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Abstract

Sarcomas are a group of diverse and complex cancers of mesenchymal origin that remains poorly understood.
Recent developments in cancer immunotherapy have demonstrated a potential for better outcomes with immune
checkpoint inhibition in some sarcomas compared to conventional chemotherapy. Immune checkpoint inhibitors
(ICls) are key agents in cancer immunotherapy, demonstrating improved outcomes in many tumor types. However,
most patients with sarcoma do not benefit from treatment, highlighting the need for identification and development
of predictive biomarkers for response to ICls. In this review, we first discuss United States (US) Food and Drug Admin-
istration (FDA)-approved and European Medicines Agency (EMA)-approved biomarkers, as well as the limitations

of their use in sarcomas. We then review eight potential predictive biomarkers and rationalize their utility in sarco-
mas. These include gene expression signatures (GES), circulating neutrophil-to-lymphocyte ratio (NLR), indoleamine
2,3-dioxygenase (IDO), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and mucin domain-containing
protein 3 (TIM-3), TP53 mutation status, B cells, and tertiary lymphoid structures (TLS). Finally, we discuss the potential
for TLS as both a predictive and prognostic biomarker for ICl response in sarcomas to be implemented in the clinic.
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Background

Sarcomas are a diverse and complex group of cancers of
mesenchymal origin that often have very poor prognosis,
with median survival of about 18 months with metastatic
disease [1]. In soft-tissue sarcomas (STS), the 5-year sur-
vival rates for localized, regional, and metastatic disease
are 81%, 56% and 16% respectively [2]. Comparatively,
in osteosarcoma, the 5-year survival rates are 74%, 66%
and 27% respectively [3]. Lastly, the 5-year survival rates
in Ewing sarcoma are 81%, 67% and 38% respectively
[4]. The systemic treatment of sarcomas has relied on
conventional chemotherapy that has remained widely
unchanged over several decades. Doxorubicin and ifos-
famide represent the current standard of care in most
subtypes of advanced and metastatic sarcomas [5]. How-
ever, response to treatment remains poor and more effi-
cacious treatment options are needed. In a phase III trial
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comparing doxorubicin monotherapy against intensified
doxorubicin with ifosfamide in advanced or metastatic
STS, treatment with doxorubicin alone yielded an overall
response rate of 14%, compared to 26% in patients treated
with doxorubicin and ifosfamide. Importantly, there was
no significant difference in overall survival (OS) between
the two groups, with a median OS of 12.8 months (95.5%
confidence interval (CI), 10.5-14.3) in the doxorubicin-
only group, compared to 14.3 months (95.5% CI, 12.5—
16.5) in the combination group [6]. Alternative agents
such as gemcitabine and docetaxel are reserved for
patients who have failed or are unable to tolerate doxo-
rubicin and ifosfamide. Gemcitabine is commonly used
alone or in combination with docetaxel, with complete or
partial response, or stable disease after at least 25 weeks
being achieved by 27% in the gemcitabine-only group
and 32% in the combination group [7]. These response
rates are in stark contrast to other tumors such as lym-
phomas, leukemias, germ cell tumors and others with
response rates of>70% with chemotherapy [8]. While
targeted therapies are available, only less than 5% of STS
are amenable to these treatments [9—11]. Limited treat-
ment options compounded by poor treatment response
necessitates the exploration of more treatment options
with better outcomes and side effect profiles.

Research in treatment for sarcomas has faced many
challenges. Sarcomas are rare cancers representing only
1% of adult malignancies [12], making it difficult to
recruit sufficient clinical trial participants to generate
rapid and robust evidence for treatment efficacy. Further-
more, heterogeneity in their histology and genetic drivers
of oncogenic pathways in sarcomas gives rise to a wide
variation in their biology, as well as degree of immune
infiltration. As such, each subtype exhibits different clini-
cal characteristics, often requiring patient-specific treat-
ment approaches [13] since different patients may not
respond to the same therapy.

Amidst these challenges, immune checkpoint inhibi-
tor (ICI) therapy has emerged as an attractive treatment
option [14]. ICIs target immune checkpoints that under
physiologic conditions restrict the strength and dura-
tion of immune responses to avoid immune-mediated
tissue damage, but which can be exploited by tumors to
evade immune-mediated elimination. Efficacy of treat-
ment with ICIs has been established in several cancers
[15], including advanced renal cell carcinoma (RCC) [16],
cervical cancer [17], classical Hodgkin lymphoma [18],
gastric carcinoma [19], hepatocellular carcinoma (HCC)
[20], melanoma [21-23], Merkel cell carcinoma [24, 25],
non-small cell lung cancer (NSCLC) [26], primary medi-
astinal large B-cell lymphoma [27], small cell lung cancer
[28], head and neck squamous cell cancer (HNSCC) [29],
triple negative breast cancer [30], and urothelial cancer
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[31]. In an exciting step forward in the treatment of sar-
coma, the United States (US) Food and Drug Administra-
tion (FDA) recently approved the first ICI for use in the
treatment of STS, with atezolizumab being approved for
use in the treatment of unresectable or metastatic alveo-
lar soft-part sarcomas (ASPS) [32]. Atezolizumab as the
first agent of its class being indicated for ASPS could set
the stage for more ICIs to be indicated for the treatment
of more STS subtypes and offers exciting possibilities for
further evaluation.

In fact, although STS have been traditionally thought to
be immune “cold” [33], as a whole, the response of STS to
immune checkpoint inhibition does not differ too much
from that of all cancers considered together. In 2019,
Haslam and Prasad estimated that the percentage of US
patients with cancer that respond to ICIs was 12.46%
(95% CI, 12.37-12.54%) [34], which is comparable to
the results of the SARCO028 trial (NCT02301039), where
18% of patients with STS had an objective response
to pembrolizumab [35]. Additionally, ICI therapy has
shown improved outcomes in the clinical management
of selected populations in sarcomas [36—38]. Within STS
subtypes, liposarcomas (LPS), undifferentiated pleo-
morphic sarcomas (UPS) and ASPS have demonstrated
better responses than other subtypes, while leiomyo-
sarcomas (LMS) and synovial sarcomas (SS) have been
reported to be resistant to ICI monotherapy [39]. Table 1
outlines a comprehensive list of studies using ICIs, both
as monotherapy and in combination, and the respective
clinical outcomes in sarcomas. Aside from clinical effi-
cacy, another concern that clinicians have to consider is
the potential for immune-related adverse events (irAEs)
that range from mild adverse conditions like diarrhea and
rashes to life-threatening conditions like cardiomyopa-
thy and toxic epidermal necrolysis [40]. Thus, there is an
urgent need to identify biomarkers that can guide clini-
cal use of ICIs in potential responders while sparing non-
responders from potentially life-threatening irAEs.

