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Abstract 

Background and aim The presence of microvascular invasion (MVI) will impair the surgical outcome of hepatocel‑
lular carcinoma (HCC). Adipose and muscle tissues have been confirmed to be associated with the prognosis of HCC. 
We aimed to develop and validate a nomogram based on adipose and muscle related‑variables for preoperative 
prediction of MVI in HCC.

Methods One hundred fifty‑eight HCC patients from institution A (training cohort) and 53 HCC patients from insti‑
tution B (validation cohort) were included, all of whom underwent preoperative CT scan and curative resection 
with confirmed pathological diagnoses. Least absolute shrinkage and selection operator (LASSO) logistic regression 
was applied to data dimensionality reduction and screening. Nomogram was constructed based on the independ‑
ent variables, and evaluated by external validation, calibration curve, receiver operating characteristic (ROC) curve 
and decision curve analysis (DCA).

Results Histopathologically identified MVI was found in 101 of 211 patients (47.9%). The preoperative imaging 
and clinical variables associated with MVI were visceral adipose tissue (VAT) density, intramuscular adipose tissue 
index (IMATI), skeletal muscle (SM) area, age, tumor size and cirrhosis. Incorporating these 6 factors, the nomogram 
achieved good concordance index of 0.79 (95%CI: 0.72–0.86) and 0.75 (95%CI: 0.62–0.89) in training and valida‑
tion cohorts, respectively. In addition, calibration curve exhibited good consistency between predicted and actual 
MVI probabilities. ROC curve and DCA of the nomogram showed superior performance than that of models 
only depended on clinical or imaging variables. Based on the nomogram score, patients were divided into high 
(> 273.8) and low (< = 273.8) risk of MVI presence groups. For patients with high MVI risk, wide‑margin resection 
or anatomical resection could significantly improve the 2‑year recurrence free survival.

Conclusion By combining 6 preoperative independently predictive factors of MVI, a nomogram was constructed. 
This model provides an optimal preoperative estimation of MVI risk in HCC patients, and may help to stratify high‑risk 
individuals and optimize clinical decision making.
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Introduction
Hepatocellular carcinoma (HCC) represents the most 
frequent type of primary liver cancer and ranks as the 
third leading cause of cancer-related death worldwide [1]. 
Surgical resection is the backbone of curative treatment 
for HCC. Although the surgical operation of HCC has 
been extremely developed, the prognosis of HCC is still 
very poor [2]. The recurrence after operation remains a 
major obstacle to improve survival and the 5-year recur-
rence rates are up to 70%, even in patients with sin-
gle small HCC (≤ 2 cm) [3]. One of the main reasons is 
microvascular invasion (MVI). MVI, a histopathological 
feature of micro-metastases, can be observed in 15.0%-
57.1% of surgical specimens and stands as a key predictor 
for early recurrence and poor prognosis [4, 5]. In addi-
tion, the presence of MVI has been an essential factor 
influencing the long-term prognosis of HCC patients 
underwent liver transplantation [6]. However, the impact 
of MVI has largely been disregarded by clinicians as it 
can only be found by histologic examination of postoper-
ative specimens. As MVI represents an aggressive behav-
ior of HCC [5], individualized surgical management for 
patients should be formulated according to the risk–
benefit assessment of MVI before surgery. For patients 
with high risk of MVI, anatomical subsegmentectomy or 
partial hepatectomy with wide margin is recommended 
under better liver function, which could decrease the risk 
of recurrence [7]. Therefore, establishing a highly accu-
rate risk model for predicting MVI can help to stratify 
high-risk individuals, optimize clinical decision making 
and improve prognosis.

Over the last decades, numerous efforts have been 
taken to estimate MVI prior to surgery. Cucchetti et  al. 
utilized four clinical common variables, including alpha-
fetoprotein (AFP), tumor number, size and volume, to 
develop an artificial neural network (ANN) model that 
accurately identified 91% of MVI cases in testing group 
[8]. However, this ANN model requires specialized 
computer software, which potentially limits its utility in 
routine clinical application. In contrast, the nomogram 
might be a convenient option and provide highly accu-
rate and individualized risk estimate [9]. For hepatitis B 
virus–related HCC patients, Li et al. constructed a nom-
ogram by incorporating contrast-enhanced magnetic 
resonance imaging (MRI) data with hematology data, 
which achieved relatively good predictive accuracy for 
MVI [10]. Unfortunately, serum biomarkers might also 
have abnormally change in non-cancerous liver lesions, 

so specificity is not optimal. As technologies advance, 
radiomics nomograms based on contrast-enhanced com-
puted tomography (CT) or gadoxetic acid-enhanced MRI 
have achieved excellent concordance indexes (C indexes) 
in predicting MVI [11, 12]. However, random split sample 
approach was used in these studies to generate training 
and validation sets. Although this method is commonly 
used, it represents an inefficient use of the data and has 
large variability, especially in condition of small popula-
tion [13]. In addition, the number of candidates radiomic 
features is orders of magnitude higher than the num-
ber of cases, which could lead to overfitting errors [14]. 
Taken together, it is necessary to identify novel predictors 
and employ appropriate statistical method to construct a 
nomogram for predicting MVI before surgery.

