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Abstract 

Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. 
Yet, only 15–60% of patients respond significantly. Therefore, accurate responder identification and timely ICI admin-
istration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immu-
nology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These 
biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with 
invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI 
efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response 
and the potential for widespread clinical application, we review the recent research in this field with the aim of con-
tributing to the identification of patients who may derive the greatest benefit from ICI therapy.
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Introduction
Over the past twelve years, immune checkpoint inhibitor 
(ICI) therapy has revolutionized the treatment landscape 
in oncology, with ipilimumab (binding to cytotoxic-T-
lymphocyte-associated antigen 4 reported to remarkably 

improve the survival outcomes of patients with tumors 
[1]. As a relatively emerging therapy, in contrast with 
chemotherapy, ICI therapy has better therapeutic target-
ing, longer-lasting efficacy, and fewer systemic adverse 
effects [2]; moreover, compared with targeted therapy, it 
has wider applicability and is not limited to patients with 
tumors with specific mutations [3]. Owing to the better 
long-term efficacy in advanced or refractory tumors [4], 
basic and clinical research on ICI tumor therapy has been 
attracting increasing attention. By blocking the inhibitory 
immune signaling pathways in the tumor microenviron-
ment (TME) [5], ICIs can avoid the apoptosis of T cells 
and rescue the cytotoxicity of tumor-specific T cells  in 
the tumor microenvironment (TME); hence, they over-
come the immunosuppressive environment, and effective 
anti-tumor response can be re-established [6–9].

Despite the remarkable breakthrough of ICI therapy 
in malignancy, only 15–60% of patients respond [10]. 
The major determinants contributing to ICI response 
and resistance are tumor-intrinsic factors [11, 12]. 
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In addition, the landscape of tumor and TME can 
be shaped in the course of ICI treatment [13]. Indis-
criminate administration of ICIs without systematic 
evaluation and selection may cause inappropriate or 
delayed treatment and wastage of considerable social 
and medical resources. Therefore, the exploration of 
biomarkers for ICI response and prognosis prediction 
has become a critical issue to be resolved. The US Food 
and Drug Administration-approved markers to predict 
ICI efficacy in the clinic include PD-L1 expression, mis-
match repair-deficient/microsatellite instability-high, 
and  tumor mutation burden (TMB). However, many 
other biomarkers with high predictability have also 
been validated [14–18]. Nevertheless, samples for these 
biomarkers have typically been obtained via invasive 
surgery or biopsy. Owing to the temporal and  spatial 
complexity of the tumors and TMEs [19, 20], the biopsy 
sample from a single site does not seem to be represent-
ative of the overall landscape. Compared with invasive 
biomarkers, the novel non-invasive biomarkers have 
substantial advantages. First, as samples are usually 
acquired with no or minimal invasiveness, the possibil-
ity of tumor metastasis caused by the sample collection 
is eliminated and latent risks are avoided. Second, mul-
tiple non-invasive biomarkers have been demonstrated 
to systemically and accurately reflect disease status and 
overcome the spatial heterogeneity of tumor. Third, 
non-invasive samples are easily collected multiple times 
during ICI treatment, helping overcome tumor tempo-
ral heterogeneity and enabling dynamic and continuous 
monitoring of disease evolution. Fourth, non-invasive 
detection requires relatively fewer resources and less 
time, making it more accessible to patients and improv-
ing medical efficiency and effectiveness. Owing to the 
remarkable advantages described above, non-invasive 
markers show great potentiality to be widely applied to 
predict ICI efficacy in clinical practice.

To date, with the tremendous advances made by inter-
disciplinary development, a considerable number of 
non-invasive predictive biomarkers for ICI response 
have emerged. Here, we provide a relatively comprehen-
sive description of the biomarkers reported during the 
last seven years, which show significant predictive value 
and are most likely to be widely used in clinical prac-
tice (Table 1). We mainly focus on the recent and salient 
non-invasive biomarkers based on the radiomic features 
of medical images, liquid biopsy (LB), microbiota and 
microbial metabolites, and other biomarkers related to 
clinical characteristics (Fig.  1), with the aim to provide 
useful information for the identification of patients who 
may derive the most benefit from immunotherapy in the 
future.

Medical image‑based radiomic biomarkers
Combined with artificial intelligence (AI), radiomics can 
capture tumor heterogeneity and provide a complete 
view of TME phenotypes by quantitatively analyzing 
medical image features (e.g., texture, region of interest) 
[58–60]. Owing to their ability to non-invasively and 
dynamically monitor disease evolution and stratify can-
cer patients with diverse clinical outcomes, radiomic 
biomarkers show broad prospects in clinical decision-
making [61]. In this part, we will discuss the role of radi-
omic image signatures, radiotracers, and clinical features 
in exploring non-invasive radiomic biomarkers for ICI 
therapy response and prognosis.

AI and radiomic image signatures
Nowadays, imaging examinations including the combina-
tion of  computed tomography (CT) and  positron emis-
sion tomography (PET), and magnetic resonance imaging 
(MRI) have been used extensively for disease diagnosis 
and monitoring in routine clinical practice; they may 
potentially serve as non-invasive tools for developing 
biomarkers for ICI therapy.

Radiomic biomarkers developed by PET/CT
Mu et  al. found that the combination of AI and image 
signatures based on 18F-fluorodeoxyglucose (FDG) PET/
CT before ICI initiation can predict PD-L1 expression 
and identify patients with non-small cell lung cancer 
(NSCLC) who may have a favorable response to  treat-
ment [21]. The areas under the receiver operating char-
acteristic curves (AUCs) were 0.86 in training cohorts 
(n = 99,  95% confidence interval [CI] 0.79–0.94), 0.83 in 
retrospective training cohorts (n = 47, 95% CI 0.71–0.94), 
and 0.81 in prospective test cohorts (n = 48, 95%CI 0.68–
0.92) respectively. Subsequently, in advanced NSCLC, 
the authors developed a deeply learned score (DLS) 
utilizing the the image signatures of 697 patients who 
received ICI administration and 18F-FDG PET imaging 
[22]. They showed that their  PD-L1 DLS differentiated 
PD-L1 positive and PD-L1  negative patients  noticeably 
(AUC ≥ 0.82). Unexpectedly, DLS performed equally to 
immunohistochemistry-derived PD-L1 for progression-
free survival (PFS) and overall survival (OS). Further-
more, when integrating DLS and clinical data, the score 
accurately predicted PFS, durable clinical benefit (DCB), 
and OS in retrospective and  prospective testings, and 
validation cohorts (C-index 0.70–0.87), suggesting that 
DLS can be a surrogate for immunohistochemistry-based 
PD-L1 detection to non-invasively guide immunotherapy 
decisions.



Page 3 of 19Song et al. Biomarker Research           (2023) 11:57  

Ta
bl

e 
1 

Su
m

m
ar

y 
of

 s
tu

di
es

 o
n 

no
n-

in
va

si
ve

 b
io

m
ar

ke
rs

 fo
r t

um
or

 IC
I t

he
ra

py
 e

ffi
ca

cy
 re

ce
nt

ly

Ty
pe

 o
f m

ar
ke

r
M

ar
ke

r
Ca

nc
er

 ty
pe

Ti
m

ep
oi

nt
O

bj
ec

t
Ca

se
s

M
ai

n 
fin

di
ng

s
Effi

ca
cy

 o
f m

ar
ke

r
Re

fs

Ra
di

om
ic

-b
as

ed
 

bi
om

ar
ke

r
18

F-
FD

G
 P

ET
/C

T 
si

gn
at

ur
e

N
SC

LC
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

99
,4

7,
48

18
F-

FD
G

 P
ET

/C
T 

si
gn

at
ur

es
 p

re
-t

re
at

m
en

t i
de

nt
ifi

ed
 

pa
tie

nt
s 

be
ne

fit
in

g 
fro

m
 IC

Is
AU

C
 =

 0
.8

6,
 0

.8
3,

 0
.8

1
[2

1]

PD
-L

1 
D

LS
N

SC
LC

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
69

7
Co

m
bi

ne
d 

w
ith

 c
lin

ic
al

 d
at

a,
 D

LS
 w

as
 c

ap
ab

le
 o

f a
cc

u-
ra

te
ly

 p
re

di
ct

in
g 

D
C

B,
 P

FS
, a

nd
 O

S 
in

 d
iff

er
en

t c
oh

or
ts

C
-in

de
x =

 0
.7

0–
0.

87
[2

2]

rA
D

C
G

lio
bl

as
to

m
a

Po
st

-t
re

at
m

en
t

Pa
tie

nt
s

44
Pa

tie
nt

s 
w

ith
 rA

D
C

 ≥
 1

.6
3 

sh
ow

ed
 lo

ng
er

 O
S

H
R 
=

 0
.4

1,
 P

 =
 0

.0
2

[2
3]

Ra
di

om
ic

 s
co

re
 o

f 
tu

m
or

-in
fil

tr
at

in
g 

C
D

8 
+

 T 
ce

lls

A
dv

an
ce

d 
so

lid
 

tu
m

or
s

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
13

7
H

ig
he

r r
ad

io
m

ic
 s

co
re

s 
at

 b
as

el
in

e 
co

rr
el

at
ed

 to
 a

 h
ig

he
r 

pr
op

or
tio

n 
of

 p
at

ie
nt

s 
w

ith
 o

bj
ec

tiv
e 

re
sp

on
se

 o
r S

D
 a

t 
6 

m
on

th
s 

an
d 

lo
ng

er
 O

S

P 
=

 0
.0

25
, 0

.0
13

 fo
r o

bj
ec

tiv
e 

re
sp

on
se

 
an

d 
SD

 re
sp

ec
tiv

el
y

H
R 
=

 0
.5

8,
 P

 =
 0

.0
08

1 
fo

r O
S

[2
4]

M
ax

im
um

 89
Zr

-la
be

le
d 

C
D

4 
ra

tio
 (t

um
or

 to
 

he
ar

t)

7 
di

ffe
re

nt
 tu

m
or

 
m

od
el

s
Pr

e-
tr

ea
tm

en
t

M
ic

e
35

Th
e 

89
Zr

-la
be

le
d 

C
D

4 
ra

tio
 >

 9
 w

as
 a

ss
oc

ia
te

d 
w

ith
 lo

ng
er

 
O

S
P 
=

 0
.0

01
8

[2
5]

68
 G

a-
gr

az
yt

ra
ce

r
Co

lo
n 

Ca
nc

er
12

 d
ay

s 
po

st
-

tu
m

or
 in

oc
ul

a-
tio

n

M
ic

e
12

Th
e 

hi
gh

 68
 G

a-
gr

az
yt

ra
ce

r u
pt

ak
e 

gr
ou

p 
sh

ow
ed

 s
m

al
le

r 
tu

m
or

 v
ol

um
es

 c
om

pa
re

d 
w

ith
 th

e 
lo

w
 u

pt
ak

e 
gr

ou
p

P 
<

 0
.0

5
[2

6]

SU
Vm

ax
 o

f 89
Zr

-la
be

le
d 

at
ez

ol
iz

um
ab

Bl
ad

de
r c

an
ce

r, 
N

SC
LC

, a
nd

 T
N

BC
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

22
Pa

tie
nt

s 
w

ith
 C

R 
ha

d 
a 

hi
gh

er
 S

U
Vm

ax
 c

om
pa

re
d 

to
 

th
os

e 
w

ith
 p

ro
gr

es
si

ve
 d

is
ea

se
Th

e 
ge

om
et

ric
 m

ea
n 

SU
Vm

ax
 c

or
re

la
te

d 
to

 P
FS

 a
nd

 O
S

P 
=

 0
.0

00
21

H
R 
=

 1
1.

