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Immune checkpoint inhibitors (ICls) have dramatically enhanced the treatment outcomes for diverse malignancies.
Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICl admin-
istration are critical issues in tumor ICl therapy. Recent rapid developments at the intersection of oncology, immu-
nology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These
biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with
invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICl
efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response
and the potential for widespread clinical application, we review the recent research in this field with the aim of con-
tributing to the identification of patients who may derive the greatest benefit from ICl therapy.
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Introduction

Over the past twelve years, immune checkpoint inhibitor
(ICI) therapy has revolutionized the treatment landscape
in oncology, with ipilimumab (binding to cytotoxic-T-
lymphocyte-associated antigen 4 reported to remarkably
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improve the survival outcomes of patients with tumors
[1]. As a relatively emerging therapy, in contrast with
chemotherapy, ICI therapy has better therapeutic target-
ing, longer-lasting efficacy, and fewer systemic adverse
effects [2]; moreover, compared with targeted therapy, it
has wider applicability and is not limited to patients with
tumors with specific mutations [3]. Owing to the better
long-term efficacy in advanced or refractory tumors [4],
basic and clinical research on ICI tumor therapy has been
attracting increasing attention. By blocking the inhibitory
immune signaling pathways in the tumor microenviron-
ment (TME) [5], ICIs can avoid the apoptosis of T cells
and rescue the cytotoxicity of tumor-specific T cells in
the tumor microenvironment (TME); hence, they over-
come the immunosuppressive environment, and effective
anti-tumor response can be re-established [6-9].

Despite the remarkable breakthrough of ICI therapy
in malignancy, only 15-60% of patients respond [10].
The major determinants contributing to ICI response
and resistance are tumor-intrinsic factors [11, 12].
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In addition, the landscape of tumor and TME can
be shaped in the course of ICI treatment [13]. Indis-
criminate administration of ICIs without systematic
evaluation and selection may cause inappropriate or
delayed treatment and wastage of considerable social
and medical resources. Therefore, the exploration of
biomarkers for ICI response and prognosis prediction
has become a critical issue to be resolved. The US Food
and Drug Administration-approved markers to predict
ICI efficacy in the clinic include PD-L1 expression, mis-
match repair-deficient/microsatellite instability-high,
and tumor mutation burden (TMB). However, many
other biomarkers with high predictability have also
been validated [14—18]. Nevertheless, samples for these
biomarkers have typically been obtained via invasive
surgery or biopsy. Owing to the temporal and spatial
complexity of the tumors and TMEs [19, 20], the biopsy
sample from a single site does not seem to be represent-
ative of the overall landscape. Compared with invasive
biomarkers, the novel non-invasive biomarkers have
substantial advantages. First, as samples are usually
acquired with no or minimal invasiveness, the possibil-
ity of tumor metastasis caused by the sample collection
is eliminated and latent risks are avoided. Second, mul-
tiple non-invasive biomarkers have been demonstrated
to systemically and accurately reflect disease status and
overcome the spatial heterogeneity of tumor. Third,
non-invasive samples are easily collected multiple times
during ICI treatment, helping overcome tumor tempo-
ral heterogeneity and enabling dynamic and continuous
monitoring of disease evolution. Fourth, non-invasive
detection requires relatively fewer resources and less
time, making it more accessible to patients and improv-
ing medical efficiency and effectiveness. Owing to the
remarkable advantages described above, non-invasive
markers show great potentiality to be widely applied to
predict ICI efficacy in clinical practice.

To date, with the tremendous advances made by inter-
disciplinary development, a considerable number of
non-invasive predictive biomarkers for ICI response
have emerged. Here, we provide a relatively comprehen-
sive description of the biomarkers reported during the
last seven years, which show significant predictive value
and are most likely to be widely used in clinical prac-
tice (Table 1). We mainly focus on the recent and salient
non-invasive biomarkers based on the radiomic features
of medical images, liquid biopsy (LB), microbiota and
microbial metabolites, and other biomarkers related to
clinical characteristics (Fig. 1), with the aim to provide
useful information for the identification of patients who
may derive the most benefit from immunotherapy in the
future.
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Medical image-based radiomic biomarkers
Combined with artificial intelligence (AI), radiomics can
capture tumor heterogeneity and provide a complete
view of TME phenotypes by quantitatively analyzing
medical image features (e.g., texture, region of interest)
[58-60]. Owing to their ability to non-invasively and
dynamically monitor disease evolution and stratify can-
cer patients with diverse clinical outcomes, radiomic
biomarkers show broad prospects in clinical decision-
making [61]. In this part, we will discuss the role of radi-
omic image signatures, radiotracers, and clinical features
in exploring non-invasive radiomic biomarkers for ICI
therapy response and prognosis.

Al and radiomic image signatures

Nowadays, imaging examinations including the combina-
tion of computed tomography (CT) and positron emis-
sion tomography (PET), and magnetic resonance imaging
(MRI) have been used extensively for disease diagnosis
and monitoring in routine clinical practice; they may
potentially serve as non-invasive tools for developing
biomarkers for ICI therapy.

Radiomic biomarkers developed by PET/CT

Mu et al. found that the combination of Al and image
signatures based on 8F-fluorodeoxyglucose (FDG) PET/
CT before ICI initiation can predict PD-L1 expression
and identify patients with non-small cell lung cancer
(NSCLC) who may have a favorable response to treat-
ment [21]. The areas under the receiver operating char-
acteristic curves (AUCs) were 0.86 in training cohorts
(m=99, 95% confidence interval [CI] 0.79-0.94), 0.83 in
retrospective training cohorts (n=47, 95% CI 0.71-0.94),
and 0.81 in prospective test cohorts (7 =48, 95%CI 0.68—
0.92) respectively. Subsequently, in advanced NSCLC,
the authors developed a deeply learned score (DLS)
utilizing the the image signatures of 697 patients who
received ICI administration and '®F-FDG PET imaging
[22]. They showed that their PD-L1 DLS differentiated
PD-L1 positive and PD-L1 negative patients noticeably
(AUC>0.82). Unexpectedly, DLS performed equally to
immunohistochemistry-derived PD-L1 for progression-
free survival (PFS) and overall survival (OS). Further-
more, when integrating DLS and clinical data, the score
accurately predicted PFS, durable clinical benefit (DCB),
and OS in retrospective and prospective testings, and
validation cohorts (C-index 0.70-0.87), suggesting that
DLS can be a surrogate for immunohistochemistry-based
PD-L1 detection to non-invasively guide immunotherapy
decisions.
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Radiomic biomarkers developed using MRI

MRI may outperform PET/CT in brain tumor monitor-
ing. For example, due to the aggressiveness and unique
immune environment of glioblastoma (GBM), selection
of the optimal therapy for patients with GBM and predic-
tion of treatment efficacy in an early stage are challenging
and crucial [62]. Hagiwara et al. dynamically monitored
diffusion MRI and investigated the correlation of the data
with ICI efficacy in 44 patients with relapsed isocitrate
dehydrogenase wild-type GBM [23]. The result showed
that the higher the post-treatment relative apparent dif-
fusion coefficient (rADC>1.63) was, the longer OS
(median, 10.3 months vs. 6.1 months) would be (hazard
ratio [HR] 0.41; P=0.02), whereas pre-treatment rADC,
rADC changes on-treatment, as well as tumor volume
did not show an association with OS. Furthermore, Cox
regression analysis indicated the correlation between
post-ICI rADC and and survival (P=0.02). The possible
explanation may be that ADC is negatively correlated
with tumor cell density. Therefore, higher post-treatment
intra-tumoral ADC predicts better survival, highlighting
that diffusion MRI may be a suitable choice for non-inva-
sive prediction of OS benefits in ICI-treated patients with
GBM.