Recently, the impact of body composition changes, 
which mainly encompasses adipose and muscle tissues, 
on the prognosis of HCC has received wide attention 
[15–20]. Skeletal muscle index (SMI) [15, 20], subcutane-
ous adipose tissue index (SATI) [16, 18] and visceral adi-
pose tissue index (VATI) [19, 20] have been recognized 
as strongly correlated variables with the occurrence and 
development of HCC. Some of them act as negative fac-
tors by increasing inflammatory response, altering the 
hormonal level or disrupting the balance between ana-
bolic and catabolic metabolisms [21, 22], while others act 
as protective factors by stimulating the insulin response, 
boosting lipid metabolism or enhancing immune func-
tion [16]. Therefore, it’s speculated that the changes of 
adipose and muscle tissues may have some correlation 
with the presence of MVI in HCC patients. In fact, Arse-
nii et al. [23] and Wu et al. [24] have performed relevant 
studies. Despite their efforts, these studies lacked suf-
ficient evidence, as the former did not yield any posi-
tive results, while the latter only proved the correlation 
of SAT and VAT with the presence of MVI in univariate 
logistic analysis. In this study, we aim to collect adipose 
and muscle related clinical variables of HCC patients to 
determine the variables that are most strongly associ-
ated with MVI, and construct a nomogram model to 
assist surgeons in risk stratification and personalized 
treatment.

Methods
Study population
Between January 01, 2018, and December 31, 2021, 
retrospective data on patients diagnosed with HCC 
through postoperative pathology were collected at Qilu 
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hospital of Shandong university (institution A) and the 
Second Hospital of Shandong University (institution B). 
This retrospective study was reviewed and approved by 
Institutional Review Board of Qilu hospital of Shan-
dong university [approval number: 2021(222)].

Inclusion criteria were as follows: 1) liver resection 
was the initial treatment, and patients received no 
preoperative treatment, such as transcatheter arterial 
chemoembolization (TACE), targeted immunotherapy, 
or radiotherapy; 2) the diagnosis of MVI was confirmed 
by pathological examination; 3) complete clinical data 
can be acquired from electronic medical record, and 
CT scan of the abdomen was performed within two 
weeks before surgery in these two hospitals. Patients 
with a history of other malignancies, suboptimal CT 
images, absence of MVI condition in pathology reports 
were excluded. The detailed screening procedure was 
shown in Fig. 1.

Clinical data and follow‑up
Clinical data included the MVI status (negative vs. posi-
tive), age (< 60 vs. ≥ 60  years), sex (female vs. male), 
tumor size (< 5 vs. ≥ 5  cm), Child–Pugh class (A vs. B), 
cirrhosis (no vs. yes), hepatitis B surface antigen (HBsAg) 
status (negative vs. positive), albumin (ALB, < 3.5 
vs. ≥ 3.5 g/dL), alpha fetoprotein (AFP, < 400 vs. ≥ 400 ng/
mL), aspartate transaminase (AST, < 40 vs. ≥ 40 U/L) 
level, alanine aminotransferase (ALT, < 44 vs. ≥ 44 U/L) 
level, total bilirubin (TB, < 17.1 vs. ≥ 17.1  µmol/L) level, 
body mass index (BMI, < 24.9 vs. ≥ 24.9  kg/m2), surgical 
approach (open laparotomy vs. laparoscopic), resection 
method (non-anatomical vs. anatomical), and surgical 
margin (< 1 vs. ≥ 1 cm). The definition of surgical margin 
was the shortest distance from the edge of the tumor to 
the resection line. MVI is defined as the presence of can-
cer cell clusters within the lumen of blood vessels lined 
by endothelial cells under a microscope [4]. As macro-
vascular wall contains layers of smooth muscle or elastic 

Fig. 1 Flowchart of the included HCC patients
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fibers, while microvascular wall typically consists only of 
endothelial cells. In order to help distinguish MVI from 
macrovascular invasion, immunohistochemistry was 
performed to examine the expression of CD34 (vascular 
endothelium), smooth muscle α-actin (vascular smooth 
muscle), and elastic fibers (elastic fiber layer of tiny blood 
vessel wall) [25].

All patients were recommended to surveillance every 
3  months for the first 2  years and then every 6  months 
thereafter. Postoperative follow-up included abdominal 
ultrasound, CT or MRI, routine blood, serum biochem-
istry, and tumor-specific biomarkers. Early recurrence 
was defined as intrahepatic recurrence within two years 
after curative resection. Recurrence free survival (RFS) 
was defined as the duration from the data of surgery to 
either the date of tumor recurrence or the last follow-up. 
Overall survival (OS) was defined as the interval from the 
date of surgery to the date of death or the last follow-up.

