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Abstract
Congenital heart disease (CHD) represents a significant contributor to both morbidity and mortality in neonates 
and children. There’s currently no analogous dried blood spot (DBS) screening for CHD immediately after birth. 
This study was set to assess the feasibility of using DBS to identify reliable metabolite biomarkers with clinical 
relevance, with the aim to screen and classify CHD utilizing the DBS. We assembled a cohort of DBS datasets 
from the California Department of Public Health (CDPH) Biobank, encompassing both normal controls and 
three pre-defined CHD categories. A DBS-based quantitative metabolomics method was developed using liquid 
chromatography with tandem mass spectrometry (LC-MS/MS). We conducted a correlation analysis comparing 
the absolute quantitated metabolite concentration in DBS against the CDPH NBS records to verify the reliability 
of metabolic profiling. For hydrophilic and hydrophobic metabolites, we executed significant pathway and 
metabolite analyses respectively. Logistic and LightGBM models were established to aid in CHD discrimination and 
classification. Consistent and reliable quantification of metabolites were demonstrated in DBS samples stored for 
up to 15 years. We discerned dysregulated metabolic pathways in CHD patients, including deviations in lipid and 
energy metabolism, as well as oxidative stress pathways. Furthermore, we identified three metabolites and twelve 
metabolites as potential biomarkers for CHD assessment and subtypes classifying. This study is the first to confirm 
the feasibility of validating metabolite profiling results using long-term stored DBS samples. Our findings highlight 
the potential clinical applications of our DBS-based methods for CHD screening and subtype classification.
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To the editor,
Prenatal diagnosis and early detection advancements 

have contributed to a gradual decline in the mortal-
ity rate associated with congenital heart disease (CHD) 
in children [1, 2]. However, the methodologies for the 
detection of cyanotic CHD exhibit less than 75% sensi-
tivity in detecting critical CHD [3, 4]. Currently, there is 
no comprehensive, cost-effective screening method avail-
able at birth that can reliably and consistently detect the 
diverse range of CHD conditions. Meanwhile, millions of 
infants in the United States undergo newborn screening 
(NBS), where substances in dried blood spots (DBS) are 
measured to check for certain genetic, endocrine, and 
metabolic disorders [5]. Despite this, no DBS newborn 
screening exists for CHD at birth.

Our core hypothesis proposes that comprehensive 
metabolic profiling of a long-term stored DBS at birth 
through liquid chromatography-mass spectrometry (LC-
MS) could model and assess cardiac and other organ 
anomalies with high precision [6]. We developed an 
LC-MS based metabolic screening method (Figure S1), 
to construct a baseline for neonate DBS metabolites and 
identify a biomarker panel as a molecular surrogate to 
assess congenital cardiac abnormalities.

To assess the feasibility of using long-term stored DBS 
for CHD biomarker identification, we constructed a 
cohort of 20 neonates (5 controls and 15 CHD patients). 
The 15 CHD patients comprised 4 diagnosed with CHD-
TOF (Tetralogy of Fallot), 5 with CHD-IAS (2 Brugada, 3 

Long QT syndrome), and 6 with CHD-CMP (3 dilated, 3 
hypertrophic cardiomyopathy) (Table S1). We reassessed 
the concentrations of 28 NBS metabolites commonly 
found in California Department of Public Health (CDPH) 
NBS records in these DBS samples stored at -20  °C for 
up to 15 years (Figure S2). 24 out of the 28 metabolites 
exhibit a strong correlation, affirming both the robust-
ness of our metabolomic profiling workflow and the reli-
ability of these DBS samples after many years of storage 
(Fig. 1).

Distinct clustering patterns were identified for sam-
ples from various CHD subtypes in both the hydrophilic 
and hydrophobic metabolic profiling (Figure S3A, B and 
C). Table S2 showed all enrichment analysis findings. 
CHD-IAS could not be reliably distinguished from other 
groups (AUC, 0.607; P-value, 0.46) based on the hydro-
philic metabolomics, while CHD-CMP also showed 
poor distinction from other groups (AUC, 0.53; P-value, 
0.83) based on the hydrophobic metabolomics. The Ara-
chidonic acid metabolism [7, 8] and Monoacylglycerols 
pathways are consistently and significantly enriched in all 
three CHD subtypes (Figure S3D and E). Additionally, the 
Linoleic acid metabolism [9, 10], serotonergic synapse, 
and spingoid bases pathways are significantly enriched 
solely in the IAS and TOF subtypes of CHD. Moreover, 
Quinones and hydroquinones [11] were found to be sig-
nificantly enriched only in CHD-CMP, while Arginine 
and ornithine metabolism showed significant enrich-
ment exclusively in CHD-IAS. These findings suggest the 