Radiomic biomarkers related to tumor-infiltrating
lymphocytes (TILs)

Studies suggest that the enrichment of TILs is related
to favorable outcomes in real-world ICI-treated cohorts
[63]. Researchers explored and independently validated a

radiomic biomarker for CD8+ TILs to estimate the anti-
PD-L1 monotherapy efficacy in a phase 1 trial in multiple
solid tumors [24]. Including 8 variables, this marker was
validated with the gene expression signature in CD8+T
cells (AUC 0.67; P = 0.0019; 95% CI 0.57-0.77) in The
Cancer Genome Atlas. The marker could significantly
distinguish inflamed (hot) tumors from those immune-
desert (cold) tumors (AUC 0.76; 95% CI 0.66-0.86;
P<0.0001). Higher radiomic scores at baseline were cor-
related with longer OS (P = 0.0081; HR 0.58; median,
24.3 vs. 11.5 months) and higher proportions of patients
with stable disease or objective response (P=0.013 and
P=0.025, respectively) at 6 months. Subsequently, the
predictive performance of the radiomic signature was
verified in another mixed dataset consisting of six inde-
pendent studies on the combination of radiotherapy and
ICI therapy [64].

Al and radiotracer-related signatures

The results discussed above demonstrate the potential of
combining Al (more specifically, machine learning) with
imaging parameters during ICI treatment to develop pre-
dictive biomarkers. Additionally, radiotracers may allow
a more intuitive visualization of the tumor-intrinsic and
TME status, drug distribution, as well as response to ICI
at the cellular and molecular levels (Fig. 2).

Biomarkers developed with radiotracers at cellular level
By binding to specific molecules on the cell surface,
radiotracers can be used to quantify the TIL, which is
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Fig. 2 Visualization of tumor and TME with radiotracers and PET imaging in vivo. PET, Positron emission tomography; GZMB, Granzyme B; IFN-y,
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related to ICI prognosis. In seven types of mouse tumor
models (B16F10, 4T1, CT26, MC38, Renca, P815, and
SalN), Kristensen et al. developed zirconium-89 (¥Zr)-
labeled PET radiotracers for the specific detection and
assessment of systemic CD8a+ and CD4+TILs [25].
With high radiochemical purity and immunoreactivity
(>99% and >85% respectively), the tracers were able to
phenotype the tumor model as “hot” or “cold” and pre-
dict response to ICI therapy. Mice with the maximum
CD4 ratio (3Zr-labeled, tumor to heart)>9 had longer
0S (P=0.0018).

Biomarkers developed with radiotracers at molecular level

In addition to cellular level tracing, small molecules in
TME can also be traced. Heskamp et al. were the first
to confirm that non-invasively visualizing the PD-L1
expression in vivo was possible [65]. Using radiola-
beled single-domain antibodies in MC38-bearing mice,
researchers observed the compensatory upregulation of
lymphocyte-activation gene (LAG)-3 on TILs after PD-1
blockade. The cooperative effect of the combination use
of anti-PD-1 and anti-LAG-3 delayed tumor growth [66],
providing new insights into the failure of anti-PD-1 mon-
otherapy. In addition, granzyme B, secreted by cytotoxic
T cells in the TME, can be quantified and specifically
targeted by PET imaging probes (i.e., gallium-68 [*® Ga]-
grazytracer) in vivo [26, 67]. With warranted safety, great
stability, and targeting efficiency, the *® Ga-grazytracer
excellently predicted the response to ICIs in mice colon

cancer models (i.e., the higher uptake group was associ-
ated with smaller tumor volumes, P<0.05) [26], exhibit-
ing higher sensitivity than ®F-FDG [68]. Moreover, in
a clinical trial in multiple tumor models, positive *® Ga-
grazytracer PET imaging results were associated with a
favorable clinical response [68]. Furthermore, radiotrac-
ers can be used to trace the biodistribution and metab-
olism of drugs. In one study, investigators innovatively
used ¥Zr to label atezolizumab in 22 patients across
three different tumor types and recorded the PET sig-
nals [27]. They concluded that compared to patients with
instant progressive disease, those with complete remis-
sion had higher maximum standardized uptake values
(SUVmax) (P=0.00021). The geometric mean SUVmax
was also correlated with PFS (HR 11.7; 95% CI 3.3-
62.7; P=0.000028), and OS (HR 6.3; 95% CI 1.8-33.4;
P=0.0027). Similarly, in their recent study on advanced
melanoma or NSCLC, the researchers used **Zr to label
pembrolizumab in patients and confirmed the associa-
tion between tumor SUVmax and therapeutic response
(P trend=0.014), OS (P = 0.026), and PES (P=0.0025)
[28].

To summarize, the combination of Al, radiomic image
features, radiotracers, and clinical features may collec-
tively contribute to the development of predictive bio-
markers for ICI efficacy; however, they are subject to
certain limitations. First, patients may be allergic or intol-
erant to contrast agents. Second, some analyses are ret-
rospective and lack adequate samples. Therefore, these
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results are required to be validated in larger prospective
datasets. Third, the timing of imaging varies among stud-
ies, protocols for the extraction and processing of image
features need to be standardized, and algorithms need to
be optimized. Nevertheless, as imaging is extensively uti-
lized in conventional clinical practice and can repeatedly
evaluate and monitor the phenotypic changes in a com-
pletely non-invasive and innovative manner, radiomics
still offers promising prospects in ICI efficacy prediction.

Liquid biopsy

In general, LB refers to relatively non-invasive biologi-
cal detection from bodily fluids, mostly blood, but also
urine, pleural effusion, saliva, cerebrospinal fluid, and
others [69]. Compared with tissue biopsy, LB is mini-
mally invasive and can overcome tumor heterogeneity,
better reflecting the overall landscape of the tumor and
TME [70]. Owing to its extensive availability and low
cost of sampling, dynamical monitoring of tumor evolu-
tion and timely prediction of response to ICIs are possi-
ble and allow treatment plan modification. Traditionally,
LB, mainly focusing on tumor characteristics, includes
circulating tumor cells (CTCs), proteins and extracellu-
lar vesicles, and circulating cell-free DNA or tumor DNA
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more specifically (cfDNA or ctDNA) (Fig. 3). Moreover,
the roles of circulating immune cells and related char-
acteristics (which are usually not considered to be parts
of LB) in mirroring host immune status are equally non-
negligible [71].