In this review, we will consider existing US FDA-
approved and European Medicines Agency (EMA)-
approved biomarkers for ICIs in clinical practice and
evaluate their applicability in sarcomas. We then discuss
exploratory biomarkers and evidence for their potential
utility in sarcomas. Predictive biomarkers covered in this
review are illustrated in Fig. 1.

Biomarkers approved for immune checkpoint
inhibition in cancer

ICI therapy is indicated without biomarker requirement
in several cancer settings because of studies demon-
strating improved clinical outcomes [45]. These indica-
tions include patients with advanced melanoma [46-48],
relapsed or refractory Hodgkin lymphoma [49, 50],
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Fig. 1 Overview of approved and exploratory biomarkers for immune checkpoint inhibitors (ICls) in cancer. Tumor and immune features can
influence response to ICls and serve as predictive biomarkers for response. FDA- and EMA-approved biomarkers for ICls in cancer are indicated
in blue, while exploratory biomarkers are indicated in red. MSI and a high TMB contribute to the expression of tumor neoantigens presented

by MHC I molecules on tumor cells that can be recognized by the TCR on CD8* T cells, leading to antitumor T cell activity. In gastrointestinal
cancers, the expression of immunogenic neocantigens in tumors with high TMB is dependent on certain mutational signatures [41]. On the other
hand, binding of PD-L1 on tumor cells to PD-1 on T cells leads to the suppression of T cell antitumor activity. Additionally, exhausted T cells may
also express the exhaustion markers TIM-3 and LAG-3. In lung adenocarcinoma, TP53 mutations are correlated with higher TMB and neoantigen
expression, while TP53 missense but not nonsense mutations are associated with increased PD-L1 expression [42]. Various GES have also been
associated with response to ICls. IDO contributes to T cell suppression and its expression was induced in resistant HCC after ICl therapy [43]. The
presence of B cells and TLS have been associated with improved prognosis and response to ICls in several cancers, including sarcomas. Within
the blood, a higher baseline circulating NLR has also been found to correlate with poorer outcomes in patients receiving ICls in lung cancer [44].

cisplatin-ineligible patients with urothelial carcinoma
[49, 50], patients with relapsed or refractory primary
mediastinal large B-cell lymphoma [51, 52], second-line
treatment for patients with HCC [49, 53], patients with
Merkel cell carcinoma [49, 53], patients with recurrent or
metastatic HNSCC [24, 54] and Bacillus Calmette-Gué-
rin-unresponsive high risk non-muscle invasive bladder
cancer [55]. In contrast, there are cancer types such as
sarcoma [35], breast, prostate and colon cancers [56] that
demonstrate lower frequency of response to ICI therapy,
and would therefore require biomarkers to distinguish
between responders and non-responders.

Currently, only three predictive biomarkers have been
approved by the FDA for ICI therapy in cancers, namely
programmed death-ligand 1 (PD-L1), microsatellite
instability (MSI) or defective mismatch repair (IMMR),
and tumor mutational burden (TMB), while only two
predictive biomarkers, namely PD-L1 and MSI/dMMR
have been approved by the EMA [57]. Variability in the
antibody clones, expression thresholds, scoring systems
and the cell types expressing PD-L1 among FDA/EMA-
approved PD-L1 assays across multiple cancer types can
pose difficulty of interpretation for researchers and clini-
cians. PD-L1 assays were previously described by Wang
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et al. to have poor diagnostic accuracy, poor predictabil-
ity, and low negative predictive value in cancers [58], also
limiting its clinical use in sarcomas. For the detection
of MSI-high (MSI-H) tumors, approved assay methods
include immunohistochemistry (IHC), polymerase chain
reaction (PCR) and whole exome sequencing (WES).
Both IHC and PCR are established methods and are
widely available in the pathology laboratory. However,
IHC is limited by its low analytic sensitivity and accuracy,
while PCR may be unable to capture full MSI profiles
that results in missing 0.3% to 10% of MSI-H cases [58,
59]. Circumventing the limitations of PCR, WES pro-
vides better predictive power compared to PCR and can
be used for all tumor types [58]. Additionally, TMB can
be derived from WES and may provide a better predic-
tion of response to ICIs [58]. On the other hand, WES is
characterized by high cost, limited availability, potentially
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complicated pipelines and requires technical expertise
that may hinder its clinical utility [60]. Table 2 summa-
rizes FDA- and EMA-approved predictive biomarkers for
ICIs in selected cancers.

Programmed death-ligand 1 (PD-L1)

PD-L1 is a ligand for the T cell immune checkpoint
receptor programmed cell death 1 (PD-1) and is
expressed by a variety of normal and immune cells. Inter-
action between PD-1 and PD-L1 serves to promote self-
tolerance through the suppression of T cell activation.
Cancer cells have been found to exploit the PD-1/PD-L1
axis for immune evasion through the overexpression of
PD-L1 [73]. Thus, PD-1 and PD-L1 expression provide an
attractive avenue to predict response to ICI therapy. At
present, there are four FDA- and three EMA-approved
PD-L1 assays (Table 2). For further reading, a detailed