CT‑related body composition variables
Abdominal CT scan for included patients from these two 
hospitals were performed within two weeks before sur-
gery using the equipment of Siemens 64-slice spiral CT 
scanner from the same manufacturer [26, 27] to avoid 
data heterogeneity resulting from CT equipment. Semi‐
automatic software (SliceOmatic™ version 5.0, Tomovi-
sion, Montreal, Quebec, Canada) was utilized to quantify 
the areas and density of skeletal muscle (SM) tissue and 
different adipose tissues [(i.e., subcutaneous adipose tis-
sue (SAT), visceral adipose tissue (VAT) and intramus-
cular adipose tissue (IMAT)] in the single cross-sectional 
CT images at the central level of the third lumbar ver-
tebra (L3). The areas quantified from the single cross-
sectional CT image at the L3 level exhibited the highest 
correlation with the overall body tissue mass, demon-
strating correlation coefficients  (r2) of 0.855 and 0.927 
for muscle and adipose tissues, respectively [28]. The SM 
tissue at L3 level consisted of the psoas, quadratus lum-
borum, erector spinae, transversus abdominis, external 
and internal obliques, and rectus abdominis muscles. 
SM area referred the sum of cross‐sectional areas of 
the aforementioned muscles, measured in centimeters 
squared  (cm2). Area of each adipose tissues also referred 
the cross-sectional area on the L3 level. The above each 
tissue areas were normalized by the heights squared  (m2) 
to obtain their corresponding indexes  (cm2/m2), includ-
ing SMI, SATI, VATI and IMAT index (IMATI). Density 
of muscle and adipose tissues referred the mean radio-
logic tissue attenuation for each type of tissue, measured 
in Hounsfield Unit (HU). The formula for calculating 
visceral to subcutaneous adipose tissue area ratio (VSR) 
was VAT area divided by SAT area. The specific steps 
to obtain body composition-related parameters were as 

follows: Firstly, the radiodensity threshold-based tech-
nique of SliceOmatic™ was utilized to semi-automatically 
outline the initial delineations of the region of inter-
est. The HU thresholds were applied as follows: -30 to 
150 HU for SM, -190 to -30 HU for SAT and IMAT, and 
-150 to -30 HU for VAT [29, 30]. Then a clinician under 
the guidance of an experienced radiologist performed a 
manual inspection and adjustment of the region of inter-
est without knowing the patients’ characteristics and out-
comes. Finally, the areas  (cm2) and density values (HU) 
were acquired to provide characterization for each body 
composition. Examples of delineation were shown in the 
Supplementary Fig.  1. The "SurvivalROC" package of R 
software was used to calculate the cut-off values for each 
variable. This package could repeatedly evaluate cut-off 
values obtained from receiver operating characteristic 
(ROC) curves and identified the optimal cut-off values 
based on the maximum log-rank statistic. Notably, cut-
off values were also determined according to gender, as 
body compositions varied between genders. The detailed 
cut-off values were shown in Supplementary Table 1. To 
ensure the inter-reader consistency, two clinicians with 
more than 5  years’ experience in hepatobiliary surgery 
independently completed the delineations of all vari-
ables. Then 40 pairs of samples were randomly selected 
for comparison and the inter-reader fluctuated between 
0.87 and 0.91.

Statistical analysis
Chi-square test was utilized to compared the categori-
cal variables, and results were presented as absolute 
counts and percentages format [No. (%)]. The process of 
data dimensionality reduction and screening was imple-
mented by the least absolute shrinkage and selection 
operator (LASSO) regression analysis. Variables with 
non-zero coefficients were first included in univariate 
logistic regression analysis, and then all variables with 
P-values less than 0.1 were entered into multivariate step-
wise forward regression analysis to identify independent 
variables with P-values less than 0.05. A nomogram was 
constructed using the independent predictors. To assess 
the predictive performance of the nomogram, we per-
formed calibration curve and C index yielded by 1000 
bootstrapping techniques. The clinical utility of nomo-
gram was evaluated through comparing its ROC curve 
and decision curve analysis (DCA) with those of imaging 
and clinical model. In addition, we used 200 rounds of 
tenfold internal cross-validation and external validation 
methods to evaluate our nomogram. The MVI risk score 
for all patients was computed using the nomogram, fol-
lowed by allocation of all patients into low and high-risk 
groups using the cut-off value with the highest Youden 
index (the sum of sensitivity and specificity). Finally, the 
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Kaplan–Meier (KM) method and the log-rank test were 
employed to generate survival curves for the purpose 
of stratifying risk factors and helping surgeons to make 
more personalized treatment plans. The above all sta-
tistical analyses were performed using and R software 
(version 4.0.2), with packages: “rms”, “survival”, “pROC”, 
“caret”, “rmda”.