CTCs

CTC quantity and heterogeneity

CTCs refer to single tumor cells or cell clusters that are
shed into peripheral blood circulation from tumor lesions
(primary or metastatic) [72] and are usually regarded
as metastatic-related precursor cells [73]. Evidence has
shown that CTC quantity and heterogeneity can serve
as potential indicators of ICI efficacy. For instance, in
an investigation of 104 patients with advanced NSCLC,
the presence of CTCs was demonstrated to indepen-
dently predict the lack of durable response both before
ICI initiation (P=0.02, odds ratio 0.28) and 4 weeks
after ICI treatment (P<0.01, odds ratio 0.07), and was
also associated with poor PFS and OS [29]. In addition,
Chalfin et al. detected CTCs in peripheral blood before
and during combined immunotherapy in metastatic geni-
tourinary cancer (n=281) [30], and they found that two
CTC subtypes with specific cellular features were linked
with inferior OS before treatment and on cycle 2 day 1
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Fig. 3 Main blood-based biomarkers for ICl efficacy prediction. CTC, Circulating tumor cell; PD-L1, Programmed cell death-ligand 1; PD-1,
Programmed cell death-1; TMR, Ratio of Tregs to Lox-1+ PMN- myeloid-derived suppressor cells; NLR, Neutrophil-to-lymphocyte ratio; LIPS,
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Host immune classifier; CRAFITY, CRP and AFP in immunotherapy; cfDNA, cell-free DNA; GIN, Genomic instability number; bTMB, Blood-based tumor
mutation burden; MSI, Microsatellite instability; ctDNA, circulating tumor DNA; EV, Extracellular vesicle
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(0.9-2.3 months vs. 28.2 months; P<0.0001-0.013).
Moreover, a trend toward worse OS as CTC heterogene-
ity increased during the treatment was observed (from
baseline to cycle 2 day 1, P=0.045). The researchers
speculated that the underlying mechanism may be that
the differences in CTC morphology are the result of
tumor mutation burden (TMB). Nevertheless, validation
in other cancer types and larger independent cohorts is
necessary to confirm its predictive value.

PD-L1 expression on CTCs

Evidence has shown that PD-L1 expression on periph-
eral CTCs correlates with that in tumor tissues [74], sug-
gesting its potential capacity to predict ICI efficacy as
a surrogate marker. Investigators identified that PD-L1
on CTCs not only assisted in distinguishing responders
(Rs), non-responders (NRs), or pseudoprogressors in the
early stage of ICI administration, but also had an associa-
tion with prognosis in advanced melanoma [31]. Patients
with PD-L1+CTCs showed longer PFS in comparison
with those whose CTCs had no PD-L1 expression (26.6 vs.
5.5 months; P=0.018). Multivariate linear regression anal-
ysis further substantiated the capacity of PD-L1+CTCs
to predict PFS independently (HR 0.229; 95% CI 0.052—
1.012; P=0.026). Another study conducted a longitudi-
nal tracking of 45 patients with NSCLC and evaluated
the PD-L1 expression on CTCs during nivolumab admin-
istration and found that, at week 8, patients whose PD-L1
positivity rateswere >7.7% had significantly longer PFS
(P<0.01) [32]. However, it was identified as a negative
prognostic predictor for ICI treatment in other studies
owing to an excessively high proportion of CTCs express-
ing PD-L1 and inconsistent sampling time [75], hindering
the assessment of its predictive value.

CTCs are usually very rare, with only 1-100 cells
detected in 1 ml blood and a quite short half-life of 1-2.4 h
in circulation [76], and diverse methods may enrich vari-
ous CTC subtypes; therefore, the detection of CTCs
remains technically challenging [71]. Recently, a new tech-
nique has been used to detect mRNA expression in cap-
tured CTCs, indicating that the transcriptional profiles can
provide valuable information on prognostic prediction in
metastatic prostate cancer; however, CTC quantity and
leukocyte lysis may influence test results [77]. Therefore,
although biomarkers based on CTCs and related features
offer crucial information for ICI efficacy prediction, the
isolation and detection methods need to be standardized,
and larger-scale prospective validation is required.

Circulating immune cell-related biomarkers

Circulating immune cells with anti-tumor function
Intratumoral immune signatures can serve as independ-
ent prognostic factors in cancer [78]. Moreover, the
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systemic immune status plays a vital role in ICI therapy
and can also be influenced by tumor burden; accord-
ingly, biomarkers of systemic immunity may help guide
treatment decisions [79]. Owing to the minimal invasive-
ness and real-time monitoring of the systemic immune
status using blood samples, many investigations have
recently focused on biomarkers based on circulating
immune cells (e.g., monocytes, the ratio of neutrophil-
to-lymphocyte or eosinophil) [80-82], among which, T
cells have attracted most attention on account of their
indispensable contributions to tumor immunity. Nota-
bly, PD-1+CD8+T cells are representative of a subtype
of "exhausted" T cells (T, cells). In advanced melanoma,
Huang et al. demonstrated that patients with higher Ki67
levels of PD-1+CD8+T cells in the circulation before
immunotherapy displayed worse OS (P=0.02) than those
with lower Ki67 levels [33]. It is speculated that high Ki67
levels in that subset of T cells pre-ICI treatment reflect
the active proliferation and metabolic status and obvious
immune responses, which are correlated with high tumor
burden in the host; therefore, they have been proposed
as poor prognostic indicators. In contrast, after being
targeted by the anti-PD-1 monotherapy, the T, sub-
population gains the ability to reactivate, and their early
proliferation has been identified as associated with posi-
tive clinical outcomes of ICI therapy [83]. Interestingly,
T, cells expanded in patients with favorable responses,
while effector CD8+T cells were enriched in those
with progressive disease, confirming the significance of
T, cell reinvigoration in responding to ICIs [33]. How-
ever, if the tumor burden is too high, achieving efficient
therapeutic outcomes would be difficult even after the
robust reinvigoration with ICIs. Therefore, the imbalance
between tumor burden and T, cell reactivation results in
a clinical ICI treatment failure in most cases rather than
the inability to induce immune reinvigoration. There-
fore, considering both factors may be more rational in
ICI efficacy prediction. Researchers determined a ratio
(Ki67 +PD-14+CD8+T cell to tumor burden) of 1.94 by
classification and regression tree analysis [33], which
turned out to strongly differentiate patients with differ-
ent clinical outcomes as early as week 6 post-treatment;
the ratio>1.94 was correlated with better outcomes in
overall response rate, PFS, and OS (P<0.05). Overall, the
above evidence demonstrates the dual indicative role of
T, cells in ICI efficacy prediction.