Table 2 Overview of Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved predictive biomarkers

for patient selection for immune checkpoint inhibition

Predictive  Assay Methods Antibody Expression Cancers Regulatory NCT Number Author, Year
Biomarkers Threshold Authority
PD-L1 PD-L1 IHC 22C3 Monoclonal mouse PD-L1 CPS>20 TNBC FDA NCT02622074 Schmid et al., 2020
pharmDx assay anti PD-L1 clone and CPS=>1 [61]
22C3 CPS>1 HNSCC FDA/EMA  NCT02358031 Burtness et al, 2019
[62]
TPS >50% NSCLC FDA/EMA NCT02142738 Recketal, 2019 [63]
CPS>10 uc EMA NCT02256436 Bellmunt et al., 2017
[64]
PD-L1 IHC 28-8 Monoclonal rabbit  TPS>1% NSCLC FDA/EMA NCT02477826 Hellmann et al, 2019
pharmDx assay anti PD-L1 clone [65]
28-8
VENTANA SP142 Monoclonal rabbit  IC>1% TNBC FDA/EMA NCT02425891 Schmid et al, 2018
PD-L1 IHC assay anti PD-L1 clone [30]
SP142 TC>50% NSCLC FDA NCT02008227 Rittmeyer et al, 2017
orlC>10% [66]
IC>5% uc FDA/EMA  NCT02108652 Rosenberg et al,,
2016 [67]
VENTANA SP263 Monoclonal rabbit  TC>25% UBC FDA NCT01693562 Massard et al., 2016
assay anti PD-L1 clone orIC>25% [65, 68]
SP263
MSI PCR or IHC - MSI-H/dMMR Colorectal cancer ~ FDA/EMA NCT02460198 Le et al,, 2020 [69]
Fluorescent Mul- - MMR-deficient Progressive meta-  FDA NCT01876511 Leetal, 2015 [70]
tiplex PCR-based or proficient static carcinomas
method
TMB FoundationOne - tTMB-high > 10 Advanced solid FDA NCT02628067 Marabelle et al., 2020
CDx assay mutations per Mb  tumors [71]
WES - NA Advanced solid FDA NCT02054806 Ottetal, 2019 [72]

tumors

Year =year of publication

CPS Combined positive score, dMMR Deficient mismatch repair, HNSCC Head and neck squamous cell carcinoma, IC Percentage of tumor-infiltrating immune cells
within the tumor area expressing PD-L1, IHC Immunohistochemistry, MMR Mismatch repair, MSI Microsatellite instability, MS/-H Microsatellite instability-high, NCT
National Clinical Trial, NSCLC Non-small cell lung cancer, PCR Polymerase chain reaction, PD-1 Programmed cell death 1, PD-L1 Programmed death-ligand 1, TC
Percentage of tumor cells within total tumor cells expressing PD-L1, TMB Tumor mutational burden, TNBC Triple-negative breast cancer, TPS Tumor proportion score,
tTMB Tissue tumor mutational burden, UBC Urothelial bladder cancer, UC Urothelial carcinoma, WES Whole exome sequencing
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review on the key parameters for the FDA-approved
PD-L1 assays has been conducted by Wang et al.,, describ-
ing different test methods and challenges [58].

The diverse and dynamic PD-L1 expression on spe-
cific cell types within the tumor microenvironment
(TME) has made the correlation of global PD-L1
expression with response to ICI therapy challenging.
Noguchi et al. demonstrated that PD-L1 expression in
tumor-associated macrophages are partially depend-
ent on interferon-y (IFN-y) [74]. Further studies by Lau
et al. in PD-L1-depleted mouse models highlighted that
although immune evasion occurs at a repressed rate,
infiltrating myeloid cells may contribute to immune
evasion through compensatory PD-L1 expression [75].
There is also contradicting evidence demonstrating that
efficacy of PD-L1 blockade is independent of PD-1/
PD-L1 expression on tumor cells [76]. Instead, PD-L1
expression on dendritic cells (DCs) and macrophages
correlates to clinical response in melanoma and ovarian
cancer patients [76]. Given that PD-L1 expression level
in the TME is highly variable, global PD-L1 positivity
alone may not be sufficient to predict response to ICIs
[77]. Instead, understanding the effects of differential
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expression of PD-L1 in specific immune and tumor
cells in the TME may reveal mechanisms of the PD-1/
PD-L1 axis that could be exploited to better predict
response to ICI therapy.

In sarcomas, PD-L1 expression levels have shown con-
flicting association with ICI response [78]. Indeed, levels
of PD-L1 expression can vary widely between different
histological subtypes [79] (Fig. 2) that is further compli-
cated by the heterogenous TME present in primary and
metastatic lesions [78, 80]. This high degree of hetero-
geneity in PD-L1 expression, coupled with limited stud-
ies clarifying the relationship between PD-L1 expression
and response to ICI warrants further investigation of
the use of PD-L1 testing in sarcomas. Additionally, Patel
et al. demonstrated that pre-treatment with radiother-
apy (RT) prior to surgical resection increased PD-L1
expression in 10.9% of patient STS tumors (p=0.056)
while post-operative radiation therapy did not elicit
PD-L1 expression in any STS resection samples [81].
These findings suggest that PD-L1 expression can be
influenced by other treatment modalities, though much
work remains to be done due to the small study sample
sizes and limited studies available in sarcomas.

® Boxberg et al. (82)
Kim et al. (83)
Kim et al. (84)
D' Angelo et al. (85)
Chowdhury et al. (86)
Queetal (87)
Patel et al. (81)
Pollack et al. (88)
van Erp et al. (89)
Paydas et al. (90)
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S SELLES
Qi&&é‘?g&Qeo
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Fig. 2 Prevalence of PD-L1 expression in soft-tissue sarcomas across published studies. This figure shows the levels of PD-L1 expression in different
sarcoma subtypes that has been reported across a number of studies [79, 81-90]. Inter- and intra-variability of PD-L1 expression among different
sarcoma subtypes warrants extensive studies to establish the use of existing PD-L1 assays as a reliable predictive biomarker to immune checkpoint
inhibition in soft tissue sarcomas (STS). ARMS: Alveolar rhabdomyosarcoma; ASPS: Alveolar soft part sarcoma; DDLPS: Dedifferentiated liposarcoma;
ERMS: Embryonal rhabdomyosarcoma; ES: Ewing sarcoma; LMS: Leiomyosarcoma; LPS: Liposarcoma; MFS: Myxofibrosarcoma; MPNST: Malignant
peripheral nerve sheath tumor; OGS: Osteosarcoma; PRMS: Pleomorphic rhabdomyosarcoma; SS: Synovial sarcoma; UPS: Undifferentiated

pleomorphic sarcoma; WD-LPS: Well differentiated liposarcoma
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Microsatellite Instability (MSI)/ Deficient Mismatch Repair
(dMMR)

MSI occurs when dMMR results in hypermutation in
short stretches of DNA (microsatellites). MSI-H have
higher potential to code for tumor-associated neoanti-
gens [91] that can be recognized by the immune system,
eliciting an antitumor response. A phase II study by Le
et al. demonstrated that high levels of somatic muta-
tions in dMMR colorectal tumors was associated with
increased expression of tumor-associated antigens com-
pared to proficient mismatch repair (pMMR) colorec-
tal tumors [70]. In the same study, 40% of patients with
dMMR tumors responded to PD-1 inhibition, while none
of the patients with pMMR tumors achieved an objective
response, thus highlighting the role of dMMR as a pre-
dictive biomarker for ICI response.