7,
 P

 =
 0

.0
00

02
8 

fo
r P

FS
; 

H
R 
=

 6
.3

, P
 =

 0
.0

02
7 

fo
r O

S

[2
7]

89
Zr

-la
be

le
d 

pe
m

br
ol

i-
zu

m
ab

A
dv

an
ce

d 
m

el
a-

no
m

a 
or

 N
SC

LC
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

18
Th

e 
tu

m
or

 S
U

Vm
ax

 w
as

 a
ss

oc
ia

te
d 

w
ith

 IC
I r

es
po

ns
e,

 
PF

S,
 a

nd
 O

S
P 

tr
en

d 
=

 0
.0

14
P 
=

 0
.0

02
5 

fo
r P

FS
P 
=

 0
.0

26
 fo

r O
S

[2
8]

Bl
oo

d-
ba

se
d 

bi
o-

m
ar

ke
r

C
TC

s
N

SC
LC

Pr
e-

 a
nd

 4
 w

ee
ks

 
po

st
-t

re
at

m
en

t
Pa

tie
nt

s
10

4
Th

e 
pr

es
en

ce
 o

f C
TC

s 
in

de
pe

nd
en

tly
 p

re
di

ct
ed

 th
e 

la
ck

 
of

 d
ur

ab
le

 re
sp

on
se

 to
 IC

Is
 a

t b
as

el
in

e 
an

d 
4 

w
ee

ks
 a

ft
er

 
tr

ea
tm

en
t

O
R 

0.
28

, P
 =

 0
.0

2 
at

 b
as

el
in

e;
 O

R 
0.

07
, 

P 
<

 0
.0

1 
at

 fo
ur

 w
ee

ks
 a

ft
er

 tr
ea

tm
en

t
[2

9]

C
TC

 h
et

er
og

en
ei

ty
M

et
as

ta
tic

 g
en

i-
to

ur
in

ar
y 

ca
nc

er
Pr

e-
 a

nd
 o

n-
tr

ea
tm

en
t

Pa
tie

nt
s

81
Th

e 
B 

an
d 

D
 s

ub
ty

pe
s 

w
er

e 
as

so
ci

at
ed

 w
ith

 s
ho

rt
er

 O
S 

at
 

ba
se

lin
e 

an
d 

on
 C

2D
1.

ba
se

lin
e 

In
cr

ea
si

ng
 C

TC
 h

et
er

og
e-

ne
ity

 c
or

re
la

te
d 

to
 w

or
se

 O
S 

du
rin

g 
th

e 
tr

ea
tm

en
t

P 
<

 0
.0

00
1–

0.
01

3
P 
=

 0
.0

45
[3

0]

PD
-L

1 
ex

pr
es

si
on

 o
n 

C
TC

s
M

et
as

ta
tic

 m
el

a-
no

m
a

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
25

Pa
tie

nt
s 

w
ith

 P
D

-L
1 
+

 C
TC

s 
ha

d 
lo

ng
er

 P
FS

PD
-L

1 
+

 C
TC

s 
w

er
e 

in
de

pe
nd

en
t p

re
di

ct
or

s 
of

 P
FS

PF
S,

 2
6.

6 
vs

. 5
.5

 m
on

th
s, 
P 
=

 0
.0

18
H

R 
=

 0
.2

29
, P

 =
 0

.0
26

[3
1]

PD
-L

1 
ex

pr
es

si
on

 o
n 

C
TC

s
N

SC
LC

8 
w

ee
ks

 p
os

t-
tr

ea
tm

en
t

Pa
tie

nt
s

45
Pa

tie
nt

s 
w

ith
 P

D
-L

1 
po

si
tiv

ity
 ra

te
s ≥

 7
.7

%
 a

t w
ee

k 
8 

ha
d 

lo
ng

er
 P

FS
P 

<
 0

.0
1

[3
2]

Ki
67

 le
ve

l o
f c

irc
ul

at
in

g 
PD

-1
 +

 C
D

8 
+

 T 
ce

lls
M

el
an

om
a

Pr
e-

 a
nd

 6
 w

ee
ks

 
po

st
-t

re
at

m
en

t
Pa

tie
nt

s
29

H
ig

he
r K

i6
7 

le
ve

ls
 o

f c
irc

ul
at

in
g 

PD
-1

 +
 C

D
8 
+

 T 
ce

lls
 a

t 
ba

se
lin

e 
sh

ow
ed

 w
or

se
 O

S
Pa

tie
nt

s 
w

ith
 th

e 
ra

tio
 (P

D
-1

 +
 K

i6
7 
+

 C
D

8 
+

 T 
ce

ll 
to

 
tu

m
or

 b
ur

de
n)

 >
 1

.9
4 

at
 6

 w
ee

ks
 p

os
t-

tr
ea

tm
en

t s
ho

w
ed

 
be

tt
er

 o
ut

co
m

es
 in

 o
ve

ra
ll 

re
sp

on
se

 ra
te

, P
FS

, a
nd

 O
S

P 
=

 0
.0

2
P 

<
 0

.0
5

[3
3]



Page 4 of 19Song et al. Biomarker Research           (2023) 11:57 

Ta
bl

e 
1 

(c
on

tin
ue

d)

Ty
pe

 o
f m

ar
ke

r
M

ar
ke

r
Ca

nc
er

 ty
pe

Ti
m

ep
oi

nt
O

bj
ec

t
Ca

se
s

M
ai

n 
fin

di
ng

s
Effi

ca
cy

 o
f m

ar
ke

r
Re

fs

TC
R 

di
ve

rs
ity

 a
nd

 c
lo

n-
al

ity
 o

f P
D

1 
+

 C
D

8 
+

 T 
ce

lls

N
SC

LC
Pr

e-
 a

nd
 p

os
t-

tr
ea

tm
en

t
Pa

tie
nt

s
25

, 1
5

Pa
tie

nt
s 

w
ith

 h
ig

he
r T

C
R 

di
ve

rs
ity

 p
re

-IC
I h

ad
 b

et
te

r 
re

sp
on

se
s 

an
d 

lo
ng

er
 P

FS
 in

 th
e 

co
m

bi
ne

d 
da

ta
se

t
Pa

tie
nt

s 
w

ith
 in

cr
ea

se
d 

TC
R 

cl
on

al
ity

 p
os

t-
IC

I h
ad

 lo
ng

er
 

PF
S 

an
d 

O
S

Th
e 

op
tim

al
 Y

ou
de

n’
s 

in
de

x =
 0

.8
1,

 
Se

ns
iti

vi
ty

 =
 0

.8
7,

 S
pe

ci
fic

ity
 =

 0
.9

4 
PF

S,
 H

R 
=

 0
.2

8;
 9

5%
 C

I 0
.1

1–
0.

74
, 

P 
=

 0
.0

02
 O

S,
 H

R 
=

 0
.2

3,
 9

5%
 C

I 
0.

07
–0

.7
9;

 P
 =

 0
.0

34

[3
4]

TM
R

N
SC

LC
Pr

e-
 a

nd
 p

os
t-

tr
ea

tm
en

t
Pa

tie
nt

s
34

TM
R 

co
ul

d 
di

st
in

gu
is

h 
re

sp
on

de
rs

 a
nd

 n
on

-r
es

po
nd

er
s

Pa
tie

nt
s 

w
ith

 T
M

R 
>

 0
.3

9 
ha

d 
lo

ng
er

 P
FS

AU
C

 =
 8

7%
M

ed
ia

n 
PF

S,
 1

03
 v

s. 
35

 d
ay

s, 
P 
=

 0
.0

07
9

[3
5]

LI
PS

M
ul

tip
le

 re
cu

rr
en

t 
or

 m
et

as
ta

tic
 

ca
nc

er
 ty

pe
s

Pr
e-

tr
ea

tm
en

t 
an

d 
af

te
r t

he
 fi

rs
t 

ap
pl

ic
at

io
n

Pa
tie

nt
s

56
, 3

3
Th

e 
si

gn
at

ur
e 

pr
ed

ic
te

d 
O

S 
be

ne
fit

 a
cc

ur
at

el
y

Th
e 

lo
w

-r
is

k 
gr

ou
p 

ha
d 

lo
ng

er
 O

S 
in

 th
e 

tr
ai

ni
ng

 a
nd

 
va

lid
at

io
n 

co
ho

rt

C
 in

de
x 

0.
74

 v
s. 

0.
71

Tr
ai

ni
ng

 c
oh

or
t, 

H
R 
=

 0
.2

6,
 9

5%
 C

I 
0.

12
–0

.5
6,

 P
 =

 0
.0

00
25

; V
al

id
at

io
n 

co
ho

rt
, H

R 
=

 0
.3

0,
 9

5%
 C

I 0
.1

0–
0.

91
, 

P 
=

 0
.0

24

[3
6]

ct
D

N
A

N
SC

LC
, M

el
a-

no
m

a,
 C

ol
or

ec
ta

l 
Ca

nc
er

8 
w

ee
ks

 p
os

t-
tr

ea
tm

en
t

Pa
tie

nt
s

15
D

et
ec

tio
n 

of
 c

tD
N

A
 a

t w
ee

k 
8 

co
rr

el
at

ed
 w

ith
 s

ho
rt

er
 

PF
S 

an
d 

O
S

M
ed

ia
n 

PF
S,

 1
1 

vs
. 2

 m
on

th
s, 

H
R 

10
.2

, 
P 
=

 0
.0

01
O

S,
 H

R 
=

 1
5,

 P
 =

 0
.0

04

[3
7]

bT
M

B
N

SC
LC

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
15

2
Th

e 
bT

M
B-

hi
gh

 g
ro

up
 re

ac
he

d 
hi

gh
er

 O
RR

 v
al

ue
s 

an
d 

lo
ng

er
 O

S
O

RR
, 3

5.
7%

 v
s. 

5.
5%

, P
 <

 0
.0

00
1

O
S,

 2
3.

9 
vs

. 1
3.

4 
m

on
th

s, 
H

R 
=

 0
.6

6,
 

P 
=

 0
.1

8

[3
8]

bT
M

B
N

SC
LC

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
50

bT
M

B 
le

ve
ls

 ≥
 6

 w
as

 a
ss

oc
ia

te
d 

w
ith

 b
et

te
r P

FS
 a

nd
 O

RR
PF

S,
 H

R 
=

 0
.3

9,
 P

 =
 0

.0
1

O
RR

, 3
9.