T cell receptor diversity and clonality

Receptor diversity of T cells (TCR) can reflect their
ability to recognize neoantigens. As discussed above,
the PD-1 phenotype represents the exhausted state of
CD8+T cells; therefore, this subtype may include neo-
antigen-specific cytotoxic T lymphocytes. In addition,
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PD-1+CD8+T cells in circulation and the TME are
similar in TCR repertoires [84]. Hence, the TCR reper-
toires of peripheral PD-1+CD8+T cells may function as
substitutes for those in the tumor and provide predictive
information during ICI administration. In one study, Han
et al. focused on PD-1+CD8+ T cells in patients with
NSCLC, sequenced the complementarity determining
region 3 of TCRp chains and explored its predictive value
in ICI therapy [34]. They demonstrated that in contrast
to those with low diversity, patients with high TCR diver-
sity pre-ICI exhibited better responses and longer PFS
(6.4 vs. 2.5 months; P=0.021) in a dataset (n=25; HR
0.39; 95% CI 0.17-0.94), which was verified in another
dataset (n=15). In the combined cohorts, the optimal
Youden’s index was 0.81 (with a specificity of 0.94 and a
sensitivity of 0.87). Moreover, patients whose TCR clon-
ality of PD-1+CD8+T cells increased post-ICI showed
superior PFS and OS (7.3 vs. 2.6 months and not reached
vs. 7.5 months; P = 0.002 and 0.034; HR 0.28 and 0.23;
95% CI 0.11-0.74 and 0.07-0.79, respectively) than those
whose clonality decreased [34]. Hence, their results high-
light that in NSCLC, the clonality and diversity of TCR
from circulating PD-14+CD8+ T cells are promising non-
invasive predictive indicators of response to ICIs and
survival prognosis in NSCLC, which was supported by a
subsequent study [85].

Circulating immune cells with immunosuppressive effects

In addition to the anti-tumor subpopulation, some
immunosuppressive components in the TME, which
promote tumorigenesis and progression [86], can also
provide useful information for predicting immunothera-
peutic responsiveness [87, 88]. In a cohort of patients
with NSCLC (n = 34) on anti-PD-1 monotherapy, Kim
et al. analyzed regulatory T cells (Tregs) and myeloid-
derived suppressor cells (MDSCs) in peripheral blood
[35] and found that compared with the frequency of
either cell type alone, the difference in the TMR (Tregs
to Lox-1+PMN- MDSCs ratio) between Rs and NRs
was greater (AUC 0.87) and PFS (P = 0.0079; median,
103 vs. 35 days) was considerably longer in patients
whose TMRswere >0.39. These findings were confirmed
in another validation cohort (n=29), indicating the
unignorable role of immunosuppressive cells in ICI out-
comes prediction in NSCLC.

Comprehensive assessment of circulating immune cells

Compared to the individual evaluation of circulating
anti-tumor or immunosuppressive cells, a combined
evaluation may help identify biomarkers with more
robust predictive performance. A prospective analysis
of the immune status in patients treated with ICI across
different recurrent or metastatic cancer types identified
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a LIPS, which is a signature of the liquid immune profile
developed based on five subtypes of immune cells (spe-
cific subtypes of monocytes, T cells, neutrophils, natural
killer T cells and dendritic cells) [36]. In their analysis, the
signature reached a high level of accuracy in predicting
prognostic benefit (C-index 0.74 vs. 0.71), with signifi-
cantly longer OS in the low-risk cohort in both the train-
ing and validation datasets (#=56 and 33, HR 0.26 and
0.30; 95% CI 0.12-0.56 and 0.10-0.91; P=0.00025 and
0.024, respectively). LIPS also predicted the PES in the
combined cohort. In addition, after the first course of
ICIL, two types of LIPS (neutrophils and natural killer
T cells) can indicate survival outcomes (PFS and OS)
dynamically. Overall, the identified LIPS signature is a
simple, effective, and low-cost biomarker potential to
serve as a predictor for the prognosis of cancer patients
undergoing ICI therapy.

cfDNA-associated biomarkers

cfDNA and ctDNA quantification

cfDNA, first identified by Mandel and Metais in 1984
[89], refers to a mixture of nucleic acids released through
cell secretion, necrosis, or apoptosis into the bloodstream
[90], including ctDNA [91]. ctDNA carries tumor-spe-
cific features and the genetic and epigenetic variation
has been an appealing alternative in cancer diagnosis and
prognosis prediction [92, 93].

In recent years, several studies have reported using
cfDNA or ctDNA can predict ICI response and prog-
nosis. A prospective study of anti-PD-1 therapy across
three types of cancer (NSCLC, melanoma, colorectal
cancer) identified a notable relationship between the
synchronous changes of tumor size and ctDNA lev-
els at week 8 after treatment (r=0.86; P=0.002) [37],
which was corroborated by subsequent findings [94].
Furthermore, the detection of ctDNA at week 8 also
correlated with shorter PFS (median, 11 vs. 2 months;
HR 10.2; 95% CI 2.5-41; P=0.001) and OS (HR 15,
P=0.004) [37].

cfDNA mutation-based biomarkers

Blood-based TMB In addition to quantification of
cfDNA level, mutation characteristics of the genome may
also help predict the response to ICIs. Currently, tissue-
based TMB (tTMB) is commonly used to predict immu-
notherapy efficiency in clinical practice; nevertheless, it
is subject to heterogeneity, interference by other factors
[95], and potential risks of metastasis induced by invasive
detection. Owing to the close correlation between blood-
based TMB (bTMB) and tTMB [96, 39], an abundance of
investigations have focused on the application of bTMB
in ICI efficacy prediction.
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A retrospective assessment of two randomized con-
trolled trials confirmed the positive relationship between
tTMB and bTMB (Spearman’s rank correlation, r = 0.64,
95% CI 0.56—-0.71) and revealed that bTMB could iden-
tify patients with NSCLC sensitive to atezolizumab
with good repeatability and predict PFS independently,
regardless of PD-L1 expression levels [96]. Furthermore,
utilizing the bTMB cutoff score defined in this study [96],
in patients with NSCLC on first-line atezolizumab treat-
ment (n = 152), Kim et al. prospectively assessed the
relationship between bTMB and clinical outcomes [38].
They observed that patients with bTMB > 16 (bTMB-high
group) reached a more favorable objective response rate
(ORR) (35.7% vs. 5.5%; 95% CI 19.2-55.5 vs. 2.2-12.2;
P<0.0001) and longer OS (23.9 vs. 13.4 months; HR 0.66;
P =0.18; 90% CI: 0.40—-1.10) than those with bTMB < 16.
Moreover, the ORR values improved with the increase
of the bTMB cutoffs. In addition to assessing bTMB
directly, Wang et al. designed a cancer gene panel with
an improved gene panel size and algorithm to estimate
bTMB in NSCLC [39]. In their study, bTMB levels>6
were associated with better ORR (39.3%; 95%CI 23.9—
56.5% vs. 9.1%, 95%CI 1.6-25.9%; P = 0.02) and PFS (HR
0.39; P = 0.01; 95%CI 0.18-0.84).