Currently, IHC, PCR and next-generation sequencing
(NGS) are used to assess MSI [92]. In the same review
mentioned previously, Wang et al. has provided a com-
prehensive evaluation of the three assays in use [58].

A meta-analysis by Lorenzi et al. reported the prev-
alence of dMMR among six common tumor types,
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including colorectal, endometrial, esophageal, gastric,
renal and ovarian cancers, which suggested that the
prevalence of AMMR/MSI differs between tumor types
and cancer stages [93] (Fig. 3). Notably, MSI/dMMR
accounts for only approximately 1% of sarcomas, with
the exception of pleomorphic rhabdomyosarcoma
(PRMS), embryonal rhabdomyosarcomas (ERMS), LMS
and malignant peripheral nerve sheath tumor (MPNST)
that have higher rates of MSI/dMMR [94]. Given the low
prevalence of MSI-H tumors in sarcomas and the lack of
trials evaluating the role of MSI in predicting ICI treat-
ment response in sarcomas, MSI/dMMR may be of lim-
ited use in guiding the clinical decision-making for ICIs
in sarcomas.

Tumor Mutation Burden (TMB)

Cancer neoantigens are tumor-specific antigens that
arise from genetic mutations within tumor cells that
can be recognized by the immune system. Hence,
highly mutated tumors are more likely to express neo-
antigens and provide an opportunity for ICIs to reinvig-
orate the immune system and stimulate an antitumor
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Lorenzi et al. (93)

Lam et al. (94)

Tumor Types

Fig. 3 Pooled prevalence of MSI-H and dMMR among different tumor types. Bar graphs show the prevalence of MSI-H and dMMR in various
cancers as summarized by Lorenzi et al. and Lam et al. [93, 94]. Low prevalence of MSI-H in Ewing sarcoma (ES) and wide variation of dMMR
between sarcoma subtypes warrants further studies to explore the correlation between MSI-H / dMMR and clinical response to immune checkpoint
inhibition. Results from Lorenzi et al. were pooled from various studies. Lam et al. did not evaluate for MSI-H. Asterisk indicates analysis for dMMR
was not feasible. ARMS: Alveolar rhabdomyosarcoma; ASPS: Alveolar soft part sarcoma; CRC: Colorectal cancer; CS: Chondrosarcoma; ERMS:
Embryonal rhabdomyosarcoma; ES: Ewing sarcoma; LMS: Leiomyosarcoma; MPNST: Malignant peripheral nerve sheath tumor; OGS: Osteosarcoma;
PRMS: Pleomorphic rhabdomyosarcoma; SS: Synovial sarcoma. Asterisk indicates analysis for dMMR was not included
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response [95]. As predicted, improved survival after ICI
treatment was indeed observed in patients with high
TMB in multiple cancer types [96, 97].

However, the use of high TMB as a predictive bio-
marker for ICI response has demonstrated conflicting
results in gastrointestinal cancers, with most studies
reporting the lack of a significant association between
high TMB and response to ICIs [71, 98—101]. A retro-
spective study by Wang et al. analyzed the mutational
signatures of microsatellite-stable gastrointestinal
tumors with high TMB and found that not all genes
associated with high TMB correlated with an enhanced
antitumor response, hence suggesting that the types of
mutational signatures in tumors could play a role in the
expression of immunogenic neoantigens [41].

TMB is defined as the number of somatic mutations
in the tumor exome [96] and can be classified into low
(1-5 mutations per Mb), intermediate (6—19 muta-
tions per Mb) and high (>20 mutations per Mb) [102].
TMB can be measured using WES, but clinical imple-
mentation has been limited due to the large amount of
genomic deoxyribonucleic acid (DNA) required, long
sequencing time, availability of matched samples and
costs [103]. To circumvent the limitations of WES, tar-
geted NGS panels have been developed to accurately
recapitulate WES-derived genomic information while
sequencing less DNA [60, 96, 104]. In assessing TMB,
both WES and targeted NGS panels can be influenced
by various factors from sample collection, processing,
sequencing, data analysis to the lack of harmonization
in reporting cut-offs, thus limiting the independent
clinical utility of TMB [58].

Studies analyzing genomic profiles in sarcomas have
suggested low somatic mutation burden across most
sarcomas. A study of the molecular landscape of adult
STS demonstrated an average of 1.06 mutations per Mb
across 206 sarcomas of different histological subtypes
[105], while genomic profiling of over 6,100 sarcoma
cases showed a median of 1.7 mutations per Mb [106].
Additionally, even in dMMR sarcomas, TMB appears
lower than that in other dMMR tumor types, with a
median TMB of 16 mutations per Mb compared to 28
mutations per Mb [107]. The exception appears to be
head and neck angiosarcomas, where 63.4% of cases have
high TMB defined as>10 mutations per Mb [108]. Even
so, in a phase II clinical trial of metastatic or unresect-
able angiosarcoma treated with combined ipilimumab
and nivolumab (NCT02834013), the objective response
rate (ORR) was only 25% and six-month progression-free
survival (PFS) was 38% [109].

Overall, the lack of studies examining the use of TMB
as a predictive biomarker of ICI response in sarcomas,
poor stratification of TMB classification, as well as a low
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median TMB across most sarcomas may limit the clinical
utility of TMB in directing ICI use in sarcomas.