3%
 v

s. 
9.

1%
, P

 =
 0

.0
2

[3
9]

G
IN

18
 c

an
ce

r t
yp

es
6 

w
ee

ks
 p

os
t-

tr
ea

tm
en

t
Pa

tie
nt

s
44

G
IN

 o
f c

fD
N

A
 d

ep
ic

te
d 

th
e 

IC
I e

ffi
ca

cy
 a

t w
ee

k 
6

H
R 

(N
Rs

 v
s. 

Rs
) =

 5
.7

4,
 P

 =
 0

.0
01

[4
0]

Sp
ec

ifi
c 

op
en

 re
gi

on
s 

of
 c

hr
om

at
in

G
as

tr
ic

 c
an

ce
r

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
32

, 5
2

Pa
tie

nt
s 

w
ith

 h
ig

h 
ch

ro
m

at
in

 o
pe

nn
es

s 
te

nd
ed

 to
 

re
sp

on
d 

to
 IC

Is
 a

nd
 h

ad
 b

et
te

r p
ro

gn
os

es
D

is
co

ve
ry

 c
oh

or
t, 

Se
ns

iti
vi

ty
 1

00
.0

%
, 

Sp
ec

ifi
ci

ty
 9

0.
9%

, P
 <

 0
.0

01
Va

lid
at

io
n 

co
ho

rt
, S

en
si

tiv
ity

 8
8.

9%
, 

Sp
ec

ifi
ci

ty
 5

8.
8%

, P
 <

 0
.0

01
AU

C
 =

 0
.7

17

[4
1]

Lu
ng

 d
yn

am
ic

s 
in

de
x

N
SC

LC
Pr

e-
 a

nd
 w

ith
in

 
4 

w
ee

ks
 p

os
t-

tr
ea

tm
en

t

Pa
tie

nt
s

22
Th

e 
in

de
x 

di
ffe

re
nt

ia
te

d 
pa

tie
nt

s 
w

ith
 D

C
B 

fro
m

 N
D

B 
an

d 
co

rr
el

at
ed

 w
ith

 P
FS

AU
C

 =
 0

.9
3

PF
S,

 H
R 
=

 1
1.

38
, W

al
d 
P 
=

 0
.0

06
[4

2]

LI
F

M
ul

tip
le

 u
nr

es
ec

t-
ab

le
 o

r m
et

as
ta

tic
 

ca
nc

er
 ty

pe
s

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
95

, 2
92

Th
e 

LI
F-

lo
w

 g
ro

up
 h

ad
 lo

ng
er

 P
FS

, O
S,

 a
nd

 D
C

B
M

ed
ia

n 
PF

S,
 7

.4
 v

s. 
1.

7 
m

on
th

s, 
95

%
 C

I 
2.

9–
11

.9
 v

s. 
1.

3–
2.

1 
m

on
th

s, 
P 

<
 0

.0
00

1
M

ed
ia

n 
O

S,
 2

1.
7 

vs
. 4

.3
 m

on
th

s, 
95

%
 C

I 1
2‒

31
.4

 v
s. 

3.
4–

5.
1 

m
on

th
s, 

P 
<

 0
.0

00
1

D
C

B,
 4

1.
7%

 v
s. 

6.
4%

, P
 <

 0
.0

00
1

AU
C

 =
 0

.6
22

[4
3]

H
IC

N
SC

LC
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

28
4,

 8
77

Th
e 

H
IC

-H
 g

ro
up

 h
ad

 lo
ng

er
 O

S 
in

 a
ll 

IC
I r

eg
im

en
s 

an
d 

IC
I m

on
ot

he
ra

py
M

ed
ia

n 
O

S,
 n

ot
-r

ea
ch

ed
 v

s. 
5.

0 
m

on
th

s, 
H

R 
=

 0
.3

8,
 P

 <
 0

.0
00

1 
fo

r a
ll 

IC
I r

eg
im

en
s

O
S,

 1
6.

8 
vs

. 2
.8

 m
on

th
s, 

H
R 
=

 0
.3

6,
 

P 
<

 0
.0

00
1 

fo
r I

C
I m

on
ot

he
ra

py

[4
4]

C
RA

FI
TY

 s
co

re
H

CC
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

19
0,

 1
02

Pa
tie

nt
s 

w
ith

 a
 lo

w
 C

RA
FI

TY
 s

co
re

 h
ad

 th
e 

lo
ng

es
t O

S 
an

d 
be

st
 ra

di
ol

og
ic

al
 re

sp
on

se
s

P 
<

 0
.0

01
, C

 in
de

x =
 0

.6
2

[4
5]



Page 5 of 19Song et al. Biomarker Research           (2023) 11:57  

Ta
bl

e 
1 

(c
on

tin
ue

d)

Ty
pe

 o
f m

ar
ke

r
M

ar
ke

r
Ca

nc
er

 ty
pe

Ti
m

ep
oi

nt
O

bj
ec

t
Ca

se
s

M
ai

n 
fin

di
ng

s
Effi

ca
cy

 o
f m

ar
ke

r
Re

fs

C
irc

ul
at

in
g 

ex
os

om
al

 
PD

-L
1

M
el

an
om

a
Pr

e-
 a

nd
 

3–
6 

w
ee

ks
 p

os
t-

tr
ea

tm
en

t

Pa
tie

nt
s

39
H

ig
h 

le
ve

ls
 o

f c
irc

ul
at

in
g 

ex
os

om
al

 P
D

-L
1 

pr
e-

tr
ea

tm
en

t 
w

er
e 

as
so

ci
at

ed
 w

ith
 p

oo
r c

lin
ic

al
 o

ut
co

m
es

Re
sp

on
de

rs
 s

ho
w

ed
 in

cr
ea

se
d 

ex
os

om
al

 P
D

-L
1 

le
ve

ls
 

at
 w

ee
k 

3–
6

Pa
tie

nt
s 

w
ith

 th
e 

fo
ld

 c
ha

ng
e 

va
lu

e 
>

 2
.4

3 
at

 w
ee

k 
3–

6 
ha

d 
be

tt
er

 p
ro

gn
os

es

P 
=

 0
.0

01
8

P 
=

 0
.0

00
01

P 
<

 0
.0

5

[4
6]

C
irc

ul
at

in
g 

ex
os

om
al

 
C

D
73

M
el

an
om

a
4 

w
ee

ks
 p

os
t-

tr
ea

tm
en

t
Pa

tie
nt

s
41

C
irc

ul
at

in
g 

ex
os

om
al

 C
D

73
 g

re
at

ly
 in

cr
ea

se
d 

in
 n

on
-

re
sp

on
de

rs
 a

t w
ee

k 
4 

co
m

pa
re

d 
w

ith
 b

as
el

in
e

P 
=

 0
.0

04
1

[4
7]

EV
-s

co
re

G
as

tr
ic

 c
an

ce
r

Pr
e-

 a
nd

 a
t t

he
 

fir
st

 m
on

th
 p

os
t-

tr
ea

tm
en

t

Pa
tie

nt
s

11
2

Ba
se

lin
e 

EV
-s

co
re

 c
ou

ld
 c

ha
ra

ct
er

iz
e 

6-
m

on
th

 P
D

 o
r 

de
at

h
EV

-s
co

re
 c

ha
ng

es
 a

t t
he

 fi
rs

t m
on

th
 a

ft
er

 tr
ea

tm
en

t 
co

ul
d 

pr
ed

ic
t p

ro
gn

os
is

AU
C

 =
 0

.7
29

, 0
.6

30
PF

S,
 H

R 
=

 0
.3

67
7,

 P
 =

 0
.0

47
1

O
S,

 H
R 
=

 0
.4

56
8,

 P
 =

 0
.1

82
8

[4
8]

M
ic

ro
bi

al
 b

io
m

ar
ke

r
M

ic
ro

bi
ot

a 
co

m
po

si
-

tio
n

Cu
ta

ne
ou

s 
m

el
a-

no
m

a
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

94
, 5

 
m

ic
ro

bi
om

e 
da

ta
se

ts

Ba
se

lin
e 

m
ic

ro
bi

ot
a 

co
m

po
si

tio
n 

co
rr

el
at

ed
 to

 th
e 

ou
tc

om
e 

on
e 

ye
ar

 a
ft

er
 IC

I i
ni

tia
tio

n 
in

 a
 c

oh
or

t o
f 9

4 
pa

tie
nt

s
O

pt
im

iz
ed

 a
lg

or
ith

m
s 

pr
ed

ic
te

d 
ou

tc
om

es
 a

cr
os

s 
fiv

e 
co

ho
rt

s 
co

ns
is

te
nt

ly

P 
=

 0
.0

06
AU

C
 =

 0
.5

4–
1.

00
[4

9]

SC
FA

M
et

as
ta

tic
 o

r 
ad

va
nc

ed
 s

ol
id

 
tu

m
or

s

Pr
e-

tr
ea

tm
en

t
Pa

tie
nt

s
52

Re
sp

on
de

rs
 h

ad
 h

ig
he

r l
ev

el
s 

of
 fe

ca
l a

nd
 s

er
um

 S
C

FA
s

P 
<

 0
.0

5
[5

0]

SC
FA

M
ul

tip
le

 m
ye

lo
m

a
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

85
Lo

w
er

 b
as

el
in

e 
le

ve
ls

 o
f b

ut
yr

at
e 

an
d 

pr
op

io
na

te
 w

er
e 

as
so

ci
at

ed
 w

ith
 lo

ng
er

 P
FS

P 
=

 0
.0

01
5;

 P
 =

 0
.0

02
9

[5
1]

Ex
ha

le
d 

br
ea

th
M

ol
ec

ul
ar

 p
ro

fil
es

N
SC

LC
Pr

e-
tr

ea
tm

en
t

Pa
tie

nt
s

92
, 5

1
Ba

se
lin

e 
da

ta
 s

ig
ni

fic
an

tly
 d

iff
er

en
tia

te
d 

di
ffe

re
nt

 
re

sp
on

se
s 

at
 3

 m
on

th
s

AU
C

 =
 0

.8
9,

 0
.8

5
[5

2]

Sp
iro

N
os

e 
ex

ha
le

d 
br

ea
th

 d
at

a
N

SC
LC

6 
w

ee
ks

 p
os

t-
tr

ea
tm

en
t

Pa
tie

nt
s

62
, 3

2
Th

e 
eN

os
e 

w
as

 c
ap

ab
le

 o
f d

is
tin

gu
is

hi
ng

 o
bj

ec
tiv

e 
re

sp
on

de
rs

 in
 th

e 
ea

rly
 s

ta
ge

Tr
ai

ni
ng

, A
U

C
 =

 0
.9

5,
 S

en
si

tiv
-

ity
 =

 1
00

%
, S

pe
ci

fic
ity

 =
 7

3%
Va

lid
at

io
n,

 
AU

C
 =

 0
.9

7

[5
3]