Results
Baseline characteristics of patients
During the study period, 158 HCC patients form insti-
tution A and 53 HCC patients form institution B met 
the inclusion criteria were enrolled. The former was 
the training cohort with the median follow-up time of 
23.9 months, and the latter was the validation cohort with 
the median follow-up time of 27.1 months. Pathological 
confirmed MVI was found in 101 (47.9%) individuals of 
all patients. The detailed clinical, adipose as well as mus-
cle related variables were shown in Table 1, respectively.

Data dimensionality reduction and screening
LASSO regression analysis was performed to identify the 
most crucial variables linked with the risk of MVI. To 
guarantee precision, the algorithm’s iterations were set 
to 1000. In addition, cv.glmnet function was used to per-
form tenfold cross validation to diminish the possibility 
of overfitting. The distribution of LASSO regression coef-
ficients and cross-validation plots were shown in Fig. 2. 
Dotted vertical lines indicated the value of lambda.min 
and lambda.1se. Finally, 18 variables (age, tumor size, 
CTP, cirrhosis, HBsAg, AFP, TB, resection method, SAT 
density, VAT area, VAT density, VATI, VSR, IMAT area, 
IMATI, SM area, SM density, SMI) with nonzero coef-
ficients were selected according to the value of lambda.
min (λ = 0.03139931).

Logistic regression analysis, construction, and validation 
of nomogram
The above 18 variables were subjected to univari-
ate logistic analysis, and then 8 variables (age, tumor 
size, cirrhosis, VAT density, IMAT area, IMATI, SM 
area, SMI) with P-values of less than 0.1 were incorpo-
rated into multivariate analysis. Except for IMAT area 
and SMI, the remaining 6 variables [age (OR = 0.214; 
95%CI = 0.088–0.522; P = 0.001), tumor size (OR = 2.359; 
95%CI = 1.115–4.989; P = 0.025), cirrhosis (OR = 2.518; 
95%CI = 1.077–5.887; P = 0.033), VAT density 
(OR = 3.468; 95%CI = 1.533–7.847; P = 0.003), IMATI 
(OR = 4.783; 95%CI = 2.058–11.112; P < 0.001), SM area 
(OR = 0.295; 95%CI = 0.120–0.725; P = 0.008)] were all 
significant independent predictors for MVI. The detailed 
data was shown in Table 2.

These Six independent predictors were utilized to form 
an MVI-predicting nomogram (Fig. 3a). The nomogram 
provided good accuracy in estimating the risk of MVI, 
with C index of 0.79 (95%CI: 0.72–0.86),  R2 of 0.35, dis-
crimination index (D index) of 0.30, Brier score of 0.18, 
Emax of 0.05, Evag of 0.02 (Fig. 3b). Following 200 rounds 
of tenfold internal cross-validation, there was little vari-
ation in the values of the above variables (Table 3), with 
the correct C index of 0.79,  R2 of 0.32, D index of 0.24, 
Brier score of 0.18, Emax of 0.30, Evag of 0.13. In addi-
tion, calibration curve exhibited good consistency 
between predicted MVI probability of nomogram and 
the actual probability.

In validation cohort, the nomogram presented a C 
index of 0.75 (95%CI: 0.62–0.89) for the evaluation of risk 
associated with MVI. Moreover, the fitting calibration 
curve was acceptable (Fig. 3c).

Clinical utility of the nomogram
The independent predictors of MVI included three clini-
cal variables (age, tumor size and cirrhosis) and three 
imaging variables (VAT density, IMATI and SM area). 
These clinical and imaging variables were used separately 
to construct new clinical and imaging model, which were 
then compared with this nomogram to verify its clinical 
utility. The ROC curve indicated that the discriminative 
ability of the nomogram in predicting MVI was better 
than that of the imaging and clinical models, with AUC 
values of 0.791, 0.711, 0.673 and 0.716, 0.654, 0.633 in 
training and validation cohorts, respectively (Fig.  4a, 
b). In addition, the DCA of nomogram also exhibited a 
wider range of threshold probabilities in comparison to 
the imaging and clinical model (Fig. 4c, d).