Exploratory biomarkers forimmune checkpoint
inhibition in sarcomas

In this section, we discuss eight exploratory biomarkers
that may predict response to ICI therapy in sarcomas,
including gene expression signatures (GES), circulat-
ing neutrophil-to-lymphocyte ratio (NLR), indoleamine
2,3-dioxygenase (IDO), lymphocyte activation gene 3
(LAG-3), T cell immunoglobulin and mucin domain-con-
taining protein 3 (TIM-3), TP53 mutation status, B cells,
and tertiary lymphoid structures (TLS).

Gene Expression Signatures (GES)

GES are presented as a group of genes whose differential
expression has been found to be associated with a par-
ticular outcome, and have been used in the determination
of diagnosis, prognosis, and the prediction of therapeutic
outcomes [110]. Methods used to measure gene expres-
sion levels include ribonucleic acid (RNA) microarray
and RNA sequencing [111, 112], as well as newer meth-
ods including single-cell RNA sequencing, single-nucleus
RNA sequencing [113] and spatial transcriptomics [114].

In several cancers, various GES have been found to be
capable of predicting ICI response, including in mela-
noma [115-117], NSCLC [118-121], gastric cancer [122],
lower-grade glioma [123] and some across multiple can-
cer types such as in both NSCLC and melanoma [124].
In addition, a pan-tumor signature predictive of ICI
response was derived from 220 patients across HNSCC,
gastric cancer, triple-negative breast cancer, bladder, anal
canal, biliary, colorectal, esophageal, and ovarian cancers.
This pan-tumor signature defined by Ayers et al. con-
tains IFN-y- and T cell-associated inflammatory genes,
and high expression of this gene signature correlated
well with objective response to pembrolizumab (1-sided
p-value <0.001) [125].

In STS, given the heterogeneity in genomic alterations
across the various histological subtypes [126], identifying
a robust GES that is able to be used in multiple subtypes
may prove to be challenging. Nonetheless, Petitprez et al.
identified a B lineage signature associated with improved
response to ICI therapy in STS [127], and this will be dis-
cussed in further detail in the section on B cells below.

Presently, the implementation of routine gene sequenc-
ing is costly, and the complexity of its results require
expertise to analyze and interpret before they can be
used to guide clinical decision making [128, 129]. There is
a thus a need to identify a GES with minimal number of
genes to be sequenced in order to determine response to
ICIs, with its accuracy subsequently being validated in a
prospective trial.
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Circulating Neutrophil-to-Lymphocyte Ratio (NLR)
Compared to other biomarkers that may require patients’
tumor samples, NLR can be easily derived from whole
blood as a less invasive procedure with minimal risk of
complications. The ease of sample acquisition and mini-
mal patient risk has led to extensive studies of its use in
cardiovascular diseases, infectious diseases, and cancers
where it has been found to correlate with prognosis [130].

In the published literature, there is a lack of clearly
defined cutoffs as well as contrasting evidence for the use
of NLR across and within the different cancer types [131].
In a retrospective study of 509 patients with advanced
cancer, a non-linear response trend during ICI treatment
was observed and significant decreases or increases in
NLR on-treatment correlated to poorer prognostic out-
comes [132]. Conversely, in a meta-analysis by Jing et al.,
higher NLR at baseline across 23 studies correlated to
lower OS in lung cancer patients receiving ICIs [44]. In
STS, Strong et al. found that high baseline NLR, defined
as>4.5, was not independently associated with worse
survival outcomes in patients with extremity STS [133].
On the other hand, Chan et al. used receiver operating
curve analysis to determine a cutoff of high NLR at>2.5,
and demonstrated high baseline NLR to be an independ-
ent marker for poor prognosis in STS patients [134].

Overall, while the use of NLR in the clinic is less inva-
sive and more convenient, the lack of harmonization in
key parameters such as a standardized baseline NLR may
hinder the use of NLR as a predictor of response to ICIs
in sarcomas. The establishment of clearly defined cutoffs
would be essential to support its use.

Indoleamine 2,3-Dioxygenase (IDO)

IDO is a heme-containing enzyme that catalyzes the
conversion of tryptophan into kynurenine. IDO con-
tributes to an immunosuppressive effect involving both
CD4" and CD8" T cells via the rapid depletion of trypto-
phan [135]. Subsequent downstream activation of stress
response mediator general control nonderepressible
2 (GCN2) kinase results in cell cycle arrest [136], thus
inhibiting T cell proliferation. Additionally, IDO has been
demonstrated to upregulate regulatory T cell (T ) acti-
vation and activity [137, 138]. Thus, IDO has been sug-
gested for use as a prognostic marker.

In a meta-analysis by Wang et al.,, high expression of
IDO in tumor tissues was associated with poor progno-
sis (pooled hazard ratio (HR) 1.92, 95% CI, 1.52-2.43,
p<0.001) and tumor progression (pooled HR=2.25,
95% CI, 1.58-3.22, p<0.001) in cancer patients [135]. An
in vitro study has also shown that ICI therapy induces
IDO in resistant HCC through upregulation of IFN-y
that consequently results in adaptive immune evasion
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[43]. These studies shed light on alternative immune eva-
sion pathways conferred in the TME.

In sarcomas, Hiroshi et al. analyzed 47 patient speci-
mens in which 96% of high-grade osteosarcoma of the
extremities are IDO-positive [139]. Consequently, IDO
positivity has been correlated to decreased progression
free survival (PFS) (p=0.016) and OS (p=0.005) [139].
To circumvent IDO-induced resistance, IDO inhibi-
tors have been proposed to be included in combination
treatment with ICIs. Imatinib, a tyrosine kinase inhibitor
used in the treatment of gastrointestinal stromal tumor
(GIST), has demonstrated inhibition of IDO expression
in GIST mouse models [140]. However, clinical trials
testing for combination treatment with ipilimumab and
imatinib demonstrated limited efficacy and antitumor
immune response in GISTs [141].

