a particular time in the repeated trials, 
and the accuracy of the model can be calculated as 87.0%, 

Fig. 4 Registration results. A SSIM scores of various registration methods. B SSIM scores and examples for three different types of registration 
methods (shown in Green-Magenta pattern)
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sensitivity as 70.6%, and specificity as 92.3%. Figure  5C 
provides the t-SNE unsupervised clustering results for 
features extracted before feeding into the final classifier. 
It can be seen that, starting from classic DL or radiom-
ics, the clustering results of the model for STAS( +) and 

STAS(-) get closer to the complete separation state with 
the introduction of delta information, which makes the 
two point sets more separable. This observation was in 
line with the five-fold cross validation (Fig.  5D) and in-
center out-of-sample validation results (Fig.  5E) where 

Fig. 5 Results of five-fold cross-validation and in-center validation in real world. A Training curve of AlexNet model extracting the delta-DL features 
(ICV accuracy vs. ICV loss during the training process). B A representative confusion matrix of a near-average classification result by dual-delta 
machine learning model. C T-SNE unsupervised clustering of features. D Five-fold cross-validation ROC curves and their AUC values. E In-center 
validation ROC curves and their AUC values. F AUC values and the feature numbers for the combinations of feature selection algorithms and their 
optimal classification models, where the LASSO cross-validation plot and LASSO trajectory plots of variables (green vertical lines represent 
the number of features corresponding to  MSEmin), and the ranked feature weights by ReliefF (pie charts show the compositions of essential feature 
sets selected by LASSO and ReliefF) are given
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the AUC values (AUC 5-fold = 0.92, AUC out-of-sample = 0.94) 
of the proposed dual-delta model outperformed the 
component models. Our results suggest that the combi-
nation of LASSO regression + linear SVM model is rela-
tively optimal and can accomplish the classification task 
with an AUC value of 0.92 (Fig. 5F). The cross-validation 
curves and coefficient trajectory curves of the LASSO 
regression are further given, and it can be seen that the 
LASSO regression extracts a total of 56 significant fea-
tures corresponding to the  MSEmin, and among them 22 
features (39.3%) were from the delta-radiomics and 5 fea-
tures (8.9%) were from delta-DL. We also extracted the 
features filtered by ICC and selected the top n features by 
weight ranking with ReliefF to enter into the classifica-
tion model for analysis. Our result showed that the top 
800 features (42% delta-radiomics features, 4% delta-DL 
features) corresponded to the optimal classification per-
formance (selected by AUC), but the AUC value only 
reached 0.87.

Differential diagnostic ability of the model in similar 
nodules
The differential diagnostic power of proposed model was 
further examined with the post-PSM data, which were 
balanced in most baseline indexes since the two groups 
in the new dataset were matched according to six essen-
tial shape and histogram features. In Additional file  1: 
Appendix L, Supplementary Figure L2 shows the feature 
selection and classifier optimization results, which sug-
gests that the combination of LASSO regression + linear 
SVM model was optimal, with an AUC value of 0.91, 
outperforming each component model in both 10-fold 
cross validation (Supplementary Figure L2-A) and in-
center out-of-sample validation (Supplementary Figure 
L2-B). A total of 58 features were included in the final 
optimized model, where the delta-DL features (5/58) 
and delta-radiomics features (21 intratumor features and 
2 peritumor features) occupied a significant proportion 
(Supplementary Figure L2-C).

Model performance in different follow‑up time scenarios 
and the cross‑center applicability
We further collected CT scans from 131 patients who 
were excluded in forementioned enrollment procedure 
due to their in-center follow-up intervals of more than a 
year but less than two years. Subsequently, these newly-
enrolled 131 patients and 585 patients in the previous 
CHEST Cohort were combined together and classified 
into three groups according to the length of follow-up 
interval. Patients in group A, B, and C had a follow-up 
interval between three weeks and three months (n = 329), 
between three months and a year (n = 256), and between 
one and two years (n = 131), respectively (Fig.  6A). A 

five-fold cross-validation was used to obtain AUC values 
to determine the ability of the different models to predict 
the tumor STAS status of patients in groups A, B, and C 
(Fig. 6B).