Risk stratification of MVI based on the nomogram 
and survival analysis
The optimal cut-off value of the nomogram scores in 
training cohort was determined to be 273.8, and the 
sensitivity and specificity for distinguishing the pres-
ence from absence of MVI according to this value were 
79.7% and 63.3%, respectively (Supplementary Fig.  2). 
Based on the cut-off value, patients in two cohorts 
were divided into high (> 273.8) and low (< = 273.8) 
risk groups. Kaplan–Meier curves showed that in both 
training and validation cohorts, patients with high-risk 
of MVI had higher 2-year recurrence rate and shorter 
OS than patients with low-risk (Fig.  5). For patients 
with high MVI risk, wide-margin resection or ana-
tomical resection could significantly improve the 2-year 
RFS, while only wide-margin resection could signifi-
cantly improve the OS (Figs.  6 and 7). In contrast, for 
low-risk patients, neither surgical approaches, nor 
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Table 1 Baseline characteristics of HCC patients

Variable Cohort, No. (%) P value

Overall
(n = 211)

Training cohort Validation cohort

(n = 158) (n = 53)

MVI 0.36

 Negative 110 (52.1) 79 (50.0) 31 (58.5)

 Positive 101 (47.9) 79 (50.0) 22 (41.5)

Sex 0.75

 Female 41 (19.4) 32 (20.3) 9 (17.0)

 Male 170 (80.6) 126 (79.7) 44 (83.0)

Age (years) 0.02

  < 60 118 (55.9) 96 (60.8) 22 (41.5)

  >  = 60 93 (44.1) 62 (39.2) 31 (58.5)

Tumor size (cm) 0.05

  < 5 98 (46.4) 80 (50.6) 18 (34.0)

  >  = 5 113 (53.6) 78 (49.4) 35 (66.0)

Child–Pugh class 0.99

 A 201 (95.3) 150 (94.9) 51 (96.2)

 B 10 (4.7) 8 (5.1) 2 (3.8)

Cirrhosis 0.96

 No 69 (32.7) 51 (32.3) 18 (34.0)

 Yes 142 (67.3) 107 (67.7) 35 (66.0)

HBsAg 0.34

 Negative 44 (20.9) 30 (19.0) 14 (26.4)

 Positive 167 (79.1) 128 (81.0) 39 (73.6)

Albumin (g/dL) 0.14

 < 3.5 13 (6.2) 7 (4.4) 6 (11.3)

 >  = 3.5 198 (93.8) 151 (95.6) 47 (88.7)

AFP (ng/mL) 0.04

  < 400 150 (71.1) 106 (67.1) 44 (83.0)

  >  = 400 61 (28.9) 52 (32.9) 9 (17.0)

AST (U/L) 0.75

  < 40 145 (68.7) 110 (69.6) 35 (66.0)

  >  = 40 66 (31.3) 48 (30.4) 18 (34.0)

ALT (U/L) 1.00

  < 44 146 (69.2) 109 (69.0) 37 (69.8)

  >  = 44 65 (30.8) 49 (31.0) 16 (30.2)

TB (umol/L) 1.00

  < 17.1 132 (62.6) 99 (62.7) 33 (62.3)

  >  = 17.1 79 (37.4) 59 (37.3) 20 (37.7)

BMI (kg/m2) 0.01

  < 24.9 162 (76.8) 135 (85.4) 27 (50.9)

  >  = 24.9 49 (23.2) 23 (14.6) 26 (49.1)

Surgical approach 0.09

 Open laparotomy 99 (46.9) 80 (50.6) 19 (35.8)

 Laparoscopic 112 (53.1) 78 (49.4) 34 (64.2)

Resection method 1.00

 Non‑anatomical 97 (46.0) 73 (46.2) 24 (45.3)

 Anatomical 114 (54.0) 85 (53.8) 29 (54.7)



Page 7 of 16Mao et al. Biomarker Research           (2023) 11:87  

Abbreviations: HCC Hepatocellular carcinoma, MVI Microvascular invasion, HBsAg Hepatitis B surface Antigen, AFP Alpha fetoprotein, AST Aspartate aminotransferase, 
ALT Alanine aminotransferase, TB Total bilirubin, BMI Body mass index, HU Hounsfield Unit, SAT Subcutaneous adipose tissue, SATI Subcutaneous adipose tissue 
index, VAT Visceral adipose tissue, VATI Visceral adipose tissue index, VSR Visceral to subcutaneous adipose tissue area ratio, IMAT Intramuscular adipose tissue, IMATI 
Intramuscular adipose tissue index, SM Skeletal muscle, SMI Skeletal muscle index

Table 1 (continued)

Variable Cohort, No. (%) P value

Overall
(n = 211)

Training cohort Validation cohort

(n = 158) (n = 53)

Surgical margin (cm) 0.03

  < 1 150 (71.1) 119 (75.3) 31 (58.5)

  >  = 1 61 (28.9) 39 (24.7) 22 (41.5)

SAT area  (cm2) 1.00

 Small 80 (37.9) 60 (38.0) 20 (37.7)

 Large 131 (62.1) 98 (62.0) 33 (62.3)

SAT density (HU) 0.08

 Low 119 (56.4) 95 (60.1) 24 (45.3)

 High 92 (43.6) 63 (39.9) 29 (54.7)