In conclusion, IDO has been recognized as an immune
target in the TME, and the combination of IDO inhibi-
tors with ICIs has also shown efficacy in several phase
I/II clinical trials [142]. However, the phase III trial of
epacadostat with pembrolizumab in unresectable or met-
astatic melanoma (NCT02752074) failed to demonstrate
better efficacy versus placebo and pembrolizumab [143].
Taken together, there is a need for deeper understanding
of the role that IDO plays in the TME before establishing
IDO as a biomarker.

Lymphocyte-activation gene 3 (LAG-3)

In March 2022, the FDA approved a LAG-3 ICI (relatli-
mab) given in combination with the PD-1 inhibitor
nivolumab, expanding the list of immunotherapeutic
options in advanced melanoma [144]. LAG-3 is an inhibi-
tory molecule expressed by activated T cells and asso-
ciates with the T cell receptor (TCR) and CD3 at the T
cell surface [145]. The intracellular region of LAG-3 is
responsible for transducing inhibitory signals to sup-
press T cell activation, but the molecular mechanisms
governing this remain under investigation [146]. The
known ligands of LAG-3 include major histocompatibil-
ity complex (MHC) class II [147, 148], galectin-3 [149]
and fibrinogen-like protein 1 (FGL1) [150]. The utility of
LAG-3 ICIs remains to be seen, but an early phase I/II
study of combination treatment with LAG-3 and PD-1
inhibitor showed synergistic activity albeit with modest
antitumor response [151]. For further reading, Huo et al.
recently reviewed the clinical development of these novel
agents [152], which will not be further elaborated on in
this review.

In STS, analysis of blood samples from patients and
healthy donors found that LAG-3 expression in periph-
eral T cells was correlated with the degree of intratu-
moral CD8" T cell infiltration and poor prognosis [153].
Due to the novelty of anti-LAG-3 antibodies, there have
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been limited clinical trials regarding the use of LAG-3 as
a potential immune biomarker for ICI response. As ongo-
ing and future research uncovers more about the role of
LAG-3 in suppressing T cell activation and the molecu-
lar mechanisms governing this, we would then be able to
better understand its place in cancer immunotherapy and
as a predictive biomarker for ICI response in sarcomas.

T-cellimmunoglobulin and mucin domain-containing
protein 3 (TIM-3)

TIM-3 is an immune checkpoint receptor that has been
found to be expressed on many types of immune cells,
including CD4* and CD8" T cells [154], T g cells [155],
myeloid cells [156], natural killer (NK) cells [157] and
mast cells [158, 159]. In CD8" T cells, co-expression
of TIM-3 and PD-1 has been observed on the most
exhausted subset of tumor-infiltrating lymphocytes [160,
161].

TIM-3 has several ligands that bind to different regions
on the receptor, including galectin-9 (Gal-9), phosphati-
dylserine, high mobility group protein B1 (HMGB1) and
carcinoembryonic antigen-related cell adhesion molecule
1 (CEACAM]1) [159]. Gal-9 is expressed and secreted by
many hematopoietic cells and some tumor cells, and its
binding has been reported to result in T cell inhibition
and cell death [159, 162]. HMGBI1 binds to DNA from
dying cells and is also secreted by tumor cells. HMGB1
binding to DNA facilitates their uptake and activation
of toll-like receptors (TLRs), but it can also be bound by
TIM-3, which sequesters it and prevents its activation
of TLRs, thereby dampening antitumor immunity [159,
163]. CEACAML1 is expressed by T cells [164], DCs [165],
monocytes [166] and macrophages [167], and its binding
results in TCR signaling inhibition [164].

In mouse models of lung adenocarcinoma, Koyama
et al. observed that in tumors which progressed follow-
ing initial response to anti-PD-1 therapy, there was an
upregulation of other immune checkpoint receptors,
particularly TIM-3, on PD-1 antibody-bound T cells.
Subsequent administration of combined anti-PD-1 and
anti-TIM-3 therapy resulted in improved survival. The
upregulation of TIM-3 was also seen in two patients who
developed adaptive resistance to anti-PD-1 therapy, pre-
senting TIM-3 upregulation as a possible biomarker of
PD-1 therapy resistance [168].

Several anti-TIM-3 antibodies are being tested in phase
I/II clinical trials, with some in combination with anti-
PD-1/-PD-L1 antibodies, in the contexts of acute myelog-
enous leukemia, myelodysplastic syndrome, and various
solid tumors. This combination has been demonstrated
to be generally well-tolerated in early data and some anti-
TIM-3 antibodies have displayed activity in lung cancer
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[169]. Nonetheless, the efficacy of these novel agents
remains to be explored in sarcomas.

There have also been some studies evaluating the
prognostic value of TIM-3 expression. Zang et al. dem-
onstrated that TIM-3 was an independent prognostic
indicator for poor OS in patients with malignant tumors
(HR=1.54; 95% CI, 1.19-1.98; p=0.001) based on mul-
tivariate Cox regression analysis of 28 studies, and this
was also observed in The Cancer Genome Atlas (TCGA)
patient cohorts (HR=1.2; p<0.001). When stratified by
tumor type, however, TIM-3 expression was not asso-
ciated with OS in sarcoma (3 studies with 780 cases;
p=0.232) [170]. In contrast, Pu et al reported that
among 38 osteosarcoma tumor samples, 36 samples
expressed TIM-3, and TIM-3 overexpression was associ-
ated with poorer OS (p<0.001) [171].

Overall, anti-TIM-3 targeted therapy is still in its early
stages of development, and more robust data on TIM-3
is needed to evaluate its role as a predictive biomarker
for ICI therapy in sarcomas. Clinical trials evaluating the
efficacy of anti-PD-1/PD-L1 antibodies combined with
anti-TIM-3 antibodies could uncover more information
on the relationship between immune checkpoint recep-
tors within the TME.

TP53 mutation status

The tumor suppressor protein p53 is critical in the pre-
vention of oncogenesis [172]. TP53 is the most frequently
mutated gene among human cancers [172-174] and
TP53 mutations commonly result in both loss of tumor
suppressor function and gain of oncogenic function
[175].