O
th

er
 c

ha
ra

ct
er

is
tic

s
G

en
de

r
A

dv
an

ce
d 

or
 

m
et

as
ta

tic
 tu

m
or

s
-

Pa
tie

nt
s

11
,3

51
M

en
 a

nd
 w

om
en

 h
ad

 d
iff

er
en

t I
C

I o
ut

co
m

es
P 
=

 0
.0

01
9

[5
4]

BM
I

M
el

an
om

a
-

Pa
tie

nt
s

20
7,

 3
31

O
be

se
 p

at
ie

nt
s 

ha
d 

im
pr

ov
ed

 P
FS

 a
nd

 O
S 

in
 th

e 
im

m
u-

no
th

er
ap

y 
co

ho
rt

H
R 
=

 0
.7

5,
 0

.6
4

[5
5]

BM
I

M
el

an
om

a
-

Pa
tie

nt
s

42
3

To
 o

bs
er

ve
 th

e 
as

so
ci

at
io

n 
be

tw
ee

n 
BM

I a
nd

 s
ur

vi
va

l 
ou

tc
om

es
N

S
[5

6]

Bo
dy

 c
om

po
si

tio
n

M
el

an
om

a
-

Pa
tie

nt
s

28
7

Pa
tie

nt
s 

fe
at

ur
ed

 w
ith

 s
ar

co
pe

ni
c 

ob
es

ity
 s

ho
w

ed
 

in
fe

rio
r P

FS
 a

nd
 th

os
e 

fe
at

ur
ed

 w
ith

 h
ig

h 
to

ta
l a

di
po

se
 

tis
su

e 
in

de
x 

ha
d 

sh
or

te
r P

FS

H
R 
=

 1
.4

, P
 =

 0
.0

4;
H

R 
=

 1
.7

, P
 =

 0
.0

4
[5

7]

Ab
br

ev
ia

tio
ns

 F
D

G
 F

lu
or

od
eo

xy
gl

uc
os

e,
 P

ET
 P

os
itr

on
 e

m
is

si
on

 to
m

og
ra

ph
y,

 C
T 

Co
m

pu
te

d 
to

m
og

ra
ph

y,
 N

SC
LC

 N
on

-s
m

al
l c

el
l l

un
g 

ca
nc

er
, I

CI
 Im

m
un

e 
ch

ec
kp

oi
nt

 in
hi

bi
to

r, 
AU

C  
A

re
a 

un
de

r t
he

 re
ce

iv
er

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
 c

ur
ve

, P
D

-L
1 

Pr
og

ra
m

m
ed

 c
el

l d
ea

th
-li

ga
nd

 1
, D

LS
 D

ee
pl

y 
le

ar
ne

d 
sc

or
e,

 D
CB

 D
ur

ab
le

 c
lin

ic
al

 b
en

efi
t, 

PF
S 

Pr
og

re
ss

io
n-

fr
ee

 s
ur

vi
va

l, 
O

S 
O

ve
ra

ll 
su

rv
iv

al
, r

AD
C 

re
la

tiv
e 

A
pp

ar
en

t d
iff

us
io

n 
co

effi
ci

en
t, 

H
R 

H
az

ar
d 

ra
tio

, S
D

 S
ta

bl
e 

di
se

as
e,

 8
9Z

r Z
irc

on
iu

m
-8

9,
 6

8 
G

a 
G

al
liu

m
-6

8,
 S

U
Vm

ax
 M

ax
im

um
 S

ta
nd

ar
di

ze
d 

up
ta

ke
 v

al
ue

s, 
TN

BC
 T

rip
le

-n
eg

at
iv

e 
br

ea
st

 c
an

ce
r, 

CR
 C

om
pl

et
e 

re
m

is
si

on
, P

FS
 P

ro
gr

es
si

on
-fr

ee
 s

ur
vi

va
l, 

CT
Cs

 C
irc

ul
at

in
g 

tu
m

or
 c

el
ls

, O
R 

O
dd

s 
ra

tio
, C

2D
1 

Cy
cl

e 
2 

D
ay

 1
, T

CR
  T

 c
el

l r
ec

ep
to

r, 
CI

 C
on

fid
en

ce
 in

te
rv

al
, T

M
R 

Ra
tio

 o
f T

re
gs

 to
 L

ox
-1

 +
 P

M
N

-M
D

SC
s, 

LI
PS

 S
ig

na
tu

re
 o

f t
he

 li
qu

id
 im

m
un

e 
pr

ofi
le

, c
tD

N
A 

ci
rc

ul
at

in
g 

tu
m

or
 D

N
A

, b
TM

B 
bl

oo
d-

ba
se

d 
Tu

m
or

 m
ut

at
io

n 
bu

rd
en

, O
RR

 O
bj

ec
tiv

e 
re

sp
on

se
 ra

te
, G

IN
 G

en
om

ic
 in

st
ab

ili
ty

 n
um

be
r, 

N
Rs

 N
on

-r
es

po
nd

er
s, 

Rs
 R

es
po

nd
er

s, 
cf

D
N

A 
ce

ll-
fr

ee
 D

N
A

, L
IF

 L
eu

ke
m

ia
 in

hi
bi

to
ry

 fa
ct

or
, H

IC
 H

os
t i

m
m

un
e 

cl
as

si
fie

r, 
CR

AF
IT

Y 
CR

P 
an

d 
A

FP
 s

co
re

 in
 im

m
un

ot
he

ra
py

, H
CC

 H
ep

at
oc

el
lu

la
r c

ar
ci

no
m

a,
 E

V 
Ex

tr
ac

el
lu

la
r v

es
ic

le
, e

N
os

e 
El

ec
tr

on
ic

 N
os

e,
 S

CF
A 

Sh
or

t-
ch

ai
n 

fa
tt

y 
ac

id
s, 

BM
I B

od
y 

m
as

s 
in

de
x,

 N
S 

N
o 

si
gn

ifi
ca

nc
e



Page 6 of 19Song et al. Biomarker Research           (2023) 11:57 

Radiomic biomarkers developed using MRI
MRI may outperform PET/CT in brain tumor monitor-
ing. For example, due to the aggressiveness and unique 
immune environment of glioblastoma (GBM), selection 
of the optimal therapy for patients with GBM and predic-
tion of treatment efficacy in an early stage are challenging 
and crucial [62]. Hagiwara et al. dynamically monitored 
diffusion MRI and investigated the correlation of the data 
with ICI efficacy in 44 patients with relapsed isocitrate 
dehydrogenase wild-type GBM [23]. The result showed 
that the higher the post-treatment relative apparent dif-
fusion coefficient (rADC ≥ 1.63) was, the longer OS 
(median, 10.3 months vs. 6.1 months) would be (hazard 
ratio [HR] 0.41; P = 0.02), whereas pre-treatment rADC, 
rADC changes on-treatment, as well as tumor volume 
did not show an association with OS. Furthermore, Cox 
regression analysis indicated the correlation between 
post-ICI rADC and and survival (P = 0.02). The possible 
explanation may be that ADC is negatively correlated 
with tumor cell density. Therefore, higher post-treatment 
intra-tumoral ADC predicts better survival, highlighting 
that diffusion MRI may be a suitable choice for non-inva-
sive prediction of OS benefits in ICI-treated patients with 
GBM.

Radiomic biomarkers related to tumor‑infiltrating 
lymphocytes (TILs)
Studies suggest that the enrichment of TILs is related 
to favorable outcomes in real-world ICI-treated cohorts 
[63]. Researchers explored and independently validated a 

radiomic biomarker for CD8 + TILs to estimate the anti-
PD-L1 monotherapy efficacy in a phase 1 trial in multiple 
solid tumors [24]. Including 8 variables, this marker was 
validated with the gene expression signature in CD8 + T 
cells (AUC 0.67; P = 0.0019;  95% CI 0.57–0.77)  in The 
Cancer Genome Atlas. The marker could significantly 
distinguish inflamed (hot) tumors  from those  immune-
desert (cold) tumors (AUC 0.76; 95% CI 0.66–0.86; 
P < 0.0001). Higher radiomic scores at baseline were cor-
related with longer OS (P = 0.0081; HR 0.58; median, 
24.3 vs. 11.5 months) and higher proportions of patients 
with stable disease or  objective response (P = 0.013 and 
P = 0.025, respectively) at  6 months. Subsequently, the 
predictive performance of the radiomic signature was 
verified in another mixed dataset consisting of six inde-
pendent studies on the combination of radiotherapy and 
ICI therapy [64].

AI and radiotracer‑related signatures
The results discussed above demonstrate the potential of 
combining AI (more specifically, machine learning) with 
imaging parameters during ICI treatment to develop pre-
dictive biomarkers. Additionally, radiotracers may allow 
a more intuitive visualization of the tumor-intrinsic and 
TME status, drug distribution, as well as response to ICI 
at the cellular and molecular levels (Fig. 2).

Biomarkers developed with radiotracers at cellular level
By binding to specific molecules on the cell surface, 
radiotracers can be used to quantify the TIL, which is 

Fig. 1 Clinical application of non-invasive biomarkers for ICI efficacy prediction. eNose, Electronic Nose
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related to ICI prognosis. In seven types of mouse tumor 
models (B16F10, 4T1, CT26, MC38, Renca, P815, and 
Sa1N),  Kristensen et  al. developed zirconium-89 (89Zr)-
labeled PET radiotracers for the specific detection and 
assessment of systemic CD8a +  and  CD4+ TILs [25]. 
With high radiochemical purity and immunoreactivity 
(> 99% and > 85% respectively), the tracers were able to 
phenotype the tumor model as “hot” or “cold” and pre-
dict response to ICI therapy. Mice with the maximum 
CD4 ratio (89Zr-labeled, tumor to heart) > 9 had longer 
OS (P = 0.0018).

Biomarkers developed with radiotracers at molecular level
In addition to cellular level tracing, small molecules in 
TME can also be traced. Heskamp et  al. were the first 
to confirm that non-invasively visualizing the PD-L1 
expression in  vivo was possible [65]. Using radiola-
beled single-domain antibodies  in MC38-bearing mice, 
researchers observed the compensatory upregulation of 
lymphocyte-activation gene (LAG)-3 on TILs after PD-1 
blockade. The cooperative effect of the combination use 
of anti-PD-1 and anti-LAG-3 delayed tumor growth [66], 
providing new insights into the failure of anti-PD-1 mon-
otherapy. In addition, granzyme B, secreted by cytotoxic 
T cells in the TME, can be quantified and specifically 
targeted by PET imaging probes (i.e., gallium-68  [68 Ga]-
grazytracer) in vivo [26, 67]. With warranted safety, great 
stability, and targeting efficiency, the 68  Ga-grazytracer 
excellently predicted the response to ICIs in mice colon 

cancer models (i.e., the higher uptake group was associ-
ated with smaller tumor volumes, P < 0.05) [26], exhibit-
ing higher sensitivity than 18F-FDG [68]. Moreover, in 
a clinical trial in multiple tumor models, positive 68 Ga-
grazytracer PET imaging results were associated with a 
favorable clinical response [68]. Furthermore, radiotrac-
ers can be used to trace the biodistribution and metab-
olism of drugs. In one study, investigators innovatively 
used 89Zr to label atezolizumab in 22 patients across 
three different tumor types and recorded the PET sig-
nals [27]. They concluded that compared to patients with 
instant progressive disease, those with complete remis-
sion had higher maximum standardized uptake values 
(SUVmax) (P = 0.00021). The geometric mean SUVmax 
was also correlated with PFS (HR 11.7; 95% CI 3.3–
62.7; P = 0.000028), and OS (HR 6.3; 95% CI 1.8–33.4; 
P = 0.0027). Similarly, in their recent study  on advanced 
melanoma or NSCLC, the researchers used 89Zr to label 
pembrolizumab in patients and confirmed the associa-
tion between tumor SUVmax and therapeutic response 
(P trend = 0.014), OS (P = 0.026), and  PFS (P = 0.0025) 
[28].