SATI  (cm2/m2) 0.27

 Low 157 (74.4) 114 (72.2) 43 (81.1)

 High 54 (25.6) 44 (27.8) 10 (18.9)

VAT area  (cm2) 0.14

 Small 88 (41.7) 71 (44.9) 17 (32.1)

 Large 123 (58.3) 87 (55.1) 36 (67.9)

VAT density (HU) 0.77

 Low 90 (55.0) 66 (41.8) 24 (45.3)

 High 121 (45.0) 92 (58.2) 29 (54.7)

VATI  (cm2/m2) 0.10

 Low 90 (42.7) 73 (46.2) 17 (32.1)

 High 121 (57.3) 85 (53.8) 36 (67.9)

VSR 0.19

 Low 90 (42.7) 72 (45.6) 18 (34.0)

 High 121 (57.3) 86 (54.4) 35 (66.0)

IMAT area  (cm2) 1.00

 Small 107 (50.7) 80 (50.6) 27 (50.9)

 Large 104 (49.3) 78 (49.4) 26 (49.1)

IMAT density (HU) 0.19

 Low 102 (48.3) 81 (51.3) 21 (39.6)

 High 109 (51.7) 77 (48.7) 32 (60.4)

IMATI  (cm2/m2) 1.00

 Low 103 (48.8) 77 (48.7) 26 (49.1)

 High 108 (51.2) 81 (51.3) 27 (50.9)

SM area  (cm2) 0.65

 Small 63 (29.9) 49 (31.0) 14 (26.4)

 Large 148 (70.1) 109 (69.0) 39 (73.6)

SM density (HU) 0.55

 Low 118 (55.9) 86 (54.4) 32 (60.4)

 High 93 (44.1) 72 (45.6) 21 (39.6)

SMI  (cm2/m2) 0.40

 Low 99 (46.9) 71 (44.9) 28 (52.8)

 High 112 (53.1) 87 (55.1) 25 (47.2)
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Fig. 2 Selecting influence factors by using LASSO regression model. a LASSO coefficient curves for 28 predictors. b Identification of the best 
punishment coefficient lambda in LASSO regression model

Table 2 Univariate and multivariate logistic analysis of MVI presence for HCC patients

Abbreviations: HCC Hepatocellular carcinoma, HBsAg Hepatitis B surface Antigen, AFP Alpha fetoprotein, TB Total bilirubin, SAT Subcutaneous adipose tissue, 
VAT Visceral adipose tissue, VATI Visceral adipose tissue index, VSR Visceral to subcutaneous adipose tissue area ratio, IMAT Intramuscular adipose tissue, IMATI 
Intramuscular adipose tissue index, SM Skeletal muscle, SMI Skeletal muscle index

Variable Univariate Analysis Multivariable Analysis

OR (95% CI) P value OR (95% CI) P value

Age, >  = 60 vs < 60 0.421 (0.216–0.806) 0.010 0.214 (0.088–0.522) 0.001

Tumor size, >  = 5 vs < 5, cm 2.274 (1.209–4.336) 0.011 2.359 (1.115–4.989) 0.025

Child–Pugh class, B vs A 3.164 (0.703–22.073) 0.167

Cirrhosis, yes vs no 2.431 (1.231–4.921) 0.012 2.518 (1.077–5.887) 0.033

HBsAg, positive vs negative 1.958 (0.875–4.568) 0.108

AFP, >  = 400 vs < 400, ng/mL 1.586 (0.815–3.124) 0.177

TB, >  = 17.1 vs < 17.1, umol/L 1.311 (0.688–2.514) 0.411

Resection method 1.430 (0.764–2.691) 0.265

SAT density, high vs low 0.620 (0.324–1.175) 0.145

VAT area, large vs small 1.432 (0.764–2.699) 0.264

VAT density, high vs low 2.601 (1.365–5.047) 0.004 3.468 (1.533–7.847) 0.003

VATI, high vs low 1.290 (0.690–2.424) 0.425

VSR, high vs low 0.736 (0.391–1.377) 0.338

IMAT area, large vs small 2.047 (1.091–3.887) 0.027 ‑ 0.836

IMATI, high vs low 2.158 (1.149–4.107) 0.018 4.783 (2.058–11.112)  < 0.001

SM area, large vs small 0.457 (0.225–0.906) 0.027 0.295 (0.120–0.725) 0.008

SM density, high vs low 1.671 (0.891–3.159) 0.111

SMI, high vs low 0.460 (0.241–0.866) 0.017 ‑ 0.335
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Fig. 3 Nomogram model for predicting MVI of HCC patients (a) and the calibration curve of the nomogram in training (b) and validation 
cohorts (c)
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resection methods or surgical margins had impact on 
recurrence and OS (Supplementary Figs. 3, 4).