Other ¢fDNA mutation-related biomarkers In addi-
tion to bTMB, other cfDNA- and ctDNA-based genomic
biomarkers have also been reported to show excellent
predictive performances. Jensen et al. developed the
genomic instability number (GIN) [40] to evaluate the
copy-number alterations among 18 different types of
malignancies and demonstrated that GIN from cfDNA
could predict PES at approximately week 6 after ICI ini-
tiation (n=44, HR 5.74; 95% CI 1.9-17.7; P=0.001). Sur-
prisingly, dynamic changes in GIN levels during treat-
ment distinguished ICI responders even before radiomic
imaging. As demonstrated by Ricciuti et al., early changes
in ctDNA allele fraction were associated with radiomic
response and long-term clinical efficacy in NSCLC [94].
Furthermore, microsatellite instability detection based on
cfDNA was also available [97], with the higher chromo-
somal instability group exhibiting better ICI responses
in patients with prostate cancer than the lower chro-
mosomal group. Collectively, the findings suggest that
cfDNA mutation-related features are of great value in ICI
efficacy prediction.

However, cfDNA mutation does not directly provide
information on the antigenicity and presentation of
tumor-associated neoantigens. Therefore, the biological
differences between bTMB and the true quality or quan-
tity of neoantigens can vary among different tumor types.
Hence, other factors, such as major histocompatibility

Page 11 of 19

complex-1 genotype and loss of heterozygosity for human
leukocyte antigen, which potentially affect the immune
response, need to be incorporated, and adequate efforts
to optimize algorithms will be required in the future [38].

cfDNA epigenetic-based biomarkers
Genomic instability and mutation are recognized as fun-
damental hallmarks of tumorigenesis and pathogenesis.
A purely epigenetic regulation of gene expression, known
as "non-mutational epigenetic reprogramming” [98], has
been demonstrated to be related to the development of
cancer [99]. Epigenetic signatures can reveal features
beyond genetic mutation and determine the originating
tissues of the molecules in peripheral blood [100], with
DNA methylation being one of the most concerned.
Investigations have indicated that DNA methylation
status in tumor tissues is associated with the progno-
sis of ICI therapy [101]. In a recent report, using eQTM
(expression quantitative trait methylation) analysis based
on tumor tissues in melanoma [102], researchers illus-
trated that three cis-eQTM CpGs were closely associ-
ated with the immune cytolytic activity score and could
be used as surrogates for it. One eQTM in transcription
factor 7 was shown to provide information on the overall
status of T cell differentiation and exhaustion; therefore,
it can be used as a prognostic biomarker independent
of the cytolytic activity score. Owing to the high stabil-
ity and tissue specificity in bodily fluids [103] and the
consistency of methylation pattern between cfDNA and
DNA in original cells [104], the exploration of meth-
ylation biomarkers from LB is a new area of interest.
Research has revealed that ctDNA methylation can be
used for early disease screening, tissue origin tracking,
and chemotherapy efficiency assessment [105, 106]. In
patients with gastric cancer on anti-PD-1 treatment, Shin
et al. determined specific open regions of chromatin to
distinguish Rs from NRs by quantitatively evaluating the
accessibility of genome-wide chromatin of peripheral
blood CD8+T cells at baseline [41]. Encouragingly, when
using nine indexes in combination, patients with gastric
cancer with high chromatin openness achieved a clear
response and had superior PFS (discovery cohort, n=32,
sensitivity 100.0%, specificity 90.9%, median, unreached
vs. 2.7 months, P<0.001; validation cohort, n=52, sensi-
tivity 88.9%, specificity 58.8%, median, 7.6 vs. 1.6 months,
P<0.001; AUC 0.717). Moreover, a recent report inte-
grated machine learning into the sequencing of gene
promoters from cfDNA to infer epigenetic expression
profiles at the single-gene resolution and developed a
“lung dynamics index” [42]. They analyzed 44 blood spec-
imens of 22 patients with NSCLC at baseline and within
4 weeks after PD-L1 blockade initiation, demonstrating
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that epigenetic signatures can reliably predict ICI prog-
nosis. In their analysis, this epigenetic metric reliably
differentiated patients with DCB and no durable clini-
cal benefit (AUC 0.93, 95% CI 0.78—-1.00) and had a clear
correlation with PFS (HR 11.38, Wald P=0.006). Taken
together, the above evidence indicates that cfDNA-
related characteristics (including cfDNA quantification,
genomics, and epigenetics) can identify patients who may
most benefit from ICI therapy.

Circulating proteomic profiling in plasm or serum

Bridging the gap between genome and phenotype, prot-
eomic signatures in plasma or serum are unique protein
patterns that correlate with tumor burden and immune
response of patients with cancer. Loriot et al. [43] first
performed a large-scale analysis of the plasma proteome
of patients with advanced malignancies on ICI ther-
apy and found that compared with interleukin-8, inter-
leukin-6, and C-X-C motif chemokine ligand-1, which
have previously been identified to be correlated with ICI
outcomes [107, 108], leukemia inhibitory factor (LIF)
had the strongest relationship with clinical prognosis and
was independent of PD-L1 status or other indicators. In
comparison with the LIF-high cohort, the LIF-low cohort
showed superior DCB (41.7% vs. 6.4%, P < 0.0001), PFS,
and OS (median, 7.4 vs. 1.7 months and 21.7 vs. 4.3
months; 95% CI 2.9-11.9 vs. 1.3-2.1 and 12—-31.4 vs. 3.4—
5.1, for PES and OS respectively; P<0.0001), which was
validated in an independent cohort (=292, AUC 0.622).
Hence, they speculated that LIF plays a critical role in
cancer immunotherapy resistance and can be developed
as a robust predictor. Furthermore, targeting the LIF axis
may provide promising insights into the improvement of
treatment efficiency, especially in patients with high
plasma LIF levels.

Advanced techniques for protein identification or
quantification (e.g., mass spectrometry, affinity-based
proteomic assays), in combination with machine learning
algorithms provide a promising approach for the identifi-
cation of predictive proteomic biomarkers for immuno-
therapy [109]. In a prospectively-designed observational
study in NSCLC, the researchers developed a host
immune classifier (HIC) based on serum proteomics and
evaluated its performance in ICI outcome prediction
[44], revealing that HIC can identify patients benefiting
from ICI, regardless of combined therapy. Specifically,
for patients on all ICI regimens, a significant differ-
ence in survival outcomes between the HIC-Hot (HIC-
H) and the HIC-Cold (HIC-C) groups was observed
(n=196, 88; HIC-H vs. HIC-C: median OS, not-reached
vs. 5.0 months, 95%CI 15.4—undefined vs. 2.9-6.4; HR
0.38, 95%CI 0.27-0.53; P<0.0001). In terms of patients
treated with ICI monotherapy, OS was 16.8 for HIC-H
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and 2.8 months for HIC-C (HR 0.36, P<0.0001). Addi-
tionally, the prediction efficiency was independent of
PD-L1, implicating a better predictive performance if the
two factors are combined. Nevertheless, this is an obser-
vational and non-randomized study that requires rigor-
ous multi-institutional design and extensive independent
cohorts to prospectively validate. However, the current
results are of great significance for guiding clinical immu-
notherapy decisions.