To summarize, the combination of AI, radiomic image 
features, radiotracers, and clinical features may collec-
tively contribute to the development of predictive bio-
markers for ICI efficacy; however, they are subject to 
certain limitations. First, patients may be allergic or intol-
erant to contrast agents. Second, some analyses are ret-
rospective and lack adequate samples. Therefore, these 

Fig. 2 Visualization of tumor and TME with radiotracers and PET imaging in vivo. PET, Positron emission tomography; GZMB, Granzyme B; IFN-γ, 
Interferon-gamma; MHC, Major histocompatibility complex; PD-L1, Programmed cell death-ligand 1; PD-1, Programmed cell death-1; APC, Antigen 
presenting cell; LAG, Lymphocyte-activation gene; TCR, T cell receptor; TME, Tumor microenvironment; 89Zr, Zirconium-89; 68 Ga, Gallium-68
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results are required to be validated in larger prospective 
datasets. Third, the timing of imaging varies among stud-
ies, protocols for the extraction and processing of image 
features need to be standardized, and algorithms need to 
be optimized. Nevertheless, as imaging is extensively uti-
lized in conventional clinical practice and can repeatedly 
evaluate and monitor the phenotypic changes in a com-
pletely non-invasive and innovative manner, radiomics 
still offers promising prospects in ICI efficacy prediction.

Liquid biopsy
In general, LB refers to relatively non-invasive biologi-
cal detection from bodily fluids, mostly blood, but also 
urine, pleural effusion, saliva, cerebrospinal fluid, and 
others [69]. Compared with tissue biopsy, LB is mini-
mally invasive and can overcome tumor heterogeneity, 
better reflecting the overall landscape of the tumor and 
TME [70]. Owing to its extensive availability and low 
cost of sampling, dynamical monitoring of tumor evolu-
tion and timely prediction of response to ICIs are possi-
ble and allow treatment plan modification. Traditionally, 
LB, mainly focusing on tumor characteristics, includes 
circulating tumor cells (CTCs), proteins and extracellu-
lar vesicles, and circulating cell-free DNA or tumor DNA 

more specifically  (cfDNA or ctDNA) (Fig. 3). Moreover, 
the roles of circulating immune cells and related char-
acteristics (which are usually not considered to be parts 
of LB) in mirroring host immune status are equally non-
negligible [71].

CTCs
CTC quantity and heterogeneity
CTCs refer to single tumor cells or cell clusters that are 
shed into peripheral blood circulation from tumor lesions 
(primary or metastatic) [72] and are usually regarded 
as metastatic-related precursor cells [73]. Evidence has 
shown that CTC quantity and heterogeneity can serve 
as potential indicators of ICI efficacy. For instance, in 
an investigation of 104 patients with advanced NSCLC, 
the presence of CTCs was demonstrated to indepen-
dently predict the lack of durable response both before 
ICI initiation (P = 0.02,  odds ratio 0.28) and 4  weeks 
after ICI  treatment (P < 0.01,  odds ratio 0.07), and was 
also associated with poor PFS and OS [29]. In addition, 
Chalfin et  al. detected CTCs in peripheral blood before 
and during combined immunotherapy in metastatic geni-
tourinary cancer (n = 81) [30], and they found that two 
CTC subtypes with specific cellular features were linked 
with inferior OS before treatment and on cycle 2  day 1 

Fig. 3 Main blood-based biomarkers for ICI efficacy prediction. CTC, Circulating tumor cell; PD-L1, Programmed cell death-ligand 1; PD-1, 
Programmed cell death-1; TMR, Ratio of Tregs to Lox-1 + PMN- myeloid-derived suppressor cells; NLR, Neutrophil-to-lymphocyte ratio; LIPS, 
Signature of the liquid immune profile; TCR, T cell receptor; IL, Interleukin; CXCL, C-X-C motif chemokine ligand; LIF, Leukemia inhibitory factor; HIC, 
Host immune classifier; CRAFITY, CRP and AFP in immunotherapy; cfDNA, cell-free DNA; GIN, Genomic instability number; bTMB, Blood-based tumor 
mutation burden; MSI, Microsatellite instability; ctDNA, circulating tumor DNA; EV, Extracellular vesicle
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(0.9–2.3  months vs. 28.2  months; P < 0.0001–0.013). 
Moreover, a trend toward worse OS as CTC heterogene-
ity increased during the treatment was observed (from 
baseline to cycle 2  day 1, P = 0.045). The researchers 
speculated that the underlying mechanism may be that 
the differences in CTC morphology are the result of 
tumor mutation burden (TMB). Nevertheless, validation 
in other cancer types and larger independent cohorts  is 
necessary to confirm its predictive value.

PD‑L1 expression on CTCs
Evidence has shown that PD-L1 expression on periph-
eral CTCs correlates with that in tumor tissues [74], sug-
gesting its potential capacity to predict ICI efficacy as 
a surrogate marker. Investigators identified that PD-L1 
on CTCs not only assisted in distinguishing responders 
(Rs), non-responders (NRs), or pseudoprogressors in the 
early stage of ICI administration, but also had an associa-
tion with prognosis in advanced melanoma [31]. Patients 
with PD-L1 + CTCs showed longer PFS in  comparison 
with those whose CTCs had no PD-L1 expression (26.6 vs. 
5.5 months; P = 0.018). Multivariate linear regression anal-
ysis further substantiated the capacity of  PD-L1 + CTCs 
to predict PFS independently (HR 0.229; 95% CI 0.052–
1.012; P = 0.026). Another study conducted a longitudi-
nal tracking of 45 patients with NSCLC and  evaluated 
the PD-L1 expression on CTCs during nivolumab admin-
istration and found that, at week 8, patients whose PD-L1 
positivity rates were  ≥ 7.7% had significantly longer PFS 
(P < 0.01) [32]. However, it was identified as a negative 
prognostic predictor for ICI treatment in other studies 
owing to an excessively high proportion of CTCs express-
ing PD-L1 and inconsistent sampling time [75], hindering 
the assessment of its predictive value.

CTCs are usually very rare, with only 1–100 cells 
detected in 1 ml blood and a quite short half-life of 1–2.4 h 
in circulation [76], and diverse methods may enrich vari-
ous CTC subtypes; therefore, the detection of CTCs 
remains technically challenging [71]. Recently, a new tech-
nique has been used to detect mRNA expression in cap-
tured CTCs, indicating that the transcriptional profiles can 
provide valuable information on prognostic prediction in 
metastatic prostate cancer; however, CTC quantity and 
leukocyte lysis may influence test results [77]. Therefore, 
although biomarkers based on CTCs and related features 
offer crucial information for ICI efficacy prediction, the 
isolation and detection methods need to be standardized, 
and larger-scale prospective validation is required.

Circulating immune cell‑related biomarkers
Circulating immune cells with anti‑tumor function
Intratumoral immune signatures can serve as independ-
ent prognostic factors in cancer [78]. Moreover, the 

systemic immune status plays a vital role in ICI therapy 
and can also be influenced by tumor burden; accord-
ingly, biomarkers of systemic immunity may help guide 
treatment decisions [79]. Owing to the minimal invasive-
ness and real-time monitoring of the systemic immune 
status using blood samples, many investigations have 
recently focused on biomarkers based on circulating 
immune cells (e.g., monocytes, the ratio of neutrophil-
to-lymphocyte or eosinophil) [80–82], among which, T 
cells have attracted most attention on account of their 
indispensable contributions to tumor immunity. Nota-
bly, PD-1 + CD8 + T cells are representative of a subtype 
of "exhausted" T cells  (Tex cells). In advanced melanoma, 
Huang et al. demonstrated that patients with higher Ki67 
levels of PD-1 + CD8 + T cells in the circulation  before 
immunotherapy displayed worse OS (P = 0.02) than those 
with lower Ki67 levels [33]. It is speculated that high Ki67 
levels in that subset of T cells  pre-ICI treatment reflect 
the active proliferation and metabolic status and obvious 
immune responses, which are correlated with high tumor 
burden in the host; therefore, they have been proposed 
as poor prognostic indicators. In contrast, after being 
targeted by the anti-PD-1 monotherapy, the  Tex sub-
population gains the ability to reactivate, and their early 
proliferation has been identified as associated with posi-
tive clinical outcomes of ICI therapy [83]. Interestingly, 
 Tex cells expanded in patients with favorable responses, 
while effector CD8 + T cells were enriched in those 
with progressive disease, confirming the significance of 
 Tex cell reinvigoration in responding to ICIs [33]. How-
ever, if the tumor burden is too high, achieving efficient 
therapeutic outcomes would be difficult even after the 
robust reinvigoration with ICIs. Therefore, the imbalance 
between tumor burden and  Tex cell reactivation results in 
a clinical ICI treatment failure in most cases rather than 
the inability to induce immune reinvigoration. There-
fore, considering both factors may be more rational in 
ICI efficacy prediction. Researchers determined a ratio 
(Ki67 + PD-1 + CD8 + T cell to tumor burden) of 1.94 by 
classification and regression tree analysis [33], which 
turned out to strongly differentiate patients with differ-
ent clinical outcomes as early as week 6 post-treatment; 
the ratio > 1.94 was correlated with better outcomes in 
overall response rate, PFS, and OS (P < 0.05). Overall, the 
above evidence demonstrates the dual indicative role of 
 Tex cells in ICI efficacy prediction.