The dual-delta model still had the most satisfactory 
classification performance in each subgroup. The clas-
sic radiomics model and the classic DL model had per-
formed consistently in each subgroup. The absence of 
time concept in the classic models made them insensi-
tive to different follow-up intervals since they only used 
the information extracted from the last CT for the model 
training. However, for the models incorporating delta 
information, differences in AUC values among three 
follow-up time groups were observed. For the delta-radi-
omics model, the classification accuracy of group B was 
significantly higher than those of the other subgroups, 
which could be interpreted by the insignificant (com-
pared to possible noises and other irrelevant inferences) 
difference in radiomics extracted from the tumor due to 
the limited time intervals. Therefore, the effective sig-
nal-to-noise ratio for precise classification was not large 
enough. However, the growth of the lung tumor could 
also show stagnation, slowdown, and other complicated 
behaviors in a long period, which made the changes in 
radiomics features in the long time-intervals appeared 
insignificant when calculating the time-based slope val-
ues. In contrast, the delta-DL model has the best predic-
tion for group C with long follow-up intervals. After the 
image registration and subtraction, the scan pairs with 
long interval have the most abundant graphical informa-
tion since their corresponding growth areas of the tumor 
were generally bigger than those with shorter follow-
up intervals, and information in these remaining areas 
may provide more “learning materials” to the DL model 
for its response and activation. Two different models 
describe the tumor growth process from different per-
spectives, where the radiomics is a quantitative computer 
vision metric description, and the deep-learning method 
describes the images with a graphical-based feature map. 
Their combination makes the models stable to different 
follow-up time intervals and robust to possible interfer-
ence information and radiological noises (Fig. 6C).

For cross-center validation results (Fig.  6D), the AUC 
value for the ZS Cohort was 0.844, with an accuracy of 
80.6%, a sensitivity of 75.0%, and a specificity of 83.3%; 
the AUC value for the Ninth Cohort was 0.840, with an 
accuracy of 81.1%, a sensitivity of 94.1%, and a specificity 
of 75.0%.

Analysis of model attention and interpretability
Figure  7A shows the Grad-CAM visualization results 
of the classic DL model and the delta-DL model, and 
five example graphics are randomly selected among the 
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correct classification results in Additional file 1: Appen-
dix M. For the classic DL model, the attention of CNN 
model was more scattered. Although most of the atten-
tion was focused on the tumor and peri-tumor region, 
there was a scattering of attention to the background, 
while for the delta-DL model, the CNN attention was 
obviously more focused than the former, and the areas 

that make important contributions to the classification 
were concentrated in the region reflecting the tumor 
growth, which suggests that the delta-DL model essen-
tially helped the deep network to “learn absorbedly” by 
focusing its attention on regions that contribute more 
to the facts, which improved the intuitiveness and 
humaneness of the learning.

Fig. 6 Effect of different follow-up intervals on model performance and the cross-center performance of the model. A Frequency distribution 
of different follow-up time groups. B Performances of different follow-up time groups by different models. C A schematic diagram showing possible 
relationships between the feature effectiveness and follow-up time interval in different models. D External validation results showing the ROC 
curves and confusion matrices of Zhongshan cohort and Ninth Hospital cohort
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To further investigate the role of radiomics and DL 
features in the classification task, we extracted radiom-
ics and deep-learning features from VOIs and 3D tumor 
views delineated by participant A who had the most 
experience in medical image processing and chest radiol-
ogy among four participants. These features correspond-
ing to all 585 patients in CHEST cohort were used for 

model training without ICC-based feature screening. The 
results of feature selection by the LASSO (alpha = 0.5) 
and feature ranking by ReliefF algorithm (K = 10) were 
considered, and the contents and coding of the features 
were given in Fig.  7B. The results of LASSO regression 
showed a total of 38 features correspond to the minimum 
mean squared error  (MSEmin). According to the feature 

Fig. 7 The model interpretability. A A representative example of GRAD-CAM visualization result for CNN classification, where the attention 
distributions of classic DL model and delta-DL model were shown in annotated images. B The essential feature set selected by LASSO and ReliefF 
and their compositions
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weights given by ReliefF, the classic radiomics informa-
tion was relatively robust in classification with only few 
features with negative weights. However, compared to 
the delta-radiomics features, the classic radiomics fea-
tures had less contribution to the significant positive 
feature set. The delta-radiomics features and delta-DL 
features had larger absolute values of weights than those 
of classic radiomics, suggesting that they may include 
information that contribute significantly to the classifi-
cation results (more detailed supporting information in 
Additional file 1: Supplementary Figure N1 in Appendix 
N). Meanwhile, it also demonstrated that the subsequent 
feature selection procedures not only reduced the model 
dimensionality and improved the efficiency of training 
and computing, but also had great significance for ensur-
ing the classification accuracy of the model. Among the 
38 features in the essential set selected by LASSO, most 
of them (37/38, 97.4%) were with intra-group and inter-
group ICC values over 0.75, testifying a satisfactory reli-
ability and repeatability of the core feature set. A more 
detailed analysis of model interpretability could be found 
in Additional file 1: Appendix N.