In sarcomas, TP53 is also one of the most frequently
altered genes, albeit widely varying across histological
subtypes [42, 127, 176—178]. Nassif et al. reported that
TP53 mutation in sarcomas is associated with shorter
disease-free survival (HR=1.63; 95% CI, 1.04—2.54; Cox
p=0.032) and better treatment outcomes with anthracy-
clines (OR=3.70; 95% CI, 1.20-11.97; p=0.02) [42, 176,
177, 179, 180]. However, there has been a lack of studies
evaluating the use of TP53 as an immune biomarker for
ICI therapy in sarcomas.

Nevertheless, TP53 mutation status has been observed
to be significantly correlated with PD-L1 expression
[42] and response to ICI therapy in NSCLC [181-184].
In NSCLC and colorectal cancer (CRC), Agersborg
et al. explored the relationship between mutation pro-
file and PD-L1 expression and found that tumors with
TP53 mutation in the NSCLC cohort had significantly
higher PD-L1 expression (p=0.01), though this was not
observed in the CRC cohort (p=0.5). In fact, the CRC
cohort had significantly lower expression of PD-L1
(p=0.0005) compared to the NSCLC cohort despite
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similar rates of TP53 mutation across both cancers, sug-
gesting that varying mechanisms regulate PD-L1 expres-
sion across different tumor types [185].

In addition, Sun et al. compared lung adenocarcinoma
TMB data of TP53-missense-mutant and TP53-non-
sense-mutant groups to TP53-wild-type groups from
Memorial Sloan Kettering Cancer Center (MSKCC)
(p<0.01 and p<0.05 respectively), TCGA (p<0.0001 for
both) and GENE+ (p<0.0001 for both) databases using
a Wilcoxon test and reported that both 7TP53-mutant
groups demonstrated elevated TMB and neoantigen lev-
els compared to the TP53-wild-type group [42].

Taken together, TP53 mutation status appears to
be correlated with other biomarkers of ICI therapy in
NSCLC. However, whether this is also true in sarcoma
remains to be seen, as further investigation into the rela-
tionship between TP53 mutation status and response to
ICIs is needed.

B Cells

B cells are responsible for the humoral arm of the adap-
tive immune system. Activation of naive B cells by CD4™
T cells results in B cell proliferation, somatic hypermuta-
tion of immunoglobulin genes and class switching. Sub-
sequently, activated B cells differentiate into plasmablasts
and long-lived plasma cells which produce antigen-spe-
cific antibodies that are responsible for the clearance of
antigens [186].

The role of B cells in the TME remains controversial,
with conflicting evidence across different studies. A com-
prehensive review of publications investigating the prog-
nostic value of tumor-infiltrating B cells in cancer found
that 50% of studies reported a positive prognostic effect
for B cells, while 9% and 40% reported a negative or neu-
tral effect respectively [187]. An in vitro study showed
that B cells suppress tumor immunity by downregulating
the expression of IFN-y in CD8" T cells, a cytokine pos-
sessing antitumor activity [188], while increasing inter-
leukin-10 (IL-10) production that further inhibits IFN-y
production by T cells [189]. Interestingly, co-culture
of B cells with different cancer cell lines yielded differ-
ent expression levels of IL-10, with sarcoma cells failing
to stimulate IL-10 production in B cells, in contrast to
Friend murine leukemia virus gag-expressing and mela-
noma cells which induced B cell IL-10 secretion [189].
In contrast, a separate study highlighted the antibody-
mediated antitumor response of activated B cells in
murine models of metastatic pulmonary tumors [190].
These conflicting reports of the role of B cells in antitu-
mor immunity are likely due to heterogeneity of the B cell
population within the TME, which could ultimately influ-
ence clinical outcomes.
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Various subtypes of B cells are found in the TME. In
tertiary lymphoid structures (TLS) within the TME, B
cells are thought to be mainly involved in antigen presen-
tation, where they help to activate both CD4" and CD8"*
T cells [191-194]. Subsequent antigen-driven matura-
tion of B cells into plasma cells leads to the generation
of in situ tumor antigen-specific antibodies [191]. Thus,
B cells are instrumental in the generation of antitumor
activity initiated within TLS. An immunosuppressive
subset of B cells within the TME has also been described,
commonly referred to as regulatory B cells. These cells
act by secreting immunosuppressive cytokines [189]
and have been identified in the TME of several cancers,
including breast cancer [195], HCC [196], tongue squa-
mous carcinoma [197], gastric cancer [198] and prostate
cancer [199].

Increasing numbers of studies on immune subsets in
the TME have led to the development of predictive bio-
markers focused on the B cell compartment. In mela-
noma and RCC, B cell markers were enriched in tumors
from responders versus non-responders to ICI therapy
[178]. In another study involving the gene expression
analysis of 3585 patients, a B cell-related gene signature
comprising nine cytokine signaling genes was predictive
of clinical response to ICI therapy in melanoma [200].

In STS, Petitprez et al. identified the overexpression
of the B lineage signature as a distinctive feature of an
immune class of sarcomas with high immune infiltration
(p=1.8x10"%) and found that it was also significantly
associated with improved OS (p=4.25x 107%). Patients in
this immune class also demonstrated the best response to
pembrolizumab defined by the percentage change in size
of target lesions from baseline (n=45, p=0.026) in the
SARC028 trial [127].

In conclusion, the role that B cells play in the TME is
not clearly understood, given the numerous B cell sub-
types present. Nonetheless, there is evidence for B cells
playing a crucial role in response to ICI therapy in sar-
comas and other cancers, as seen from the B cell-related
gene signatures. Characterization of B cell subtypes in
the TME as well as further validation of these gene sig-
natures in larger cohorts and prospective trials could
help identify the specific B cell populations and their cell
states as a predictor for response to ICIs.

Tertiary Lymphoid Structures (TLS)

TLS are ectopic lymphoid structures that have been
found to develop in response to chronic inflammation
[201] and in various solid tumor types [202, 203]. Within
the cancer literature, definitions of what constitutes a
TLS as well as its maturation state vary significantly. Sau-
tés-Fridman et al. and Vanhersecke et al. defined TLS as
lymphoid aggregates consisting of B lymphocytes that are
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closely associated with plasma cells and T lymphocytes,
making the distinction that mature TLS (mTLS) have at
least one CD23" follicular dendritic cell, while immature
TLS (iTLS) are CD23~ [201, 204]. In contrast, Lin et al.
classified TLS into two categories based on their mor-
phology — TLS aggregates, which are simply small clus-
ters of lymphocytes; and TLS follicles, which are large
clusters of lymphocytes that can be further distinguished
based on the presence or absence of germinal centers
[205].