Surprisingly, studies have recently revealed that some
plasma proteins routinely detected in clinical practice
also show a notable predictive value. For instance, multi-
variate analysis indicated that C-reactive protein (CRP)
and serum alpha-fetoprotein (AFP) at baseline were inde-
pendent predictors of the prognosis of PD-L1-based ther-
apy in hepatocellular carcinoma (HCC). Based on these
findings, Scheiner et al. developed an easily applicable
score with CRP and AFP in immunotherapy (CRAFITY)
[45]. Patients with a low CRAFITY score had the best radi-
ological responses (highest disease control rate, ?<0.001)
and the longest OS (27.6 months, 95% CI 19.5-35.8) in
the discovery cohort (2=190), followed by CRAFITY-
intermediate patients (11.3 months; 95% CI 8.0-14.6),
and CRAFITY-high patients (6.4 months; 95% CI 4.8-8.1;
P<0.001). The results were verified in another independ-
ent external cohort (n=102, C-index 0.62). Indeed, the
combination of AFP and CRP in ICI outcome prediction
in HCC is rational at the mechanism level; CRP, an acute-
phase protein, is a widely-recognized systemic marker of
inflammation induced by cancer, and inflammation can
contribute to tumorigenesis and disease progression [110,
111]. Recent evidence shows that CRP can promote tumor
immunosuppression [112]. In addition, AFP is associated
with angiogenesis, hampers anti-tumor immunity [45],
and facilitates tumor proliferation [113]. Nonetheless,
some investigators disagree, arguing that the findings of
this retrospective study are required to be further vali-
dated in large clinical studies. Of note, considering that the
CRP and AFP levels may be affected by other diseases not
related to HCC (e.g., infection), and there is heterogene-
ity among patients in terms of their liver function status,
treatment line, and the specific ICI type, the integration
of additional indicators may help overcome selection bias
and optimize the prognostic performance.

In contrast to DNA or RNA-based studies, proteomics
can explore post-translational modifications and analyze
proteins quantitatively and qualitatively, allowing in-
depth profiling of the host immune response and TME, as
well as the identification of biomarkers for ICI outcomes
[109]. However, due to limitations of sample preparation
procedures, identification of protein isoforms, and retro-
spective studies, the applicability of some proteomic bio-
markers in clinical practice remains challenging.



Song et al. Biomarker Research (2023) 11:57

Extracellular vesicles

Extracellular vesicles (EVs), which are secreted by multi-
ple cell types under physiological conditions and stress,
can be roughly classified into exosomes, microvesicles,
and apoptotic bodies [114]. Consisting of proteins, lipids,
and nucleic acids delivered by parental cells to recipient
cells, EVs are considered mediators in intercellular com-
munication [115]. Owing to the immunogenicity, molec-
ular delivery functions, and different cellular origins,
exosomes play dual roles in tumorigenesis and develop-
ment in various cancer types [116]. Specifically, immune
cell-derived exosomes usually execute potent antitumor
activity [117], whereas tumor cell-derived exosomes, pos-
sessing similar functions to their parental cells, are linked
with distant tumor metastasis and immune escape [118—
120]. Accordingly, exosomes may carry meaningful infor-
mation regarding ICI efficacy prediction.

Chen et al. found that in patients with metastatic mela-
noma on anti-PD-1 therapy [46], higher levels of base-
line circulating exosomal PD-L1 pre-treatment were
correlated with poorer clinical outcomes (P=0.0018).
Furthermore, at 3—-6 weeks after ICI initiation, respond-
ers showed a greater elevation of circulating exosomal
PD-L1 levels released by metastatic melanoma cells
(P=0.00001). A 2.43-fold change identified by ROC anal-
ysis stratified patients with different clinical responses,
with the value>2.43 at week 3-6 related to better prog-
noses (ORR, PFS, and OS, P<0.05). The favorable pre-
diction of increasing PD-L1 may be a result of T cell
proliferation and reinvigoration successfully triggered
by anti-PD-1 treatment, represented by circulating exo-
somal PD-L1 levels. In another study of melanoma, con-
sistent changes of PD-L1 were obtained at an early stage

PROS

1. Minimally invasive and easy to be
accepted

2. Systemic assessment of tumor
and host immune status

3. Dynamically monitoring disease
and responses on-treatment

4. Identify responders prior to radio-
mic imaging

5. Repeatable

6. Economical
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of treatment, and in comparison with baseline, circu-
lating exosomal CD73 increased remarkably at week 4
(P=0.0041) in NRs but not in Rs [47]. Recently, Zhang
et al. comprehensively assessed the plasma EV-derived
protein spectrum in patients with gastric cancer on ICI-
based therapies and then developed an “EV-score” [48].
A high “EV-score” reflected a microenvironment with
strong anti-tumor immunity features. The baseline EV-
score reached high AUC:s in predicting 6-month disease
progression or death (AUC=0.729 and AUC=0.630,
respectively). Moreover, the EV-score changes at the
first month after ICI initiation predicted the prognosis
(HR=0.3677 and 0.4568, P=0.0471 and 0.1828, for PFS
and OS respectively, HR=0.4568). This EV-score they
developed is a stable index for stratification and dynamic
prediction of prognosis during immunotherapy. Addi-
tionally, at the transcriptional level, EV transcriptional
profiling revealed drivers of ICI resistance and melanoma
progression, which correlated with clinical response to
ICI [121].

In clinical practice, obtaining a sufficient amount of
tumor tissues with adequate quality from patients for cel-
lular and molecular testing can be challenging. Owing to
its minimally invasive, readily available, reproducible, and
relatively low-cost features, LB has become an attractive
approach that can provide comprehensive insight into
the tumor and systemic immune profiles [70]. Peripheral
blood-based biomarkers offer clinicians abundant infor-
mation for rapid decision-making and dynamic assess-
ment of therapeutic efficacy, showing promise for wider
application. Nevertheless, there are some challenges
ahead (Fig. 4). First, some circulating biomarkers (e.g.,
CTC, ctDNA) have comparatively low concentrations

CONS

1. Affected by interval time from sample
collection to processing, and the trans-
portation and storage condition

LIQUId 2. Heterogeneity in detection methods

and criteria

Blopsy 3. Interfered by high background signals

4. Low concentration of CTCs and
ctDNA

5. Short half time of CTCs and cfDNA
6. Instability of protein

Fig. 4 Pros and cons of blood-based biomarkers. CTCs, Circulating tumor cells; ctDNA, circulating tumor DNA; cfDNA, cell-free DNA
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and short half-lives in peripheral blood [76]; for example,
the half-life of cfDNA varies from 16 min to 13 h [122,
123], which makes it challenging to capture and hinders
immediate application in early efficacy evaluation [42].
Second, high background signals from other cells may
interfere with the analysis. Third, heterogeneous meth-
ods of detection and analysis used at different institu-
tions may lead to inconsistent results, with different cell
types enriched and different cutoff points for biomarkers
identified. Lastly, factors including the time interval from
sampling to processing of specimens and the transport
and storage temperature may affect the cellular state and
stability of cfDNA and proteins. Consequently, the devel-
opment of highly-sensitive techniques and formulation of
standardized guidelines for pre-analytical procedures of
patient specimens are urgently needed [124] to stimulate
the identification of more robust biomarkers.