Discussion
STAS is an independent prognostic factor for poor 
recurrence-free survival and overall survival, which can 
greatly influence surgical decisions [3–5]. However, there 
is no reliable preoperative method to predict STAS [6, 
7]. Radiomics pipeline converts radiological scans into 
quantifiable information, facilitating the model building 
and interpretation. Several previous studies have shown 
that radiomics is a promising method in predicting STAS 
status in lung cancer patients, and several studies have 
obtained good predictive performance (AUC 0.66–0.90; 
accuracy 68%-93%; sensitivity 74%-88%) [10–14, 19–22]. 
Our dual-delta model with pure radiological informa-
tion couples the DL model based on images generated by 
the subtraction between the follow-up scan images and 
post-registration baseline images with the delta-radi-
omics model. To the best of our knowledge, it is the first 
study using CT-based delta-radiomics combined with 
deep-learning to predict STAS status in primary lung 
cancer. The main findings demonstrate that the model 
has good efficacy in predicting STAS in lung cancer (five-
fold cross-validation AUC = 0.92, intra-center validation 
AUC = 0.94, external ZS cohort AUC = 0.84, and external 
NINTH cohort AUC = 0.84). Delta-radiomics with deep 
network model is therefore expected to be a preoperative 
biomarker discovery strategy for predicting STAS status 
and provide reliable support for clinical surgery options 
and other treatment plans. Meanwhile, the radiological 
scan-only information avoided the potential error from 

the inaccurate/incomplete clinical variables and human-
determined CT signs.

Our study also demonstrates the value of peritumoral 
features and their corresponding delta features in the 
model construction. STAS is characterized by the spread 
of tumor cells in different forms within the air spaces of 
the surrounding lung parenchyma, which usually extends 
beyond the primary tumor margin. Actually, many CT 
signs of STAS in lung cancer reported by Toyokawa et al. 
were associated with peritumoral components, such 
as vascular convergence, peripheral gross glassy opac-
ity (GGO), air bronchogram, and pleural indentation 
[8]. Moreover, it has been shown that peritumor-based 
features outperform traditional tumor-based imaging 
in predictive STAS [13, 14]. Therefore, we additionally 
extracted peritumor features within 3 mm of the tumor 
margin and combined them with tumor features, which 
enhanced the predictive performance of our model.

The present study still has several limitations. First, this 
study is still a retrospective analysis of CT findings based 
on pathological findings and not a prospective study, 
so future prospective cohort studies may be needed to 
further confirm our findings. The pathological types of 
investigated tumors were still not abundant, and some of 
the pathologic types such as squamous and small cell lung 
cancer were not sufficient, although the sub-group analy-
sis on the pathological types of tumors did not reveal this 
insufficiency or bias caused the imbalanced model per-
formances in different pathological groups (details could 
be found in Additional file 1: Appendix P). Second, due 
to the nature of retrospective studies, the patient popu-
lation included in the experimental design (585) remains 
limited compared to the overall population (2812) with 
no less than two CT follow-up scans. According to a pre-
vious study on STAS in the same center, the selection 
bias was likely to exist [23]. A larger external training or 
validation cohort from more centers and larger cohort is 
still needed to improve or evaluate the predictive effect 
of the proposed model. Third, the patients included in 
this study were treated with surgical resection, which 
may have overlooked some cases of small tumors with 
stage III and IV cases and consequently introduced selec-
tion bias. Fourth, systematic or subjective errors still 
exist with respect to the pathological diagnosis of STAS. 
Although the concept of STAS has been established 
in the thoracic pathology for many years, there is still 
no universally accepted pathological diagnostic stand-
ard, especially due to the presence of ex  vivo artifacts. 
It has been found that STAS may sometimes be simply 
an artifact caused by tumor destruction, with tumor 
cells spreading along the alveolar cavity through the 
lung specimen section in  vitro, an artifact very graphi-
cally referred to as “spreading through the knife surface”, 
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which makes the labeling determination potentially inac-
curate. Although recent studies demonstrated that STAS 
is an in-vivo phenomenon instead of a pathologist-related 
artifactual event because of knife transportation of tumor 
cells during gross specimen handling [24, 25], there is still 
a critical need to minimize the artifactual clusters and to 
further refine and standardize the histopathologic defini-
tions of STAS [6, 26]. Fifth, the delineations of VOIs were 
still subjective and time-consuming. The semi-automatic 
segmentation techniques supported by software such as 
3D Slicer (e.g., level tracing and grow from seeds) cannot 
yet completely avoid the subjectivity, which leads to the 
inevitable interference of lymph nodes and blood vessels 
in the VOI segmentation for a portion of lesions such as 
large masses near hilar. The feature screening based on 
ICC was adopted to evaluate and eliminate the influence 
of the subjective factors as much as possible. Intra-group 
repeated delineations and inter-group comparative tests 
were designed to ensure the reliability and repeatability 
of the final features included for further selection based 
on algorithms. Sixth, our study places demand on the 
quality control of CT image sequences, especially with 
respect to respiratory movements. The chest/respira-
tory motion may generate adverse effects on the lesion 
registration from many aspects. The respiratory motions 
have been shown to affect the volume and density meas-
urement of lung nodules, and the motion artifacts cause 
poorer imaging quality, such as blurred nodal boundaries 
that can cause the failure of alignment algorithms based 
on edge information, while the displacement of high-
intensity signals in the middle of the image and the blur-
ring of the boundaries also make intensity-based feature 
extraction prone to failure or error. Furthermore, the 
alterations in the relative relationship between the spine 
and the lung tumor positions can also occur with the res-
piratory motion, which will adversely affect the registra-
tion of lung tumors, especially tumors with significant 
morphological changes, as it may require different planes 
of the tumor for alignment (priority must be given to 
ensuring that the same level of the spine is used for align-
ment, as they are usually absolutely rigid).