T cell receptor diversity and clonality
Receptor diversity of  T cells (TCR)  can reflect their 
ability to recognize neoantigens. As discussed above, 
the PD-1 phenotype represents the exhausted state of 
CD8 + T cells; therefore, this subtype may include neo-
antigen-specific cytotoxic T lymphocytes. In addition, 
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PD-1 + CD8 + T cells in circulation and the  TME  are 
similar in TCR repertoires [84]. Hence, the TCR reper-
toires of peripheral PD-1 + CD8 + T cells may function as 
substitutes for those in the tumor and provide predictive 
information during ICI administration. In one study, Han 
et  al. focused on  PD-1+CD8+ T cells in patients with 
NSCLC,  sequenced the complementarity determining 
region 3 of TCRβ chains and explored its predictive value 
in ICI therapy [34]. They demonstrated that in contrast 
to those with low diversity, patients with high TCR diver-
sity pre-ICI exhibited better responses and longer PFS 
(6.4 vs. 2.5  months; P = 0.021) in a dataset (n = 25; HR 
0.39; 95% CI 0.17–0.94), which was verified in another 
dataset (n = 15). In the combined cohorts, the optimal 
Youden’s index was 0.81 (with a specificity of 0.94 and a 
sensitivity of 0.87). Moreover, patients whose TCR clon-
ality of  PD-1 + CD8 + T  cells increased  post-ICI showed 
superior PFS and OS (7.3 vs. 2.6 months and not reached 
vs. 7.5 months; P = 0.002 and 0.034;  HR 0.28  and 0.23; 
95% CI 0.11–0.74 and 0.07–0.79, respectively) than those 
whose clonality decreased [34]. Hence, their results high-
light that in NSCLC,  the clonality  and  diversity of TCR 
from circulating PD-1 + CD8 + T cells are promising non-
invasive predictive indicators  of response to ICIs and 
survival prognosis in NSCLC, which was supported by a 
subsequent study [85].

Circulating immune cells with immunosuppressive effects
In addition to the anti-tumor subpopulation, some 
immunosuppressive components in the TME, which 
promote tumorigenesis and progression [86], can also 
provide useful information for predicting immunothera-
peutic responsiveness [87, 88]. In a cohort of patients 
with NSCLC (n = 34) on anti-PD-1 monotherapy,  Kim 
et  al. analyzed regulatory T cells (Tregs) and myeloid-
derived suppressor cells (MDSCs) in peripheral blood 
[35] and found that compared with the frequency of 
either cell type alone, the difference in the TMR (Tregs 
to Lox-1 + PMN- MDSCs  ratio) between Rs and NRs 
was greater (AUC 0.87) and PFS (P = 0.0079;  median, 
103 vs. 35  days) was considerably longer in patients 
whose TMRs were > 0.39. These findings were confirmed 
in another validation cohort (n = 29), indicating the 
unignorable role of immunosuppressive cells in ICI out-
comes prediction in NSCLC.

Comprehensive assessment of circulating immune cells
Compared to the individual evaluation of circulating 
anti-tumor or immunosuppressive cells, a combined 
evaluation may help identify biomarkers with more 
robust predictive performance. A prospective analysis 
of the immune status in patients treated with ICI across 
different recurrent or metastatic cancer types identified 

a LIPS, which is a signature of the liquid immune profile 
developed based on five subtypes of  immune cells (spe-
cific subtypes of monocytes, T cells, neutrophils, natural 
killer T cells and dendritic cells) [36]. In their analysis, the 
signature reached a high level of  accuracy in predicting 
prognostic benefit (C-index 0.74 vs. 0.71), with signifi-
cantly longer OS in the low-risk cohort in both the train-
ing and validation datasets (n = 56  and 33, HR 0.26  and 
0.30; 95% CI 0.12–0.56  and 0.10–0.91; P = 0.00025  and 
0.024, respectively). LIPS also predicted the PFS in the 
combined cohort. In addition, after the first course of 
ICI,  two types of LIPS (neutrophils and natural killer 
T cells) can indicate survival outcomes (PFS and  OS) 
dynamically. Overall, the identified LIPS signature is a 
simple, effective, and low-cost biomarker potential to 
serve as a predictor for the prognosis of cancer patients 
undergoing ICI therapy.

cfDNA‑associated biomarkers
cfDNA and ctDNA quantification
cfDNA, first identified by Mandel and Metais in 1984 
[89], refers to a mixture of nucleic acids released through 
cell secretion, necrosis, or apoptosis into the bloodstream 
[90], including ctDNA [91]. ctDNA carries tumor-spe-
cific features and the genetic and epigenetic variation 
has been an appealing alternative in cancer diagnosis and 
prognosis prediction [92, 93].

In recent years, several studies have reported using 
cfDNA or ctDNA can predict ICI response and prog-
nosis. A prospective study of anti-PD-1 therapy across 
three types  of cancer (NSCLC, melanoma, colorectal 
cancer) identified a notable relationship between the 
synchronous changes of tumor size and  ctDNA lev-
els at week 8 after treatment (r = 0.86; P = 0.002) [37], 
which was corroborated by subsequent findings [94]. 
Furthermore, the detection of ctDNA at week 8 also 
correlated with shorter PFS (median, 11 vs. 2 months; 
HR 10.2; 95% CI 2.5–41; P = 0.001) and OS (HR 15, 
P = 0.004) [37].

cfDNA mutation‑based biomarkers

Blood‑based TMB In addition to quantification of 
cfDNA level, mutation characteristics of the genome may 
also help predict the response to ICIs. Currently, tissue-
based TMB (tTMB) is commonly used to predict immu-
notherapy efficiency in clinical practice; nevertheless, it 
is subject to heterogeneity, interference by other factors 
[95], and potential risks of metastasis induced by invasive 
detection. Owing to the close correlation between blood-
based TMB (bTMB) and tTMB [96, 39], an abundance of 
investigations have focused on the application of bTMB 
in ICI efficacy prediction.
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A retrospective assessment of two randomized con-
trolled trials confirmed the positive relationship between 
tTMB and bTMB (Spearman’s rank correlation, r = 0.64, 
95% CI 0.56–0.71) and revealed that bTMB could iden-
tify patients with NSCLC sensitive to atezolizumab 
with good repeatability and predict PFS independently, 
regardless of PD-L1 expression levels [96]. Furthermore, 
utilizing the bTMB cutoff score defined in this study [96], 
in patients with NSCLC on first-line atezolizumab treat-
ment (n = 152),  Kim et  al. prospectively assessed the 
relationship between bTMB and clinical outcomes [38]. 
They observed that patients with bTMB ≥ 16 (bTMB-high 
group) reached a more favorable objective response rate 
(ORR) (35.7%  vs. 5.5%; 95% CI 19.2–55.5 vs. 2.2–12.2; 
P < 0.0001) and longer OS (23.9 vs. 13.4 months; HR 0.66; 
P = 0.18; 90% CI: 0.40–1.10) than those with bTMB < 16. 
Moreover, the ORR values improved with the increase 
of the bTMB cutoffs. In addition to assessing bTMB 
directly, Wang et  al. designed a cancer gene panel with 
an improved gene panel size and algorithm to estimate 
bTMB in NSCLC [39]. In their study, bTMB levels ≥ 6 
were associated with better ORR (39.3%; 95%CI 23.9–
56.5% vs. 9.1%, 95%CI 1.6–25.9%; P = 0.02) and PFS (HR 
0.39; P = 0.01; 95%CI 0.18–0.84).

Other cfDNA mutation‑related biomarkers In addi-
tion to bTMB, other cfDNA- and ctDNA-based genomic 
biomarkers have also been reported to show excellent 
predictive performances. Jensen et  al. developed the 
genomic instability number (GIN) [40] to evaluate the 
copy-number alterations among 18 different types of 
malignancies and demonstrated that GIN from cfDNA 
could predict PFS at approximately week 6 after ICI ini-
tiation (n = 44, HR 5.74; 95% CI 1.9–17.7; P = 0.001). Sur-
prisingly, dynamic changes in GIN levels during treat-
ment distinguished ICI responders even before radiomic 
imaging. As demonstrated by Ricciuti et al., early changes 
in ctDNA allele fraction were associated with radiomic 
response and long-term clinical efficacy in NSCLC [94]. 
Furthermore, microsatellite instability detection based on 
cfDNA was also available [97], with the higher chromo-
somal instability group exhibiting better ICI responses 
in patients with prostate cancer than the lower chro-
mosomal group. Collectively, the findings suggest that 
cfDNA mutation-related features are of great value in ICI 
efficacy prediction.

However, cfDNA mutation does not directly provide 
information on the antigenicity and presentation of 
tumor-associated neoantigens. Therefore, the biological 
differences between bTMB and the true quality or quan-
tity of neoantigens can vary among different tumor types. 
Hence, other factors, such as major histocompatibility 

complex-1 genotype and loss of heterozygosity for human 
leukocyte antigen, which potentially affect the immune 
response, need to be incorporated, and adequate efforts 
to optimize algorithms will be required in the future [38].

cfDNA epigenetic‑based biomarkers
Genomic instability and mutation are recognized as fun-
damental hallmarks of tumorigenesis and pathogenesis. 
A purely epigenetic regulation of gene expression, known 
as "non-mutational epigenetic reprogramming" [98], has 
been demonstrated to be related to the development of 
cancer [99]. Epigenetic signatures can reveal features 
beyond genetic mutation and determine the originating 
tissues of the molecules in peripheral blood [100], with 
DNA methylation being one of the most concerned.

Investigations have indicated that DNA methylation 
status in tumor tissues is associated with the progno-
sis of ICI therapy [101]. In a recent report, using eQTM 
(expression quantitative trait methylation) analysis based 
on tumor tissues in melanoma [102], researchers illus-
trated that three cis-eQTM CpGs were closely associ-
ated with the immune cytolytic activity score and could 
be used as surrogates for it. One eQTM in transcription 
factor 7 was shown to provide information on the overall 
status of T cell differentiation and exhaustion; therefore, 
it can be used as a prognostic biomarker independent 
of the cytolytic activity score. Owing to the high stabil-
ity and tissue specificity in bodily fluids [103] and the 
consistency of methylation pattern between cfDNA and 
DNA in original cells [104], the exploration of meth-
ylation biomarkers from LB is a new area of interest. 
Research has revealed that ctDNA methylation can be 
used for early disease screening, tissue origin tracking, 
and chemotherapy efficiency assessment [105, 106]. In 
patients with gastric cancer on anti-PD-1 treatment, Shin 
et  al. determined specific open regions of chromatin to 
distinguish Rs from NRs by quantitatively evaluating the 
accessibility of genome-wide chromatin of peripheral 
blood CD8 + T cells at baseline [41]. Encouragingly, when 
using nine indexes in combination, patients with gastric 
cancer with high chromatin openness achieved a clear 
response and had superior PFS (discovery cohort, n = 32, 
sensitivity 100.0%, specificity 90.9%, median, unreached 
vs. 2.7 months, P < 0.001; validation cohort, n = 52, sensi-
tivity 88.9%, specificity 58.8%, median, 7.6 vs. 1.6 months, 
P < 0.001; AUC 0.717). Moreover, a recent report inte-
grated machine learning into the sequencing of gene 
promoters from cfDNA to infer epigenetic expression 
profiles at the single-gene resolution and developed a 
“lung dynamics index” [42]. They analyzed 44 blood spec-
imens of 22 patients with NSCLC at baseline and within 
4  weeks after PD-L1 blockade initiation, demonstrating 
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that epigenetic signatures can reliably predict ICI prog-
nosis. In their analysis, this epigenetic metric reliably 
differentiated patients with DCB and no durable clini-
cal benefit (AUC 0.93, 95% CI 0.78–1.00) and had a clear 
correlation with PFS (HR 11.38, Wald P = 0.006). Taken 
together, the above evidence indicates that cfDNA-
related characteristics (including cfDNA quantification, 
genomics, and epigenetics) can identify patients who may 
most benefit from ICI therapy.