In order to facilitate the clinical use of the nomo-
gram, we have provided an online version accessi-
ble via the hyperlink: https:// sdmxc. shiny apps. io/ 
MVInom/. By setting variables greater than or equal 
to the cut-off value to 1 and those less than it to 0, 

the predicted probability of MVI for patients can be 
quickly obtained.

Discussion
In the present study, we showed that adipose and mus-
cle tissues-related variables, including VAT density, 
IMATI and SM area, were capable to serve as independ-
ent predictors for MVI. Furthermore, we incorporated 
the above variables with three common clinical variables 
(age, tumor size, cirrhosis) to develop an MVI-predicting 
model which exhibited good consistency and high accu-
racy. In the process of validating the clinical utility, our 
nomogram was also superior to the models only based 
on imaging or clinical variables. Compared with other 
radiomics nomograms [11, 12], we only need one plain 
CT image at L3 level for data extraction, without the 
need to conduct complex three-dimensional tumor tar-
get delineation at various phases of enhanced scanning, 
which will bring heavy computational burden. Recently, 
some researchers have employed liver biopsy specimens 

Table 3 The changes variables after 200 rounds of tenfold 
internal validation

Abbreviations: C index Concordance index, D index Discrimination index

Variable Primary value Calibration value Change

C index 0.79 0.79 0

R2 0.35 0.32 ‑0.03

D index 0.30 0.24 ‑0.06

Brier score 0.18 0.18 0

Emax 0.05 0.30  + 0.25

Eavg 0.02 0.13  + 0.11

Fig. 4 ROC curve (a‑b) and DCA (c‑d) of the nomogram, imaging and clinical models in training and validation cohorts

https://sdmxc.shinyapps.io/MVInom/
https://sdmxc.shinyapps.io/MVInom/
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to analyze gene expression or even radio-genomics for 
predicting MVI [31, 32]. Despite its good predictive 
performance, tissue biopsy for the diagnosis of HCC is 
unnecessary for patients with typical imaging findings 
according to some clinical guidelines [33, 34]. Addition-
ally, invasive procedure may lead to potential risks such 
as tumor seeding and fatal bleeding, which outweigh the 
benefits [34, 35].

In the previously published MVI-predicting nomo-
grams, tumor size, cirrhosis and age has been confirmed 
as risk factors for vascular invasion in HCC. Pawlik et al. 

reported that the incidence of MVI was almost twice as 
high in tumors larger than 5  cm (61%) when compared 
to smaller tumors (32%), and it increased continuously 
with increasing tumor size [36]. Cirrhosis patients were 
frequently present with alterations in hemodynamic 
and blood microenvironment. On one hand, secondary 
hypersplenism could decrease platelet counts and reduce 
portal blood flow to the liver, which was conducive to the 
formation of MVI [10]. On the other hand, the increase 
of von Willebrand factor and other procoagulants, as well 
as the decrease in generation of antithrombin in patients 

Fig. 5 Kaplan–Meier curves of OS and 2‑year RFS for patients with different risks scores in training cohort (a, b) and validation cohort (c, d)
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with cirrhosis, could cause an imbalance in the coagula-
tion and fibrinolytic systems [37, 38]. The mechanisms 
mentioned above could both serve as stimuli for throm-
bosis and vascular invasion. In current study, younger 
HCC patients had a higher incidence of MVI, which was 
in consistent with another research [12]. This observa-
tion might be attributed to the high aggressiveness of the 
tumor in young patients; however, the exact underlying 
mechanism remains to be investigated by future studies 
[39].

For body composition-related variables, metabolic the-
ory could support our findings. Because most fatty acids 
in VAT are transported via the portal vein, higher degree 
of visceral obesity will expose the liver to high concentra-
tions of fatty acids and glycerol. This, in turn, leads to a 
series of liver dysfunctions, such as reduced hepatic insu-
lin extraction, increased hepatic glucose production, and 
ultimately results in type 2 diabetes and insulin resist-
ance [40]. In addition, accumulation of visceral adipose is 
also linked with the upregulation of aquaporin adipose, 
an adipocyte-specific glycerol channel, leading to the 
increased glycerol secretion from VAT [41]. The liver-
specific aquaporin protein AQP-9 could absorb excess 

glycerol and convert it into glycerol phosphate through 
glycerokinase, which is also one of the mechanisms lead-
ing to hyperglycemia [42]. Hyperglycemia alters the size 
and composition of the basement membranes in micro 
and large vessels, which in turn increase vascular per-
meability and fragility, and make it easier for tumors to 
invasion vascular and metastasize [43–45]. Further-
more, with continues accumulation of lipids, adipose tis-
sues will undergo complex process of remodeling, and 
the secretion of adipokines, such as leptin, adiponectin, 
interleukin, vascular endothelial growth factor (VEGF), 
and hypoxia-inducible factor (HIF) will significantly 
increase [46], which could induce angiogenesis by stimu-
lating endothelial cell proliferation, migration, and tube 
formation [47].