Microbiota and microbial metabolites

In addition to the medical image-based radiomic bio-
markers and markers developed by LB, the microbiome is
also a new factor for predicting ICI efficacy. Interestingly,
host immunity can modulate the microbiome by altering
bacteria-associated signals, and conversely, the microbi-
ome (especially intestinal-derived) can shape the immune
system of the host by locally and systemically regulat-
ing immune responses [125-127], partly attributed to
the stimulation of host pattern recognition receptors by
the cross-presentation of tumor and microbial antigens
[128]. Surprisingly, ICI Rs-derived fecal transplantation
helped patients overcome resistance to ICIs [129], pro-
viding convincing evidence that ICI efficacy can be influ-
enced by the host gut microbiome [130].

For the past few years, a considerable number of inves-
tigations have discovered specific gut microbes asso-
ciated with ICI efficacy. However, they used diverse
analytical approaches, lacking consistency and reliable
reproducibility. For example, by analyzing the baseline
fecal microbiome samples of patients with melanoma on
ICI treatment, Gopalakrishnan et al. demonstrated the
abundance of Ruminococcaceae bacteria in Rs (n=43,
P<0.01) [131]. In other studies, Collinsella aerofaciens,
Bifidobacterium longum, and Enterococcus faecium were
abundant in Rs (#=42, P=0.004) [132], and Bacteroides
caccae was identified in Rs for all types of ICI therapies
(n=39, P=0.032) [133]. In contrast, Ruminococcus gna-
vus and Bacteroides were shown to be related to shorter
PES in regression analysis of both 16S and shotgun data
(r=0.32, P=0.1; r=0.89, P<0.001) [134]. Nevertheless,
most studies were based on retrospective analyses and
included limited cohorts from a single institution.

To address the issue of inconsistency, McCulloch
et al. recently evaluated a new dataset of patients with
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melanoma on ICI therapy (n=94) [49]. The Time-to-
event analysis demonstrated that approximately one
year after ICI initiation, baseline microbiota com-
position was greatly correlated with the outcomes
(P=0.006). The unfavorable microbiota mainly con-
sisted of Gram-negative bacteria, which can pro-
mote lipopolysaccharide-dominated inflammation in
the gut and lead to local and systemic inflammation,
ultimately manifested by poor prognosis. Next, the
authors integrated bioinformatics into the meta-anal-
ysis of five microbiome cohorts of anti-PD-1 therapy
in melanoma and reported that the taxa correlated
with superior responses mainly were the Actinobacte-
ria phylum and two families of Firmicutes, while those
associated with unfavorable responses were mainly
Gram-negative bacteria. Of note, optimized learning
algorithms trained with batch-corrected microbiome
data estimated ICI outcomes across all cohorts con-
sistently (AUC 0.54-1.00). The discrepancies between
cohorts may be attributed to the nonuniform geo-
graphical distribution, which affects the microbial
communities [49].

Compared with the concrete composition, metabo-
lites of microbiota may be more functionally mean-
ingful, playing non-negligible roles in host immunity
when absorbed into the blood system. Short-chain fatty
acids (SCFAs), one type of microbiota metabolites in
the gut, are known for their function in T cell homeo-
stasis [51]. An investigation including 52 patients with
solid tumors on nivolumab or pembrolizumab ther-
apy demonstrated that Rs had higher levels of fecal
and serum SCFAs pre-treatment compared with NRs
(P<0.05) [50]. Inversely, in another pooled dataset
of patients with multiple myeloma treated with ipili-
mumab (n=285), patients were classified into two sub-
groups based on median serum SCFA concentrations at
baseline, and Kaplan—Meier analyses showed that lower
levels of both butyrate and propionate had associations
with longer PFS (P=0.0015; P=0.0029) [51].

These studies on the profiles of gut microbiota com-
position and metabolites in patients with cancer con-
firm their promising value in ICI efficacy prediction
with a completely non-invasive approach. However, the
effects of microbiome composition and SCFA-focused
microbial metabolites on host immunity modulation
are fairly intricate. Importantly, the microbial com-
position can be affected by geographic location [135],
diets, intake of drugs (especially antibiotics) [136, 137],
and lifestyle. Moreover, different cancer types, treat-
ment regimens (single or combined therapy) [138],
clinical response annotations, and bioinformatics
methods all may contribute to significant inter-cohort
heterogeneity and inconsistent results obtained at
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different institutions. Hence, a more comprehensive
evaluation of microbial function and interactions with
the host during ICI treatment is required. Further-
more, machine learning algorithms should be efficiently
utilized for in-depth studies in larger cohorts to iden-
tify microbial biomarkers with excellent predictive
performance.

eNose-related biomarkers

As an emerging and completely non-invasive method for
medical testing, with artificial intelligence, the electronic
nose (eNose) can capture and classify the volatile organic
compound in exhaled breath. The detection of epidermal
growth factor receptor mutation with high accuracy in
lung cancer provides compelling evidence for its efficacy
[139]. Thus, some investigators speculated that molecular
profiles of exhaled breath could reflect the inflammatory
environment linked with response to anti-PD-1 therapy
for patients within NSCLC [52]. They found that baseline
data from eNose significantly differentiated responses at
3 months after treatment (training, n=92, AUC 0.89, CI
0.82-0.96; validation, n=51, AUC 0.85, CI 0.75-0.96).
In addition, Buma et al. [53] confirmed the precise per-
formance of eNose in distinguishing objective Rs at the
early stage in NSCLC (n=62 and 32, AUC 0.95 and 0.97,
for training and validation sets respectively). Overall, the
eNose is simple and easy to implement, after robust vali-
dation of accuracy in larger cohorts, this technology is
promising to be used in clinical practice.

Other biomarkers related to gender and body composition
At present, studies on biomarkers for ICI efficacy mostly
focus on tumor mutation, antigen burden, and TME;
however, many other factors related to clinical charac-
teristics of patients such as gender and body mass index
(BMI) may also have profound effects on the immune
response. Differences in immune function between
men and women exist due to genetics, hormones, and
other factors [140]. A meta-analysis of 11,351 patients
with advanced or metastatic tumors on ICI therapy [54]
showed in comparison with the control group, the OS
HR was 0.72 for men and 0.86 for women (95% CI 0.65—
0.79; 0.79-0.93). The different ICI outcomes in men and
women (P=0.0019) indicated that in the era of precision
medicine, more attention demands to be paid to gender
heterogeneity and the promotion of the effectiveness of
immunotherapy in women; ultimately, optimal and per-
sonalized therapeutic regimens for men and women will
be explored.