TLS have been found to benefit prognosis [204—207]
and are also associated with favorable ICI treatment
outcomes [127, 204, 208-211] in several cancers. In a
retrospective analysis of patient samples comprising 11
different tumor types from three independent cohorts by
Vanhersecke et al., a higher proportion of patients with
mTLS demonstrated objective response to ICIs com-
pared to patients with iTLS or no TLS (36.9% versus
19.3% versus 19%, respectively, p=0.015). Importantly,
mTLS were predictive of response to ICIs regardless of
PD-L1 expression [204]. Remarkably, in the phase II
PEMBROSARC trial (NCT02406781) cohort, TLS-posi-
tive patients (n=30) demonstrated a 6-month non-pro-
gression rate (NPR) and ORR of 40% (95% CI, 22.7-59.4)
and 30% (95% CI, 14.7-49.4) respectively, compared
to a 6-month NPR and ORR of 4.9% (95% CI, 0.6-16.5)
and 2.4% (95% CI, 0.1-12.9) respectively, in the unse-
lected all-comer cohorts [210]. Interestingly, in the study
by Petitprez et al. mentioned in the previous section, at
least one TLS was found in the TME of nine out of eleven
tumors (82%) in the immune-high class of STS [127].
Taken together, this class of tumors is characterized by a
high expression of the B lineage signature and the pres-
ence of TLS, further supporting the significance of the
role that B cells and TLS play in the TME.

This significant improvement in clinical benefit high-
lights the potential for the presence of TLS to be utilized
as a biomarker for the selection of patients with STS for
ICI therapy.

Although TLS are emerging as key players in the TME,
the exact mechanisms of their antitumor activity have
not been fully elucidated. It has been proposed that TLS
provide a favorable environment for antigen presentation
and the differentiation and proliferation of lymphocytes
in the TME as well as the generation of effector mem-
ory T cells, memory B cells and plasma cells [191, 201,
205]. In some TLS, spatial visualization through IHC has
shown that B cells in TLS express markers of germinal
center B cells, including activation-induced deaminase,
the proliferation marker Ki67 and transcription factor
B-cell lymphoma 6 (BCL6) [212]. The expression of these
markers suggests an ongoing humoral immune response
generated within TLS.
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The growing evidence for TLS predicting response to
ICI therapy thus gives rise to the important question of
whether their use as predictive biomarkers can be imple-
mented in clinical workflows. This will be discussed in
the following section.

Clinical relevance of TLS as a predictive biomarker
for ICl response in sarcomas

Of all the exploratory predictive biomarkers for response
to ICI in sarcomas, the presence of TLS appears most
promising thus far based on the results from the PEM-
BROSARC trial [210] and the study by Petitprez et al
[127]. However, the identification of TLS via multi-
plex IHC involves a complex laboratory workflow that
requires substantial runtime and is not available in most
pathology laboratories. As such, several automated meth-
odologies have been suggested to simplify the workflow
for TLS identification.

Panagiotis et al. described the use of a deep learn-
ing algorithm to quantitatively identify hematoxylin and
eosin (H&E)-stained TLS [213]. The proposed computa-
tional methodology has accurately identified TLS com-
parable to a human counterpart and circumvents TLS
that may not be identified by specific IHC staining in
lung cancer [213]. However, the algorithm is not without
limitations, as it does not discriminate between the vari-
ous maturation states of TLS described in the literature
[204, 213]. Nevertheless, preliminary identification of
TLS through digital pathology provides a novel option to
incorporate into the clinical workflow.

Subsequently, downstream processes to character-
ize TLS can include various immunostaining techniques
such as multiplex ITHC and immunohistofluorescence
(IHF) [214]. Currently, there is a lack of standardized
marker panels to robustly quantify TLS [201]. Vanher-
secke et al. adopted a previously described method con-
sisting of H&E, CD3 and CD20 staining to assess the
preliminary TLS status of pathological samples [127],
followed by a 5-marker multiplex IHF panel consisting
of CD4, CD8, CD20, CD21 and CD23 to differentiate
between CD23-positive mTLS and CD23-negative iTLS
[204]. Similarly, the phase II PEMBROSARC trial cohort
screened for TLS using H&E, CD3 and CD20 staining
[127], followed by three different multiplex IHF pan-
els to visualize the immune environment of TLS [210].
Other studies have suggested the use of genomic probes
to identify the presence of TLS in melanoma through a
12-chemokine gene signature [215].

Although screening with a wide coverage of immune
markers could improve sensitivity and specificity in TLS
detection, using more markers for every patient sample
would also inevitably translate to increased costs and
turnaround time which would not be ideal in the clinical
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setting. Additionally, the lack of standardized immune
markers in TLS detection could lead to inconsistencies
in the identification of TLS in the clinic. Hence, there
is an urgent need to streamline and define a standard-
ized panel of markers that can be adopted in the clinical
setting.

It is important to also take into consideration that the
presence of TLS alone may not always be able to predict
response to ICIs due to the complex interplay of factors
within the TME. For example, tumors may have innate
resistance to ICIs, or even acquire resistance after treat-
ment. Jenkins et al. attributed ICI treatment failure to
three broad causes — inadequate formation of antitumor
T cells, impaired function of tumor-specific T cells, or
impaired formation of memory T cells [216]. Hence, the
use of biomarkers to infer the states of immune cells in
the TME together with the presence or absence of TLS
may be able to better predict response to ICIs.

Conclusion

Presently in sarcomas, there is still a lack of robust pre-
dictive biomarkers that can be implemented in the clinic.
Putative biomarkers will need to be tested in clinical tri-
als to establish their roles in the treatment of sarcomas
using ICIs. As new mechanisms emerge, this list will
also expand, but it is also critically important that tests
are simple and cost-effective with a short turnaround
time, so as to be applicable in centers worldwide. Patients
matched to biomarkers that accurately predict response
to ICI will change the paradigm for systemic treatment
in sarcomas and likely supersede the current standard of
care.
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