Fig. 1 Impact of the time storage of metabolites. Scatter plots showing the positive correlations of metabolic profiling between this study (X-axis) and 
the CDPH DBS records (Y-axis)
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presence of diverse metabolic pathway changes among 
the different CHD subtypes, emphasizing the importance 
of considering both hydrophilic and hydrophobic metab-
olites when constructing a CHD diagnosis panel.

Comparing CHD patients with healthy controls, we 
identified 3 biomarker metabolites (P-value < 0.05) 
through univariate analysis (Table S3), namely PC(d16:1–
22:3), C14:1-Carnitine, and C12-Carnitine (Fig.  2A and 
B). The logistic model exhibited high accuracy in distin-
guishing between CHD patients and healthy controls, 
achieving an AUC of 0.982 (95% CI: 0.92-1.00) (Fig. 2C). 
For CHD subtyping by the LightGBM model, there are 
12 crucial metabolites required to achieve 80% cumula-
tive importance (Fig.  2D). These significant metabolites 
include Alanine, C10-Carnitine, TG(16:0–16:0–20:2), 
TG(16:1–18:2–18:3), PE(a20:0–20:2), C10:1-Carnitine, 
Octacosanoic acid(28:0), C14:1OH-Carnitine, C8:1-Car-
nitine, Asparagine, C0-Carnitine, and d18:0 CE. OPLS-
DA analysis was carried out using the aforementioned 
12 metabolites (Fig. 2E). Figure S4 revealed the AUCs for 
distinguishing CMP vs. Other, IAS vs. Other, and TOF 
vs. Other. These findings indicate promising discrimina-
tory capabilities of the selected metabolites in identifying 

different CHD subtypes when compared to the other 
groups.

The study results underline the feasibility of using 
long-term stored DBS to identify metabolic biomarker 
panel for early CHD detection and assessment. It pro-
vides the basis for the future investigation of large-scale 
clinical trial for DBS biomarker panel as a molecular sur-
rogate to assess congenital cardiac abnormalities. More-
over, by further investigating the biomarker metabolites 
and their underlying enriched pathways, we may gain 
deeper insights into the mechanisms underlying CHD 
pathophysiology. With better understanding of CHD 
development, there are implications for future research, 
treatments, and improved patient outcomes.

Abbreviations
AUC  The area under the receiver operating characteristic curve
CDPH  California Department of Public Health
CE  Cholesterol esters
CHD  Congenital heart disease
CMP  3 dilated, 3 hypertrophic cardiomyopathy
DBS  Dried blood spot
IAS  2 Brugada, 3 Long QT syndrome
LC-MS/MS  Liquid chromatography with tandem mass spectrometry
LC-MS  Liquid chromatography-mass spectrometry
OPLS-DA  Orthogonal partial least squares discriminant analysis

Fig. 2 The application of targeted metabolomics to discover CHD diagnosis and subtyping biomarker metabolites using DBS samples. (A) Volcano plots 
for screening significant changed metabolites associated with CHD, the metabolites with P value < 0.05 and fold change > 1.5 are marked as red dots and 
the metabolites with P value < 0.05 and fold change < 0.67 are marked as blue dots. (B) violin plots for three biomarker metabolites for CHD diagnosis. *: 
Student’s P value < 0.05, **: P value < 0.01, ***: P value < 0.001. (C) the smoothed receiver operating characteristic curve (AUC ROC) of logistic model based 
on three biomarkers. 95% confidence intervals are shown in grey lines. (D) the importance score of the 12 metabolites associated with CHD subtyping 
which have an 80% cumulative importance in total. (E) PLS-DA cluster results using 12 metabolites for CHD subtyping

 



Page 4 of 4Ceresnak et al. Biomarker Research           (2023) 11:97 

PC  Phosphatidylcholine
TG  Triglyceride
TOF  Tetralogy of Fallot
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