SM area provides information on changes in muscle 
structure, while IMAT indicates alterations in the content 
of intra- and inter-myocellular adipose [48]. The former 
parameter denotes muscle quantity and is served as an 
assessment metric for sarcopenia, and the latter param-
eter reflects muscle quality and is served as an evalu-
ation index for myosteatosis [20]. Recent studies have 
established that sarcopenia is positively associated with 

Fig. 6 Kaplan–Meier curves of OS for high‑risk patients under different surgical approaches, resection methods and surgical margins in training 
cohort (a‑c) and validation cohort (d‑f)
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evaluated all-cause mortality in HCC patients [49, 50]. 
Though the detailed mechanism has yet to be fully eluci-
dated, however, there are two generally accepted hypoth-
eses. Depletion of muscle could lead to a reduction in 
the secretion of specific cytokines, such as insulin-like 
growth factor (IGF)-1, which is associated with advanced 
clinicopathological variables of HCC [51, 52]. In addition, 
sarcopenia could also result in the impairment of certain 
protein hydrolysis systems, such as the tumor necrosis 
factor (TNF)-α system, thereby facilitating the process of 
tumor migration and invasion [53].

To date there have no studies that illuminate molecu-
lar mechanisms between myosteatosis and tumor angio-
genesis. However, pathological changes in muscle have a 
strong correlation with chronic liver disease [54]. Mon-
tano-Loza et  al. studied a cohort of cirrhotic patients 
undergoing liver transplant evaluation, in which the 
prevalence of muscular steatosis was greater than 50% 
[55]. In cirrhosis patients, the absorption of lipids and 
fat-soluble vitamins may be impacted as a result of sev-
eral physiological changes, such as nausea, anorexia, 
increased intra-abdominal pressure, and impaired gut 
motility. Malnutrition promotes the catabolism of muscle 

proteins, leading to depletion of muscle mass [56, 57]. In 
addition, chronic hepatic inflammation plays a significant 
role in promoting systemic inflammation, which in turn 
also accelerates the catabolism of muscle proteins [58]. 
There have been studies shown that liver disease not only 
triggers muscle atrophy and changes its structure, but the 
muscle in turn promotes the further development of liver 
disease [54, 59]. Therefore, there may exist an interaction 
between liver disease and muscle tissue, which exerts 
an influence on the IMAT, and consequently modulates 
the expression of downstream adipokines and myokines. 
Such a dynamic interaction and these cytokines may con-
tribute to the tumor invasion and progression of liver 
disease.

There are several limitations in our study. Firstly, the 
limited number of patients impose inherent restrictions 
on our findings, thus larger external datasets are needed 
to validate and refine it. Secondly, a prospective study is 
required to further confirm the reliability of the nomo-
gram. Thirdly, MVI grade was not taken into account in 
the MVI positive group. Fourthly, this nomogram model 
is constructed to predict the risk of MVI. Since macro-
vascular invasion is also a common phenomenon in HCC 

Fig. 7 Kaplan–Meier curves of 2‑RFS for high‑risk patients under different surgical approaches, resection methods and surgical margins in training 
cohort (a‑c) and validation cohort (d‑f)
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and is known to be an important predictor of poor sur-
vival outcomes [60, 61], whether this nomogram model 
is fitted for the predication of macrovascular invasion in 
HCC deserves further study.

In addition, some baseline characteristics showed dif-
ference between the two cohorts, and it’s inevitable as 
the process of data collection in these two hospitals were 
conducted independently. However, these differences had 
minimal impact on our results. Firstly, data selection and 
model construction were both performed within training 
cohort. Two hundred rounds of internal tenfold cross-
validation method was used to verify the stable of our 
model, which could reduce overfitting of result and maxi-
mize the utilization of the data. Secondly, although split 
sample approach could create two cohorts with no dif-
ferences [62], it could lead the model being unstable, that 
is, the performance evaluation was correlated with the 
partition of the training and validation cohorts. Different 
partitions might yield different estimates of the accuracy 
[14, 63]. Therefore, we chose original cohort distribution 
to ensure the randomness and independence of the data 
and increase generalizability of the model. In fact, we also 
verified our model by propensity score matching method 
to match the baseline characteristics data of the valida-
tion cohort and the training cohort, and it still demon-
strated good predictive capability (data not shown). This 
suggests that our model has good generalizability and can 
be extrapolated to patients in other hospitals.

Conclusion
By combining 6 preoperative independently predictive 
factors of MVI, a nomogram is constructed. This model 
provides an optimal preoperative estimation of MVI risk 
in HCC patients. For patients with higher MVI scores, 
anatomical hepatectomy with wide margins may be rec-
ommend to reduce early recurrence and extend survival.
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