Obesity has been reported to shape the metabolism
in the TME, impair T cell infiltration and function, and
lead to immune senescence and dysfunction by adipo-
cyte-derived molecules (e.g., adipokines, hormones,
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cytokines), which can be reversed by anti-PD-L1 [141-
143]. Studies have shown that obesity correlates with
improved efficacy of PD-L1 blockade in both tumor-
bearing mice and patients with malignancies [141]. A
study explored the relationship between BMI and the effi-
cacy of different therapies in metastatic melanoma [55].
They observed that, in the immunotherapy cohort, obese
patients had more favorable PFS and OS in contrast to
those with normal BMI (#=207 and n=331; HR 0.75,
95% CI 0.56-1.00 for PFS; HR 0.64, 95% CI 0.47-0.86
for OS). Interestingly, when further grouped by gender,
this relationship was observed in men but not women.
However, some other studies on ICI therapy in patients
with melanoma did not demonstrate notable associa-
tions between BMI and superior survival outcomes [56].
Given that studies linking obesity to immunotherapy
efficacy lack consistency and reproducibility, Young
et al. focused on specific body components (muscle, fat,
etc.) in patients with metastatic melanoma undergoing
ICI therapy (n=287) [57]. They found that patients with
sarcopenic obesity showed shorter PFS (HR 1.4, P=0.04)
in univariable analyses. In multivariable analyses, those
with a high total adipose tissue index had shorter PFS
(HR 1.7, P=0.04), which was especially evident in women
(HR 2.1, P=0.03). Patients achieving the best outcomes
were characterized by high skeletal muscle gauge and
intermediate total adipose tissue index (PFS and OS,
P=0.02). Most recently, researchers proposed that vis-
ceral adiposity and systemic inflammation are crucial
prognostic indicators of ICI therapy in melanoma [144].
Taken together, these results highlight the role of body
composition (including obesity, BMI, and more specifi-
cally, sarcopenic obesity or visceral adiposity) in tumor
development and ICI treatment efficacy prediction.

Conclusions

In summary, ICIs have shown amazing efficacy in cancer
treatment; however, few patients achieve durable clini-
cal remissions [145]. Currently, biomarkers approved for
clinical decision-making of immunotherapy are mainly
based on invasive surgery or tissue biopsy. They are not
able to overcome the temporal and spatial heterogene-
ity and potentially bring a series of complications due
to the operation. In this article, we provide a relatively
comprehensive discussion of non-invasive predictive bio-
markers for ICI efficacy from the perspective of recent
advances in diverse fields. Specifically, markers devel-
oped by the combination of Al and radiomics may not
only be regarded as alternatives to PD-L1 [22] but also
outperform the existing Response Evaluation Criteria
in Solid Tumors (RECIST) criteria for identifying long-
term beneficiaries [146]. Based on PET/CT imaging of
radiotracers, the systemic tumor and immune landscapes
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can be non-invasively visualized [147]. Surprisingly, LB
can evaluate the interaction of tumor and host in cellu-
lar and molecular dimensions and may be an economi-
cal and easy-to-apply detection method. Research on
predictive biomarkers related to gut microbiota and its
metabolites for the efficacy of immunotherapy has been
developing rapidly; nevertheless, heterogeneity across
cohorts exists due to the influence of host diets, lifestyle,
medication, and geographical distribution. Furthermore,
by analyzing the composition of exhaled breath, the novel
and non-invasive eNose technology may have a broader
application beyond lung cancer [148]. Additionally, other
clinical factors related to gender and body composition
are readily available and should not be ignored in the era
of precision medicine.

As described above, studies on ICI therapy have shown
promising prospects for non-invasive biomarkers. Nev-
ertheless, there are still challenges before they can be
routinely implemented in medical practice and addi-
tional efforts could be made from the following aspects.
To achieve widespread application, machine learning in
larger datasets is required and more optimized algorithms
should be developed. Importantly, multi-center rand-
omized controlled trials with large cohorts are necessary
for the identification and validation of biomarkers with
robust and reliable predictive performance. Moreover, to
achieve precise prediction, biomarkers applicable to vari-
ous tumor types (specific subtypes or pan-cancers) should
be identified. Lastly, the cost of detection should be mini-
mized, enabling economical and extensive implementa-
tions of the non-invasive biomarkers in clinical practice.

Notably, owing to the performance limitation of a sin-
gle biomarker, integrative models incorporating multi-
ple biomarkers related to tumor-host interactions are
required to predict ICI efficacy accurately and timely
[149]. In the future, the identification of additional non-
invasive and dynamically predictive biomarkers with high
sensitivity and specificity is expected. Developed by dif-
ferent detection methods, these markers will be precisely
implemented for application in populations with diverse
disease states, helping identify those possible to derive
the most benefit from ICI therapy and better guide treat-
ment decisions for patients with tumors in clinical prac-
tice, which will ultimately contribute to the improvement
of therapeutic efficacy in cancer and promotion of social
and medical effectiveness.
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ICl Immune checkpoint inhibitor
PD-1 Programmed cell death-1

PD-L1 Programmed cell death-ligand 1
TME Tumor microenvironment

T™MB Tumor mutation burden
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Al Artificial intelligence
FDG Fluorodeoxyglucose
PET Positron emission tomography
cT Computed tomography
NSCLC Non-small cell lung cancer
AUC Area under the receiver operating characteristic curve
a Confidence interval
DLS Deeply learned score
PFS Progression-free survival
oS Overall survival
DCB Durable clinical benefit
GBM Glioblastoma
rADC Relative Apparent diffusion coefficient
HR Hazard ratio
TiLs Tumor-infiltrating lymphocytes
897r Zirconium-89
LAG Lymphocyte-activation gene
% Ga Gallium-68
SUVmax  Maximum Standardized uptake values

CTCs Circulating tumor cells

cfDNA Cell-free DNA

ctDNA Circulating tumor DNA

Rs Responders

NRs Non-responders

Teccells  Exhausted T cells

Tregs Regulatory T cells

MDSCs Myeloid-derived suppressor cells
TMR Ratio of Tregs to Lox-14PMN-MDSCs
LIPS Signature of the liquid immune profile
TCR T cell receptor

tTMB Tissue-based tumor mutation burden
bTMB Blood-based tumor mutation burden
ORR Objective response rate

GIN Genomic instability number

eQTM Expression Quantitative trait methylation
TCF7 Transcription factor 7
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HIC Host immune classifier

HIC-H HIC-Hot
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AFP Alpha-Fetoprotein

CRP C-Reactive protein

CRAFITY  CRP and AFP in immunotherapy

HCC Hepatocellular carcinoma

EV Extracellular vesicle

SCFA Short-chain fatty acids

eNose Electronic Nose
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