Circulating proteomic profiling in plasm or serum
Bridging the gap between genome and phenotype, prot-
eomic signatures in plasma or serum are unique protein 
patterns that correlate with tumor burden and immune 
response of patients with cancer. Loriot et  al. [43] first 
performed a large-scale analysis of the plasma proteome 
of patients with advanced malignancies on ICI ther-
apy  and found that compared with interleukin-8, inter-
leukin-6, and C-X-C motif chemokine ligand-1, which 
have previously been identified to be correlated with ICI 
outcomes [107, 108], leukemia inhibitory factor (LIF) 
had the strongest relationship with clinical prognosis and 
was independent of PD-L1 status or other indicators. In 
comparison with the LIF-high cohort, the LIF-low cohort 
showed superior DCB (41.7% vs. 6.4%, P < 0.0001), PFS, 
and OS (median, 7.4 vs. 1.7  months  and 21.7 vs. 4.3 
months; 95% CI 2.9–11.9 vs. 1.3–2.1 and 12–31.4 vs. 3.4–
5.1,  for PFS and OS respectively; P < 0.0001), which was 
validated in an independent cohort (n = 292, AUC 0.622). 
Hence, they speculated that LIF plays a critical role in 
cancer immunotherapy resistance and can be developed 
as a robust predictor. Furthermore, targeting the LIF axis 
may provide promising insights into the improvement of 
treatment efficiency, especially in patients with high 
plasma LIF levels.

Advanced techniques for protein identification or 
quantification (e.g., mass spectrometry, affinity-based 
proteomic assays), in combination with machine learning 
algorithms provide a promising approach for the identifi-
cation of predictive proteomic biomarkers for immuno-
therapy [109]. In a prospectively-designed observational 
study in NSCLC, the researchers developed a host 
immune classifier (HIC) based on serum proteomics and 
evaluated its performance in ICI outcome prediction 
[44], revealing that HIC can identify patients benefiting 
from ICI, regardless of combined therapy. Specifically, 
for patients on all ICI regimens, a significant differ-
ence in survival outcomes between the HIC-Hot (HIC-
H) and the HIC-Cold (HIC-C) groups was observed 
(n = 196, 88; HIC-H vs. HIC-C: median OS, not-reached 
vs. 5.0  months, 95%CI 15.4–undefined vs. 2.9–6.4; HR 
0.38, 95%CI 0.27–0.53; P < 0.0001). In terms of  patients 
treated with ICI monotherapy, OS was 16.8 for HIC-H 

and 2.8  months for HIC-C (HR 0.36, P < 0.0001). Addi-
tionally, the prediction efficiency was independent of 
PD-L1, implicating a better predictive performance if the 
two factors are combined. Nevertheless, this is an obser-
vational and non-randomized study that requires rigor-
ous multi-institutional design and extensive independent 
cohorts to prospectively validate. However, the current 
results are of great significance for guiding clinical immu-
notherapy decisions.

Surprisingly, studies have recently revealed that some 
plasma proteins routinely detected in clinical practice 
also show a notable predictive value. For instance, multi-
variate analysis indicated that C-reactive protein (CRP) 
and serum alpha-fetoprotein (AFP) at baseline were inde-
pendent predictors of the prognosis of PD-L1-based ther-
apy in hepatocellular carcinoma (HCC). Based on these 
findings, Scheiner et  al. developed an easily applicable 
score with CRP and AFP in immunotherapy (CRAFITY) 
[45]. Patients with a low CRAFITY score had the best radi-
ological responses (highest disease control rate, P < 0.001) 
and the longest OS (27.6  months, 95% CI 19.5–35.8) in 
the discovery cohort (n = 190), followed by CRAFITY-
intermediate patients (11.3  months; 95% CI 8.0–14.6), 
and CRAFITY-high patients (6.4 months; 95% CI 4.8–8.1; 
P < 0.001). The results were verified in another independ-
ent external cohort (n = 102, C-index 0.62). Indeed, the 
combination of AFP and CRP in ICI outcome prediction 
in HCC is rational at the mechanism level; CRP, an acute-
phase protein, is a widely-recognized systemic marker of 
inflammation  induced by cancer, and inflammation can 
contribute to tumorigenesis and disease progression [110, 
111]. Recent evidence shows that CRP can promote tumor 
immunosuppression [112]. In addition, AFP is associated 
with angiogenesis, hampers anti-tumor immunity [45], 
and facilitates tumor proliferation [113]. Nonetheless, 
some investigators disagree, arguing that the findings of 
this retrospective study are required to be further vali-
dated in large clinical studies. Of note, considering that the 
CRP and AFP levels may be affected by other diseases not 
related to HCC (e.g., infection), and there is heterogene-
ity among patients in terms of their  liver function status, 
treatment line, and the specific ICI type, the integration 
of additional indicators may help overcome selection bias 
and optimize the prognostic performance.

In contrast to DNA or RNA-based studies, proteomics 
can explore post-translational modifications and analyze 
proteins quantitatively and qualitatively, allowing in-
depth profiling of the host immune response and TME, as 
well as the identification of biomarkers for ICI outcomes 
[109]. However, due to limitations of sample preparation 
procedures, identification of protein isoforms, and retro-
spective studies, the applicability of some proteomic bio-
markers in clinical practice remains challenging.
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Extracellular vesicles
Extracellular vesicles (EVs), which are secreted by multi-
ple cell types under physiological conditions and stress, 
can be roughly classified into exosomes, microvesicles, 
and apoptotic bodies [114]. Consisting of proteins, lipids, 
and nucleic acids delivered by parental cells to recipient 
cells, EVs are considered mediators in intercellular com-
munication [115]. Owing to the immunogenicity, molec-
ular delivery functions, and different cellular origins, 
exosomes play dual roles in tumorigenesis and develop-
ment in various cancer types [116]. Specifically, immune 
cell-derived exosomes usually execute potent antitumor 
activity [117], whereas tumor cell-derived exosomes, pos-
sessing similar functions to their parental cells, are linked 
with distant tumor metastasis and immune escape [118–
120]. Accordingly, exosomes may carry meaningful infor-
mation regarding ICI efficacy prediction.

Chen et al. found that in patients with metastatic mela-
noma on anti-PD-1  therapy [46], higher levels of base-
line  circulating exosomal PD-L1 pre-treatment were 
correlated with poorer clinical outcomes (P = 0.0018). 
Furthermore, at 3–6 weeks after ICI initiation, respond-
ers showed a greater elevation of circulating exosomal 
PD-L1 levels released by metastatic melanoma cells 
(P = 0.00001). A 2.43-fold change identified by ROC anal-
ysis stratified patients with different clinical responses, 
with the value > 2.43 at week 3–6 related to better prog-
noses (ORR, PFS, and OS, P < 0.05). The favorable pre-
diction of increasing PD-L1 may be a result of T cell 
proliferation and reinvigoration successfully triggered 
by anti-PD-1 treatment, represented by circulating exo-
somal PD-L1 levels. In another study of melanoma, con-
sistent changes of PD-L1 were obtained at an early stage 

of treatment, and in comparison with baseline,  circu-
lating exosomal CD73 increased remarkably at week 4 
(P = 0.0041) in NRs but not in Rs [47]. Recently, Zhang 
et  al. comprehensively assessed the plasma EV-derived 
protein spectrum in patients with gastric cancer on ICI-
based therapies and then developed an “EV-score” [48]. 
A high “EV-score” reflected a microenvironment with 
strong anti-tumor immunity features. The baseline EV-
score reached high AUCs in predicting 6-month disease 
progression or death (AUC = 0.729 and AUC = 0.630, 
respectively). Moreover, the EV-score changes at the 
first month after ICI initiation predicted the prognosis 
(HR = 0.3677 and 0.4568, P = 0.0471 and 0.1828, for PFS 
and  OS  respectively, HR = 0.4568). This EV-score they 
developed is a stable index for stratification and dynamic 
prediction of prognosis during immunotherapy. Addi-
tionally, at the transcriptional level, EV transcriptional 
profiling revealed drivers of ICI resistance and melanoma 
progression, which correlated with clinical response to 
ICI [121].

In clinical practice, obtaining a sufficient amount of 
tumor tissues with adequate quality from patients for cel-
lular and molecular testing can be challenging. Owing to 
its minimally invasive, readily available, reproducible, and 
relatively low-cost features, LB has become an attractive 
approach that can provide comprehensive insight into 
the tumor and systemic immune profiles [70]. Peripheral 
blood-based biomarkers offer clinicians abundant infor-
mation for rapid decision-making and dynamic assess-
ment of therapeutic efficacy, showing promise for wider 
application. Nevertheless, there are some challenges 
ahead (Fig.  4). First, some circulating biomarkers (e.g., 
CTC, ctDNA) have comparatively low concentrations 

Fig. 4 Pros and cons of blood-based biomarkers. CTCs, Circulating tumor cells; ctDNA, circulating tumor DNA; cfDNA, cell-free DNA
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and short half-lives in peripheral blood [76]; for example, 
the half-life of cfDNA varies from 16  min to 13  h [122, 
123], which makes it challenging to capture and hinders 
immediate application in early efficacy evaluation [42]. 
Second, high background signals from other cells may 
interfere with the analysis. Third, heterogeneous meth-
ods of detection and analysis used at different institu-
tions may lead to inconsistent results, with different cell 
types enriched and different cutoff points for biomarkers 
identified. Lastly, factors including the time interval from 
sampling to processing of specimens and the transport 
and storage temperature may affect the cellular state and 
stability of cfDNA and proteins. Consequently, the devel-
opment of highly-sensitive techniques and formulation of 
standardized guidelines for pre-analytical procedures of 
patient specimens are urgently needed [124] to stimulate 
the identification of more robust biomarkers.

Microbiota and microbial metabolites
In addition to the medical image-based radiomic bio-
markers and markers developed by LB, the microbiome is 
also a new factor for predicting ICI efficacy. Interestingly, 
host immunity can modulate the microbiome by altering 
bacteria-associated signals, and conversely, the microbi-
ome (especially intestinal-derived) can shape the immune 
system of the host  by locally and systemically regulat-
ing  immune responses [125–127], partly attributed to 
the stimulation of host pattern recognition receptors by 
the cross-presentation of tumor and microbial antigens 
[128]. Surprisingly, ICI Rs-derived fecal transplantation 
helped patients overcome resistance to ICIs [129], pro-
viding convincing evidence that ICI efficacy can be influ-
enced by the host gut microbiome [130].