The implications of this study remain significant. First, 
to the best of our knowledge, it is a pioneer study to 
introduce the delta-radiomics model to predict STAS sta-
tus in primary lung cancer. Second, this study not only 
discussed the significance of delta-radiomics for STAS 
prediction for the first time, but also added an emerging 
modality, the deep-learning features based on image reg-
istration and subtraction in the context of clinical follow-
up to give dynamic description of lung nodule growth, 
which was a modality that effectively complements delta-
radiomics, making the combination model more intuitive 
than classic radiomics pipeline. Meanwhile, it provides 

features based on deep-learning-based computer vision, 
which improves the accuracy of prediction and guards 
the model against the effect of different follow-up time 
intervals on the prediction effect. Third, the prediction 
results of the model were satisfactory and have been vali-
dated in multiple centers, indicating that the model has 
generalized cross-center performance, good reproduc-
ibility and robustness, which provides a reliable basis 
for clinical decision-making. Fourth, the methodologi-
cal value of this study is not only to demonstrate the 
potential of delta-radiomics in predicting tumor patho-
logical features, but also to suggest that the combina-
tion of quantitative description based on radiomics and 
CNN-based machine vision could effectively improve 
the model performance, which provides new thinking for 
clinical scenarios such as tumor diagnosis and treatment 
monitoring in the future medicine, especially in the fol-
low-up of solid lesions.

Conclusion
The current study explored the potential value hidden 
in the dynamic radiological description of lung tumors 
by delta-radiomics and DL-based features extracted 
by CNNs from subtracted images pre-processed with 
image registration. To the best of our knowledge, no 
report has investigated the potential benefits of com-
bining delta-radiomics and registration-based DL from 
subtracted images to improve prediction of STAS. Our 
dual-delta hybrid model combining four elements (delta-
radiomics, delta-DL, classic radiomics, and classic DL) 
outperformed the component model by discrimination 
and showed reliable performance in multicenter cohorts 
and patients with various follow-up intervals. Addition-
ally, the interpretability of the proposed model further 
assessed with Grad-CAM for DL-features and feature 
ranking for radiomics features. Meanwhile, as a down-
sampling method, PSM was adopted to further provide 
a balanced dataset for model training and validation. Our 
model showed satisfactory and stable performances on 
both the real-world and post-PSM datasets.

Our study suggests that the combination of delta-DL 
model based on the registration methods and image 
subtraction with the delta-radiomics model enriches 
information such as anisotropy of tumor growth and 
intratumor heterogeneous changes during the CT follow-
up, which could provide valuable information for the pre-
diction of STAS in primary lung cancer.
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CT  Computed tomography
STAS  Spreading through air spaces
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MSE  Mean squared error
Grad-CAM  Gradient-weighted class activation mapping
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