For the past few years, a considerable number of inves-
tigations have discovered specific gut microbes asso-
ciated with ICI efficacy. However, they used diverse 
analytical approaches, lacking consistency and reliable 
reproducibility. For example, by analyzing the baseline 
fecal microbiome samples of patients with melanoma on 
ICI treatment, Gopalakrishnan et  al. demonstrated the 
abundance of Ruminococcaceae bacteria in Rs (n = 43, 
P < 0.01) [131]. In other studies, Collinsella aerofaciens, 
Bifidobacterium longum, and Enterococcus faecium were 
abundant in Rs (n = 42, P = 0.004) [132], and Bacteroides 
caccae was identified in Rs for all types of ICI therapies 
(n = 39, P = 0.032) [133]. In contrast, Ruminococcus gna‑
vus and Bacteroides were shown to be related to shorter 
PFS in regression analysis of both 16S and shotgun data 
(r = 0.32, P = 0.1; r = 0.89, P < 0.001) [134]. Nevertheless, 
most studies were based on retrospective analyses and 
included limited cohorts from a single institution.

To address the issue of inconsistency, McCulloch 
et al. recently evaluated a new dataset of patients with 

melanoma on ICI  therapy (n = 94) [49]. The Time-to-
event analysis demonstrated that approximately one 
year after ICI initiation, baseline microbiota com-
position was greatly correlated with the outcomes 
(P = 0.006). The unfavorable microbiota mainly con-
sisted of Gram-negative bacteria, which can pro-
mote lipopolysaccharide-dominated inflammation in 
the gut and lead to local and systemic inflammation, 
ultimately manifested by poor prognosis. Next, the 
authors integrated bioinformatics into the meta-anal-
ysis of five microbiome cohorts of anti-PD-1 therapy 
in melanoma and reported that the taxa correlated 
with superior responses mainly were the Actinobacte‑
ria phylum and two families of Firmicutes, while those 
associated with unfavorable responses were mainly 
Gram-negative bacteria. Of note, optimized learning 
algorithms trained with batch-corrected microbiome 
data estimated ICI outcomes across all cohorts con-
sistently (AUC 0.54–1.00). The discrepancies between 
cohorts may be attributed to the nonuniform geo-
graphical distribution, which affects the microbial 
communities [49].

Compared with the concrete composition, metabo-
lites of microbiota may be more functionally mean-
ingful, playing non-negligible roles in host immunity 
when absorbed into the blood system. Short-chain fatty 
acids (SCFAs), one type of microbiota metabolites  in 
the gut, are known for their function in T cell homeo-
stasis [51]. An investigation including 52 patients with 
solid tumors on nivolumab or pembrolizumab ther-
apy  demonstrated that Rs had higher levels of fecal 
and serum SCFAs pre-treatment compared with NRs 
(P < 0.05) [50]. Inversely, in another pooled dataset 
of patients with multiple myeloma treated with ipili-
mumab (n = 85), patients were classified into two sub-
groups based on median serum SCFA concentrations at 
baseline, and Kaplan–Meier analyses showed that lower 
levels of both butyrate and propionate had associations 
with longer PFS (P = 0.0015; P = 0.0029) [51].

These studies on the profiles of gut microbiota com-
position and metabolites in patients with cancer con-
firm their promising value in ICI efficacy prediction 
with a completely non-invasive approach. However, the 
effects of microbiome composition and SCFA-focused 
microbial metabolites on host immunity modulation 
are fairly intricate. Importantly, the microbial com-
position can be affected by geographic location [135], 
diets, intake of drugs (especially antibiotics) [136, 137], 
and lifestyle. Moreover, different cancer types, treat-
ment regimens (single or combined therapy) [138], 
clinical response annotations, and bioinformatics 
methods all may contribute to significant inter-cohort 
heterogeneity and inconsistent results obtained at 
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different institutions. Hence, a more comprehensive 
evaluation of microbial function and interactions with 
the host during ICI treatment is required. Further-
more, machine learning algorithms should be efficiently 
utilized for in-depth studies in larger cohorts to iden-
tify microbial biomarkers with excellent predictive 
performance.

eNose‑related biomarkers
As an emerging and completely non-invasive method for 
medical testing, with artificial intelligence, the electronic 
nose (eNose) can capture and classify the volatile organic 
compound in exhaled breath. The detection of epidermal 
growth factor receptor mutation with high accuracy in 
lung cancer provides compelling evidence for its efficacy 
[139]. Thus, some investigators speculated that molecular 
profiles of exhaled breath could reflect the inflammatory 
environment linked with response to anti-PD-1 therapy 
for patients within NSCLC [52]. They found that baseline 
data from eNose significantly differentiated responses at 
3 months after treatment (training, n = 92, AUC 0.89, CI 
0.82–0.96; validation, n = 51, AUC 0.85, CI 0.75–0.96). 
In addition, Buma et al. [53] confirmed the precise per-
formance of eNose in distinguishing objective Rs at the 
early stage in NSCLC (n = 62 and 32, AUC 0.95 and 0.97, 
for training and validation sets respectively). Overall, the 
eNose is simple and easy to implement, after robust vali-
dation of accuracy in larger cohorts, this technology is 
promising to be used in clinical practice.

Other biomarkers related to gender and body composition
At present, studies on biomarkers for ICI efficacy mostly 
focus on tumor mutation, antigen burden, and TME; 
however, many other factors related to clinical charac-
teristics of patients such as gender and body mass index 
(BMI) may also have profound effects on the immune 
response. Differences in immune function between 
men and women exist due to genetics, hormones, and 
other factors [140]. A meta-analysis of 11,351 patients 
with advanced or metastatic tumors on ICI therapy [54] 
showed in comparison with the control group, the OS 
HR was 0.72 for men and 0.86 for women (95% CI 0.65–
0.79; 0.79–0.93). The different ICI outcomes in men and 
women (P = 0.0019) indicated that in the era of precision 
medicine, more attention demands to be paid to gender 
heterogeneity and the promotion of the effectiveness of 
immunotherapy in women; ultimately, optimal and per-
sonalized therapeutic regimens for men and women will 
be explored.

Obesity has been reported to shape the metabolism 
in the TME, impair T cell infiltration and function, and 
lead to immune senescence and dysfunction by adipo-
cyte-derived molecules (e.g., adipokines, hormones, 

cytokines), which can be reversed by anti-PD-L1 [141–
143]. Studies have shown that obesity correlates with 
improved efficacy of PD-L1 blockade in both tumor-
bearing mice and patients with malignancies [141]. A 
study explored the relationship between BMI and the effi-
cacy of different therapies in metastatic melanoma [55]. 
They observed that, in the immunotherapy cohort, obese 
patients had more favorable PFS and OS in contrast to 
those with normal BMI (n = 207 and n = 331; HR 0.75, 
95% CI 0.56–1.00 for PFS; HR 0.64, 95% CI 0.47–0.86 
for OS). Interestingly, when further grouped by gender, 
this relationship was observed in men but not women. 
However, some other studies on ICI therapy in patients 
with melanoma did not demonstrate notable associa-
tions between BMI and superior survival outcomes [56]. 
Given that studies linking obesity to immunotherapy 
efficacy lack consistency and reproducibility, Young 
et al. focused on specific body components (muscle, fat, 
etc.) in patients with metastatic melanoma undergoing 
ICI therapy (n = 287) [57]. They found that patients with 
sarcopenic obesity showed shorter PFS (HR 1.4, P = 0.04) 
in univariable analyses. In multivariable analyses, those 
with a high total adipose tissue index had shorter PFS 
(HR 1.7, P = 0.04), which was especially evident in women 
(HR 2.1, P = 0.03). Patients achieving the best outcomes 
were characterized by high skeletal muscle gauge and 
intermediate total adipose tissue index (PFS and OS, 
P = 0.02). Most recently, researchers proposed that vis-
ceral adiposity and systemic inflammation are crucial 
prognostic indicators of ICI therapy in melanoma [144]. 
Taken together, these results highlight the role of body 
composition (including obesity, BMI, and more specifi-
cally, sarcopenic obesity or visceral adiposity) in tumor 
development and ICI treatment efficacy prediction.

Conclusions
In summary, ICIs have shown amazing efficacy in cancer 
treatment; however, few patients achieve durable clini-
cal remissions [145]. Currently, biomarkers approved for 
clinical decision-making of immunotherapy are mainly 
based on invasive surgery or tissue biopsy. They are not 
able to overcome the temporal and spatial heterogene-
ity and potentially bring a series of complications due 
to the operation. In this article, we provide a relatively 
comprehensive discussion of non-invasive predictive bio-
markers for ICI efficacy from the perspective of recent 
advances in diverse fields. Specifically, markers devel-
oped by the combination of AI and radiomics may not 
only be regarded as alternatives to PD-L1 [22] but also 
outperform the existing Response Evaluation Criteria 
in Solid Tumors (RECIST) criteria for identifying long-
term beneficiaries [146]. Based on PET/CT imaging of 
radiotracers, the systemic tumor and immune landscapes 
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can be non-invasively visualized [147]. Surprisingly, LB 
can evaluate the interaction of tumor and host in cellu-
lar and molecular dimensions and may be an economi-
cal and easy-to-apply detection method. Research on 
predictive biomarkers related to gut microbiota and its 
metabolites for the efficacy of immunotherapy has been 
developing rapidly; nevertheless, heterogeneity across 
cohorts exists due to the influence of host diets, lifestyle, 
medication, and geographical distribution. Furthermore, 
by analyzing the composition of exhaled breath, the novel 
and non-invasive eNose technology may have a broader 
application beyond lung cancer [148]. Additionally, other 
clinical factors related to gender and body composition 
are readily available and should not be ignored in the era 
of precision medicine.

As described above, studies on ICI therapy have shown 
promising prospects for non-invasive biomarkers. Nev-
ertheless, there are still challenges before they can be 
routinely implemented in medical practice and addi-
tional efforts could be made from the following aspects. 
To achieve widespread application, machine learning in 
larger datasets is required and more optimized algorithms 
should be developed. Importantly, multi-center rand-
omized controlled trials with large cohorts are necessary 
for the identification and validation of biomarkers with 
robust and reliable predictive performance. Moreover, to 
achieve precise prediction, biomarkers applicable to vari-
ous tumor types (specific subtypes or pan-cancers) should 
be identified. Lastly, the cost of detection should be mini-
mized, enabling economical and extensive implementa-
tions of the non-invasive biomarkers in clinical practice.

Notably, owing to the performance limitation of a sin-
gle biomarker, integrative models incorporating multi-
ple biomarkers related to tumor-host interactions are 
required to predict ICI efficacy accurately and timely 
[149]. In the future, the identification of additional non-
invasive and dynamically predictive biomarkers with high 
sensitivity and specificity is expected. Developed by dif-
ferent detection methods, these markers will be precisely 
implemented for application in populations with diverse 
disease states, helping identify those possible to derive 
the most benefit from ICI therapy and better guide treat-
ment decisions for patients with tumors in clinical prac-
tice, which will ultimately contribute to the improvement 
of therapeutic efficacy in cancer and promotion of social 
and medical effectiveness.
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